留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲利苯蓝掺杂石墨烯/聚吡咯复合气凝胶的制备与电化学性能

胡思伽 宋慧敏 刘文慧 刘佳豪 韩永芹

胡思伽, 宋慧敏, 刘文慧, 等. 曲利苯蓝掺杂石墨烯/聚吡咯复合气凝胶的制备与电化学性能[J]. 复合材料学报, 2023, 40(9): 5095-5106. doi: 10.13801/j.cnki.fhclxb.20221201.001
引用本文: 胡思伽, 宋慧敏, 刘文慧, 等. 曲利苯蓝掺杂石墨烯/聚吡咯复合气凝胶的制备与电化学性能[J]. 复合材料学报, 2023, 40(9): 5095-5106. doi: 10.13801/j.cnki.fhclxb.20221201.001
HU Sijia, SONG Huimin, LIU Wenhui, et al. Preparation and electrochemical properties of triphenyl blue doped graphene/polypyrrole composite aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5095-5106. doi: 10.13801/j.cnki.fhclxb.20221201.001
Citation: HU Sijia, SONG Huimin, LIU Wenhui, et al. Preparation and electrochemical properties of triphenyl blue doped graphene/polypyrrole composite aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5095-5106. doi: 10.13801/j.cnki.fhclxb.20221201.001

曲利苯蓝掺杂石墨烯/聚吡咯复合气凝胶的制备与电化学性能

doi: 10.13801/j.cnki.fhclxb.20221201.001
基金项目: 国家自然科学基金面上项目(52173258);山东省自然科学基金面上项目(ZR2021MB125)
详细信息
    通讯作者:

    韩永芹,博士,副教授,博士生导师,研究方向为导电高分子复合材料 E-mail: hanyq@sdust.edu.cn

  • 中图分类号: TB332

Preparation and electrochemical properties of triphenyl blue doped graphene/polypyrrole composite aerogels

Funds: National Natural Science Foundation of China (52173258); Shandong Provincial Natural Science Foundation, China (ZR2021MB125)
  • 摘要: 将具有独特掺杂结构的聚吡咯(PPy)与丰富多孔结构的石墨烯(GE)气凝胶复合,可实现两种材料优势互补。通过一步水热法制备了曲利苯蓝(TB)掺杂GE/PPy复合气凝胶,采用SEM、FTIR、XRD、Raman和XPS对复合材料的形貌、化学结构、掺杂结构进行表征。结果表明,TB掺杂PPy/GE复合气凝胶呈现出三维多孔网络结构,复合气凝胶中氧化石墨烯(GO)被还原的同时,导电PPy被成功聚合,TB的引入有利于复合气凝胶掺杂水平的提高。电化学测试分析表明, TB掺杂浓度达到5 mmol·L−1时,复合气凝胶(TB-5/PPy-GO)可获得最高比电容(392 F·g−1),10000次充/放电循环后,比电容保持率可达85%;将TB-5/PPy-GO、活性炭分别作为正、负极组装为非对称超级电容器,其在功率密度为400 W·kg−1时,能量密度高达35.89 W·h·kg−1,表现出良好的超电容特性。

     

  • 图  1  曲利苯蓝(TB)结构式

    Figure  1.  Structural formula of triphenyl blue (TB)

    图  2  PPy-GO (a)、TB-1/PPy-GO (b)、TB-3/PPy-GO (c)、TB-5/PPy-GO (d)、TB-8/PPy-GO (e) 的SEM图像及TB-5/PPy-GO的EDS能谱图 ((f)~(i))

    Figure  2.  SEM images of PPy-GO (a), TB-1/PPy-GO (b), TB-3/PPy-GO (c), TB-5/PPy-GO (d), TB-8/PPy-GO (e) and EDS spectra of TB-5/PPy-GO ((f)-(i))

    图  3  PPy-GO和TB/PPy-GO的FTIR图谱 (a)、XRD图谱 (b)、拉曼光谱图 (c)

    Figure  3.  FTIR spectra (a), XRD patterns (b), Raman spectra (c) of PPy-GO and TB/PPy-GO

    图  4  样品的全谱图 (a)、PPy-GO (b)、TB-1/PPy-GO (c)、TB-3/PPy-GO (d)、TB-5/PPy-GO (e)、TB-8/PPy-GO (f) 的C1s XPS光谱图

    Figure  4.  Full spectrum of the sample (a), C1s XPS spectra of PPy-GO (b), TB-1/PPy-GO (c), TB-3/PPy-GO (d), TB-5/PPy-GO (e), TB-8/PPy-GO (f)

    图  5  PPy-GO (a)、TB-1/PPy-GO (b)、TB-3/PPy-GO (c)、TB-5/PPy-GO (d)、TB-8/PPy-GO (e)的O1s XPS光谱图

    Figure  5.  O1s XPS spectra of PPy-GO (a), TB-1/PPy-GO (b), TB-3/PPy-GO (c), TB-5/PPy-GO (d), TB-8/PPy-GO (e)

    图  6  PPy-GO (a)、TB-1/PPy-GO (b)、TB-3/PPy-GO (c)、TB-5/PPy-GO (d)、TB-8/PPy-GO (e) 的N1s XPS光谱图

    Figure  6.  N1s XPS spectra of PPy-GO (a), TB-1/PPy-GO (b), TB-3/PPy-GO (c), TB-5/PPy-GO (d), TB-8/PPy-GO (e)

    图  7  PPy-GO、TB/PPy-GO (10 mV·s−1) (a),TB-5/PPy-GO (b)的CV曲线;(c) PPy-GO、TB/PPy-GO的GCD曲线(1 A·g−1);(d) TB-5/PPy-GO的GCD曲线;(e) PPy-GO、GBPs的EIS;(f) TB-5/PPy-GO的10 000圈循环稳定性测试(10 A·g−1)

    Figure  7.  CV curves of PPy-GO, TB/PPy-GO (10 mV·s−1) (a) and TB-5/PPy-GO (b); (c) GCD curves of PPy-GO, TB/PPy-GO (1 A·g−1); (d) GCD curves of TB-5/PPy-GO; (e) EIS of PPy-GO, TB/PPy-GO; (f) 10 000 cycle stability test of TB-5/PPy-GO (10 A·g−1)

    t—Discharge time; −Z''—Imaginary impedance; Z'—Real impedance

    图  8  TB-5/PPy-GO器件的CV (a)、GCD (b)、EIS (c)、10000圈循环稳定性测试(5 A·g−1)以及点亮LED电路板照片(d)

    Figure  8.  TB-5/PPy-GO devices CV (a) , GCD (b) , EIS curves (c) , 10000 cycle stability test (5 A·g−1) and photo of lighting up LED circuit board (d)

    图  9  TB-5/PPy-GO器件不同电压下的CV曲线(10 mV·s−1) (a),在0°、90°、135°、180°角度下弯折100次后CV (10 mV·s−1) (b)、GCD (1 A·g−1) (c)、EIS曲线 (d)

    Figure  9.  CV curves of TB-5/PPy-GO devices at different voltages (10 mV·s−1) (a), after bending 100 times at 0°, 90°, 135°, and 180° angles CV (10 mV·s−1) (b), GCD (1 A·g−1) (c), EIS curves(d)

    图  10  TB/PPy-GO合成机制图

    Figure  10.  Schematic diagram of the synthesis mechanism of TB/PPy-GO

    表  1  聚吡咯(PPy)/TB/氧化石墨烯(GO)复合气凝胶的原材料配比

    Table  1.   Ratios of the raw materials used in the polypyrrole (PPy)/TB/graphene oxide (GO) composite aerogels

    SamplePy/mgGO/mgTB/(mmol·L−1)
    PPy-GO140560
    TB-1/PPy-GO140561
    TB-3/PPy-GO140563
    TB-5/PPy-GO140565
    TB-8/PPy-GO140568
    Note: PPy-GO, TB-1/PPy-GO, TB-3/PPy-GO, TB-5/PPy-GO and TB-8/PPy-GO—Concentration of TB in the prepared composite aerogel as 0, 1, 3, 5, 8 mmol·L−1, respectively.
    下载: 导出CSV
  • [1] SANATI S, ABAZARI R, ALBERO J, et al. Metal-organic framework derived bimetallic materials for electrochemical energy storage[J]. Angewandte Chemie International Edition,2021,60(20):11048-11067. doi: 10.1002/anie.202010093
    [2] ZHANG T Q, MAO Z F, SHI X J, et al. Tissue-derived carbon microbelt paper: A high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors[J]. Energy & Environmental Science,2022,15(1):158-168.
    [3] FEI R X, WANG H W, WANG Q, et al. In situ hard-template synthesis of hollow bowl-like carbon: A potential versatile platform for sodium and zinc ion capacitors[J]. Advanced Energy Materials,2020,10(47):2002741. doi: 10.1002/aenm.202002741
    [4] SUN R, QIN Z X, LIU X L, et al. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries[J]. ACS Sustainable Chemistry & Engineering,2021,9(35):11769-11777.
    [5] FAN W, SHI Y Q, GAO W, et al. Graphene-carbon nanotube aerogel with a scroll-interconnected-sheet structure as an advanced framework for a high-performance asymmetric supercapacitor electrode[J]. ACS Applied Nano Materials,2018,1(9):4435-4441. doi: 10.1021/acsanm.8b00605
    [6] SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews,2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252
    [7] BHOJANE P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding[J]. Journal of Energy Storage,2022,45:103654. doi: 10.1016/j.est.2021.103654
    [8] GONÇALVES R, PAIVA R S, LIMA T M, et al. Carbon nitride/polypyrrole composite supercapacitor: Boosting performance and stability[J]. Electrochimica Acta,2021,368:137570. doi: 10.1016/j.electacta.2020.137570
    [9] ZHAN Y, HU Y, CHEN Y, et al. In-situ synthesis of flexible nanocellulose/carbon nanotube/polypyrrole hydrogels for high-performance solid-state supercapacitors[J]. Cellulose,2021,28(11):7097-7108. doi: 10.1007/s10570-021-03998-1
    [10] WEI W, TANG Q L, LIU T, et al. Preparation and properties of polypyrrole/polyamide 6 nanocomposite film with core-shell architecture for the high-performance flexible supercapacitor[J]. Composites Communications,2020,22:100468. doi: 10.1016/j.coco.2020.100468
    [11] 辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2021, 38(4): 1272-1282.

    XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability[J]. Acta Materiae Compositae Sinica, 2021, 38(4):1272-1282(in Chinese).
    [12] DONG C, ZHANG X L, YU Y J, et al. An ionic liquid-modified RGO/polyaniline composite for high-performance flexible all-solid-state supercapacitors[J]. Chemical Communications,2020,56(80):11993-11996. doi: 10.1039/D0CC04691D
    [13] 杨云强, 张佳丽, 章海霞, 等. 聚 3, 4-乙烯二氧噻吩/纳米多孔金复合电极的制备及其在超级电容器中的应用[J]. 复合材料学报, 2020, 37(12): 3160-3167.

    YANG Yunqiang, ZHANG Jiali, ZHANG Haixia, et al. Preparation of poly 3, 4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3160-3167(in Chinese).
    [14] ZHOU M Y, LI Y Q, GONG Q, et al. Polythiophene grafted onto single-wall carbon nanotubes through oligo(ethylene oxide) linkages for supercapacitor devices with enhanced electrochemical performance[J]. ChemElectroChem,2019,6(17):4595-4607. doi: 10.1002/celc.201901074
    [15] ZHANG Q R, LI W Z, ZHU Z T, et al. Facile growth of hierarchical SnO2@PPy composites on carbon cloth as all-solid-state flexible supercapacitors[J]. Journal of Alloys and Compounds,2022,906:164275. doi: 10.1016/j.jallcom.2022.164275
    [16] SHEN M, CHEN L, REN S B, et al. Construction of CuO/PPy heterojunction nanowire arrays on copper foam as integrated binder-free electrode material for high-performance supercapacitor[J]. Journal of Electroanalytical Chemistry,2021,891:115272. doi: 10.1016/j.jelechem.2021.115272
    [17] LI J M, LI X, WEI W L, et al. Hollow core-shell polypyrrole@poly(1, 5-diaminoanthraquinone) compo-sites with superior electrochemical performance for supercapacitors[J]. Electrochimica Acta,2021,395:139193. doi: 10.1016/j.electacta.2021.139193
    [18] 周浪, 王涛. 石墨烯/功能聚合物复合材料[J]. 复合材料学报, 2020, 37(5):997-1014.

    ZHOU Lang, WANG Tao. Graphene/functional polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(5):997-1014(in Chinese).
    [19] WANG Y Y, LIU G Q, LIU Y F, et al. Heterostructural conductive polymer with multi-dimensional carbon materials for capacitive energy storage[J]. Applied Surface Science,2021,558:149910. doi: 10.1016/j.apsusc.2021.149910
    [20] HAN Y Q, GAO X X, HE M S, et al. Organic sulfate modified carbon nantube/polypyrrole core-shell nanocomposites with improved electrochemical performance[J]. Synthetic Metals, 2019, 217: 288-294.
    [21] PARK J W, PARK S J, KWON O S, et al. In situ synthesis of graphene/polyselenophene nanohybrid materials as highly flexible energy storage electrodes[J]. Chemistry of Materials,2014,26(7):2354-2360. doi: 10.1021/cm500577v
    [22] YANG J J, WENG W, LIANG Y X, et al. Heterogeneous graphene/polypyrrole multilayered microtube with enhanced capacitance[J]. Electrochimica Acta,2019,304:378-385. doi: 10.1016/j.electacta.2019.03.015
    [23] YE S, FENG J. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors[J]. ACS Applied Materials & Interfaces 2014, 6(12): 9671-9679.
    [24] 喻航达. 石墨烯-导电高分子复合凝胶的制备与性能研究[D]. 武汉: 武汉工程大学, 2019.

    YU Hangda. Preparation and properties of graphene/conductive polymer composite gel[D]. Wuhan: Wuhan Institute of Technology, 2019(in Chinese).
    [25] ZHANG E H, LIU W F, LIU X G, et al. Pulse electrochemical synthesis of polypyrrole/graphene oxide@graphene aerogel for high-performance supercapacitor[J]. RSC Advances,2020,10(20):11966-11970. doi: 10.1039/D0RA01181A
    [26] YANG J B, JI X X, LIU L B, et al. One step fabrication of graphene/polypyrrole/Ag composite electrode towards compressible supercapacitor[J]. Journal of Alloys and Compounds,2020,820:153081. doi: 10.1016/j.jallcom.2019.153081
    [27] YANG C Y, ZHANG P F, NAUTIYAL A, et al. Tunable three-dimensional nanostructured conductive polymer hydrogels for energy-storage applications[J]. ACS Applied Materials & Interfaces,2019,11(4):4258-4267.
    [28] ALVES A P P, KOIZUMI R, SAMANTA A, et al. One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance[J]. Nano Energy,2017,31:225-232. doi: 10.1016/j.nanoen.2016.11.018
    [29] RAJESH M, RAJ C J, KIM B C, et al. Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films[J]. Electrochimica Acta,2016,220:373-383. doi: 10.1016/j.electacta.2016.10.118
    [30] YANG J, WANG X, LI B, et al. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting[J]. Advanced Functional Materials,2017,27(17):1606497. doi: 10.1002/adfm.201606497
    [31] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368
    [32] WANG Q L, SONG H M, LI W Q, et al. Facile synthesis of polypyrrole/graphene composite aerogel with Alizarin Red S as reactive dopant for high-performance flexible supercapacitor[J]. Journal of Power Sources,2022,517:230737. doi: 10.1016/j.jpowsour.2021.230737
    [33] SHI K Y, ZHITOMIRSKY I. Polypyrrole nanofiber-carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant[J]. Journal of Materials Chemistry A,2013,1(38):11614-11622. doi: 10.1039/c3ta12466e
    [34] 黄凯. 三维石墨烯及其复合材料的制备与性能研究[D]. 上海: 中国科学院大学, 2018.

    HUANG Kai. The study on preparation and properties of three dimensional graphene and graphene-based compo-sites[D]. Shanghai: Chinese Academy of Sciences, 2018(in Chinese).
    [35] TANG L H, WANG Y, LI Y M, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Advanced Functional Materials,2009,19(17):2782-2789. doi: 10.1002/adfm.200900377
    [36] LIM S P, PANDIKUMAR A, LIM Y S, et al. In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells[J]. Scientific Reports,2014,4:5305.
    [37] CAO A P, CHEN Z X, WANG Y K, et al. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials[J]. Synthetic Metals,2019,252:135-141. doi: 10.1016/j.synthmet.2019.04.019
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  330
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2022-11-09
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回