留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲利苯蓝掺杂石墨烯/聚吡咯复合气凝胶的制备与电化学性能

胡思伽 宋慧敏 刘文慧 刘佳豪 韩永芹

胡思伽, 宋慧敏, 刘文慧, 等. 曲利苯蓝掺杂石墨烯/聚吡咯复合气凝胶的制备与电化学性能[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 胡思伽, 宋慧敏, 刘文慧, 等. 曲利苯蓝掺杂石墨烯/聚吡咯复合气凝胶的制备与电化学性能[J]. 复合材料学报, 2022, 40(0): 1-12
Sijia HU, Huimin SONG, Wenhui LIU, Jiahao LIU, Yongqin HAN. Preparation and electrochemical properties of triphenyl blue doped graphene/polypyrrole composite aerogels[J]. Acta Materiae Compositae Sinica.
Citation: Sijia HU, Huimin SONG, Wenhui LIU, Jiahao LIU, Yongqin HAN. Preparation and electrochemical properties of triphenyl blue doped graphene/polypyrrole composite aerogels[J]. Acta Materiae Compositae Sinica.

曲利苯蓝掺杂石墨烯/聚吡咯复合气凝胶的制备与电化学性能

基金项目: 国家自然科学基金面上项目(52173258),山东省自然科学基金面上项目(ZR2021MB125)
详细信息
    通讯作者:

    韩永芹,博士,副教授,博士生导师,研究方向为导电高分子复合材料 E-mail:hanyq@sdust.edu.cn

  • 中图分类号: TB332

Preparation and electrochemical properties of triphenyl blue doped graphene/polypyrrole composite aerogels

Funds: National Natural Science Foundation of China (Grant NO. 52173258) and Shandong Provincial Natural Science Foundation, China (Grant NO. ZR2021MB125).
  • 摘要:   目的  将具有独特掺杂结构的聚吡咯(PPy)与丰富多孔结构的石墨烯(GE)气凝胶复合,可实现两种材料优势互补,进一步提高复合气凝胶电极的电化学性能。本文利用一步水热法制备曲利苯蓝(TB)掺杂GE/PPy复合气凝胶,利用氧化石墨烯(GO)与TB的组装作用,协同实现GE/PPy复合气凝胶的多孔结构构筑与多重掺杂。  方法  将TB原位引入GO与吡咯单体混合体系,调控TB的浓度(1,3,5,8mmol/L),利用水热法一步制备得到TB掺杂GE/PPy复合气凝胶。采用扫描电子显微镜(SEM)、傅立叶红外光谱仪(FTIR)、拉曼光谱仪(Raman)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等仪器对样品进行表征测试;采用电化学工作站、蓝电电池测试系统对三电极、二电极体系进行循环伏安(CV)、恒电流充放电(GCD)、电化学交流阻抗(EIS)及循环寿命等电化学性能测试。  结果  ①复合气凝胶材料的形貌:复合材料的SEM形貌分析表明,PPy-GO呈现出褶皱薄片相互堆叠的结构,TB的引入有利于气凝胶三维多孔结构的构筑,当TB浓度为5 mmol·L,形成规则的三维多孔网络结构,TB浓度继续升高导致水凝胶力学性能下降。②复合气凝胶材料的化学及掺杂结构分析:FTIR谱图中,PPy-GO、TB/PPy-GO复合气凝胶材料中位于1406、1558 cm的PPy特征峰发生明显的红移,表明TB中的含氧基团或共轭苯环结构与吡咯、GO之间存在氢键或π-π共轭作用。复合气凝胶材料中未探测到GO的-OH(1400、1291 cm)、C-O(1735、1056 cm)等特征峰,说明复合材料中GO的含氧官能团已基本脱除。Raman谱图I/I值的变化表明,适当引入TB有利于 GO的还原及片层结构的规整排列。XPS谱图进一步证实PPy的成功聚合,GO的还原以及TB的掺杂作用,适量引入TB有助于气凝胶材料中PPy掺杂水平的提高,从而提高复合材料的电化学性能。③复合气凝胶材料的结晶结构分析:XRD谱图中,复合气凝胶材料中GO衍射特征峰完全消失,表明复合气凝胶材料中的GO被还原为GE;复合气凝胶中PPy的衍射峰强度有所增强,表明TB的引入有利于PPy分子链的规整排列。④复合气凝胶材料的三电极电化学性能:引入TB后,复合材料的比电容明显提高,且随着TB浓度增加表现出先增后减的趋势,在TB浓度为5 mmol· L(TB-5/PPy-GO)时达到峰值,其在1 A·g的电流密度下的比电容可达392 F·g,在10 A·g的高电流密度下,比电容为281 F·g ,电容保持率为72%。引入TB后,复合材料的比电容明显提高且具有良好的倍率性能。⑤非对称超级电容器的电化学性能:器件在1 A·g的电流密度下,TB-5/PPy-GO器件的质量比电容为101 F·g,能量密度达35.89 Wh·kg,功率密度为400 W·kg。在电流密度5 A·g下循环10,000圈后,电容保持率约为80.45%,并且将其组装串联起来可以成功点亮LED灯牌。器件的电位窗口可拓宽至1.6 V。将TB-5/PPy-GO器件在不同角度下重复弯曲100次后,比电容值几乎没有变化。表现出良好的超电容特性。⑥TB/PPy-GO复合气凝胶材料的合成机理: TB分子与GO之间存在π-π共轭效应,p-π共轭效应及氢键等多重非共价相互作用,其诱导TB在GO表面进行自组装。锚定在GO表面的TB分子一方面可有效地阻止RGO片层重新团聚和堆积,另一方面可起到协同还原GO的作用。值得一提的是,锚定在GO表面的TB分子可诱导吡咯分子在GO片层表面聚合为有序高分子链;同时对PPy起到多重掺杂的作用,有利于复合气凝胶超电容性能的提高  结论  利用简便的一步水热法制备得到TB掺杂GE/PPy复合气凝胶。SEM分析表明适量TB的引入有利于构筑规整有序的3D多孔结构。结构表征分析表明,复合气凝胶中GO被成功还原,同时PPy成功聚合,适量引入TB有助于气凝胶材料PPy掺杂水平的提高。所制备的TB掺杂复合气凝胶电极材料中,TB-5/PPy-GO在1A·g的电流密度下可获得最高的比电容(392 F·g);经过10000次充/放电循环后,比电容保持率可达85%,表现出良好的循环稳定性。TB-5/PPy-GO作为正极,活性炭作为负极组装的非对称超电容器,在功率密度为400 W·kg,能量密度高达为35.89 Wh·kg,10,000次循环后器件的电容保持率可达80%,表现出优良的超电容特性。

     

  • 图  1  曲利苯蓝结构式

    Figure  1.  Structural formula of triphenyl blue

    图  2  PPy-GO(a),TB-1/PPy-GO(b),TB-3/PPy-GO(c),TB-5/PPy-GO(d),TB-8/PPy-GO(e)的SEM图像及TB-5/PPy-GO的EDS能谱图

    Figure  2.  SEM images of PPy-GO (a), TB-1/PPy-GO (b), TB-3/PPy-GO (c), TB-5/PPy-GO (d), TB-8/PPy-GO (e) and the EDS spectrum of TB-5/PPy-GO

    图  3  PPy-GO,TB/PPy-GO的红外光谱图(a),XRD图(b),拉曼光谱图(c)

    Figure  3.  FTIR(a), XRD(b), Raman spectrum(c) of PPy-GO and TB/PPy-GO

    图  4  样品的全谱图(a),PPy-GO(b),TB-1/PPy-GO(c),TB-3/PPy-GO(d),TB-5/PPy-GO(e),TB-8/PPy-GO(f)的C1 s XPS光谱图

    Figure  4.  Full spectrum of the sample(a), C1 s XPS spectra of PPy-GO(b), TB-1/PPy-GO(c), TB-3/PPy-GO(d), TB-5/PPy-GO(e), TB-8/PPy-GO(f)

    图  5  PPy-GO(a),TB-1/PPy-GO(b),TB-3/PPy-GO(c),TB-5/PPy-GO(d),TB-8/PPy-GO(e)的O1 s XPS光谱图

    Figure  5.  O1 s XPS spectra of PPy-GO(a), TB-1/PPy-GO(b), TB-3/PPy-GO(c), TB-5/PPy-GO(d), TB-8/PPy-GO(e)

    图  6  PPy-GO(a),TB-1/PPy-GO(b),TB-3/PPy-GO(c),TB-5/PPy-GO(d),TB-8/PPy-GO(e)的N1 s XPS光谱图

    Figure  6.  N1 s XPS spectra of PPy-GO(a), TB-1/PPy-GO(b), TB-3/PPy-GO(c), TB-5/PPy-GO(d), TB-8/PPy-GO(e)

    图  7  PPy-GO、GBPs的CV(10 mV·s−1)(a),TB-5/PPy-GO的CV(b),PPy-GO、GBPs的GCD(1 A·g−1)(c),TB-5/PPy-GO的GCD(d),PPy-GO、GBPs的EIS(e),TB-5/PPy-GO的10,000圈循环稳定性测试(10 A·g−1)(f)

    Figure  7.  CV of PPy-GO, GBPs (10 mV·s−1) (a), CV of TB-5/PPy-GO(b), GCD of PPy-GO, GBPs (1 A·g−1) (c), GCD of TB-5/PPy-GO(d), PPy-GO, EIS of GBPs(e), 10,000 cycle stability test of TB-5/PPy-GO (10 A·g−1) (f)

    图  8  TB-5/PPy-GO器件CV(a),GCD(b),EIS(c),10000圈循环稳定性测试(5 A·g−1)以及点亮LED电路板照片(d)

    Figure  8.  TB-5/PPy-GO devices CV curves(a) , GCD curves(b) , EIS curves(c) , 10000 cycle stability test (5 A·g−1) and photo of lighting up LED circuit board(d)

    图  9  TB-5/PPy-GO器件不同电压下的CV曲线(10 mV·s−1)(a),在0、90、135、180°角度下弯折100次后CV(10 mV·s−1)(b),GCD(1 A·g−1)(c),EIS曲线(d)

    Figure  9.  CV curves of TB-5/PPy-GO devices at different voltages (10 mV·s−1) (a), after bending 100 times at 0, 90, 135, and 180° angles CV (10 mV·s−1) (b), GCD (1 A·g−1) (c), EIS curves(d)

    图  10  TB/PPy-GO合成机制图

    Figure  10.  Schematic diagram of the synthesis mechanism of TB/PPy-GO

    表  1  聚吡咯(PPy)/曲利苯蓝(TB)/氧化石墨烯(GO)复合气凝胶的原材料配比

    Table  1.   The ratios of the raw materials used in the polypyrrole (PPy)/ Triphenyl blue (TB)/ Graphene oxide (GO) composite aerogels

    SamplePy/mgGO/mgTB/(mmol·L−1)
    PPy-GO140560
    TB-1/PPy-GO140561
    TB-3/PPy-GO140563
    TB-5/PPy-GO140565
    TB-8/PPy-GO140568
    Notes: PPy-GO, TB-1/PPy-GO, TB-3/PPy-GO, TB-5/PPy-GO and TB-8/PPy-GO represent the concentration of TB in the prepared composite aerogel as 0,1,3,5,8 mmol·L−1, respectively.
    下载: 导出CSV
  • [1] SANATI S, ABAZARI R, ALBERO J, et al. Metal–organic framework derived bimetallic materials for electrochemical energy storage[J]. Angewandte Chemie International Edition,2021,60(20):11048-11067. doi: 10.1002/anie.202010093
    [2] ZHANG T Q, MAO Z F, SHI X J, et al. Tissue-derived carbon microbelt paper: a high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors[J]. Energy & Environmental Science,2022,15(1):158-168.
    [3] FEI R X, WANG H W, WANG Q, et al. In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors[J]. Advanced Energy Materials,2020,10(47):2002741. doi: 10.1002/aenm.202002741
    [4] SUN R, QIN Z X, LIU X L, et al. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3 D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries fan[J]. ACS Sustainable Chemistry & Engineering,2021,9(35):11769-11777.
    [5] FAN W, SHI Y Q, GAO W, et al. Graphene–carbon nanotube aerogel with a scroll-interconnected-sheet structure as an advanced framework for a high-performance asymmetric supercapacitor electrode[J]. ACS Applied Nano Materials,2018,1(9):4435-4441. doi: 10.1021/acsanm.8b00605
    [6] SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and Mechanisms of Asymmetric Supercapacitors[J]. Chemical Reviews,2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252
    [7] BHOJANE P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding[J]. Journal of Energy Storage,2022,45:103654. doi: 10.1016/j.est.2021.103654
    [8] GONCALVES R, PAIVA R S, LIMA T M, et al. Carbon nitride/polypyrrole composite supercapacitor: Boosting performance and stability[J]. Electrochimica Acta,2021,368:137570. doi: 10.1016/j.electacta.2020.137570
    [9] ZHAN Y, HU Y, CHEN Y, et al. In-situ synthesis of flexible nanocellulose/carbon nanotube/polypyrrole hydrogels for high-performance solid-state supercapacitors[J]. Cellulose,2021,28(11):7097-7108. doi: 10.1007/s10570-021-03998-1
    [10] WEI W, TANG Q L, LIU T, et al. Preparation and properties of polypyrrole/polyamide 6 nanocomposite film with core-shell architecture for the high-performance flexible supercapacitor[J]. Composites Communications,2020,22:100468. doi: 10.1016/j.coco.2020.100468
    [11] 辛国祥, 王蒙蒙, 翟耀, 等 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2021, 38(4): 1272-1282.

    XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1272-1282(in Chinese).
    [12] DONG C, ZHANG X L, YU Y J, et al. An ionic liquid-modified RGO/polyaniline composite for high-performance flexible all-solid-state supercapacitors[J]. Chemical Communications,2020,56(80):11993-11996. doi: 10.1039/D0CC04691D
    [13] 杨云强, 张佳丽, 章海霞, 等 聚 3, 4-乙烯二氧噻吩/纳米多孔金复合电极的制备及其在超级电容器中的应用[J]. 复合材料学报, 2020, 37(12): 3160-3167.

    YANG Yunqiang, ZHANG Jiali, ZHANG Haixia, et al. Preparation of poly 3, 4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3160-3167(in Chinese).
    [14] ZHOU M Y, LI Y Q, GONG Q, et al. Polythiophene grafted onto single-wall carbon nanotubes through oligo(ethylene oxide) linkages for supercapacitor devices with enhanced electrochemical performance[J]. ChemElectroChem,2019,6(17):4595-4607. doi: 10.1002/celc.201901074
    [15] ZHANG Q R, LI W Z, ZHU Z T, et al. Facile growth of hierarchical SnO2@PPy composites on carbon cloth as all-solid-state flexible supercapacitors[J]. Journal of Alloys and Compounds,2022,906:164275. doi: 10.1016/j.jallcom.2022.164275
    [16] SHEN M, CHEN L, REN S B, et al. Construction of CuO/PPy heterojunction nanowire arrays on copper foam as integrated binder-free electrode material for high-performance supercapacitor[J]. Journal of Electroanalytical Chemistry,2021,891:115272. doi: 10.1016/j.jelechem.2021.115272
    [17] LI J M, LI X, WEI W L, et al. Hollow core-shell polypyrrole@poly(1, 5-diaminoanthraquinone) composites with superior electrochemical performance for supercapacitors[J]. Electrochimica Acta,2021,395:139193. doi: 10.1016/j.electacta.2021.139193
    [18] 周浪, 王涛. 石墨烯/功能聚合物复合材料[J]. 复合材料学报, 2020, 37(5):997-1014.

    ZHOU Lang, WANG Tao. Graphene/functional polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(5):997-1014(in Chinese).
    [19] WANG Y Y, LIU G Q, LIU Y F, et al. Heterostructural conductive polymer with multi-dimensional carbon materials for capacitive energy storage[J]. Applied Surface Science,2021,558:149910. doi: 10.1016/j.apsusc.2021.149910
    [20] YE S B, FENG J C. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors[J]. ACS Applied Materials & Interfaces,2014,6(12):9671-9679.
    [21] PARK J W, PARK S J, KWON O S, et al. In situ synthesis of graphene/polyselenophene nanohybrid materials as highly flexible energy storage electrodes[J]. Chemistry of Materials,2014,26(7):2354-2360. doi: 10.1021/cm500577v
    [22] YANG J J, WENG W, LIANG Y X, et al. Heterogeneous graphene/polypyrrole multilayered microtube with enhanced capacitance[J]. Electrochimica Acta,2019,304:378-385. doi: 10.1016/j.electacta.2019.03.015
    [23] YE S, FENG J. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors[J]. ACS Applied Materials & Interfaces 2014, 6 (12), 9671-9679.
    [24] 喻航达. 石墨烯-导电高分子复合凝胶的制备与性能研究[D]. 武汉: 武汉工程大学, 2019.

    YU Hangda. Preparation and properties of graphene/conductive polymer composite gel[D]. Wuhan: Wuhan Institute of Technology, 2019(in Chinese).
    [25] ZHANG E H, LIU W F, LIU X G, et al. Pulse electrochemical synthesis of polypyrrole/graphene oxide@graphene aerogel for high-performance supercapacitor[J]. RSC Advances,2020,10(20):11966-11970. doi: 10.1039/D0RA01181A
    [26] YANG J B, JI X X, LIU L B, et al. One step fabrication of graphene/polypyrrole/Ag composite electrode towards compressible supercapacitor[J]. Journal of Alloys and Compounds,2020,820:153081. doi: 10.1016/j.jallcom.2019.153081
    [27] YANG C Y, ZHANG P F, NAUTIYAL A, et al. Tunable three-dimensional nanostructured conductive polymer hydrogels for energy-storage applications[J]. ACS Applied Materials & Interfaces,2019,11(4):4258-4267.
    [28] ALVES APP, KOIZUMI R, SAMANTA A, et al. One-step electrodeposited 3 D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance[J]. Nano Energy,2017,31:225-232. doi: 10.1016/j.nanoen.2016.11.018
    [29] RAJESH M, RAJ C J, KIM B C, et al. Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films[J]. Electrochimica Acta,2016,220:373-383. doi: 10.1016/j.electacta.2016.10.118
    [30] YANG J, WANG X, LI B, et al. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting[J]. Advanced Functional Materials,2017,27(17):1606497. doi: 10.1002/adfm.201606497
    [31] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368
    [32] WANG Q L, SONG H M, LI W Q, et al. Facile synthesis of polypyrrole/graphene composite aerogel with Alizarin Red S as reactive dopant for high-performance flexible supercapacitor[J]. Journal of Power Sources,2022,517:230737. doi: 10.1016/j.jpowsour.2021.230737
    [33] SHI K Y, ZHITOMIRSKY I. Polypyrrole nanofiber–carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant[J]. Journal of Materials Chemistry A,2013,1(38):11614-11622. doi: 10.1039/c3ta12466e
    [34] 黄凯. 三维石墨烯及其复合材料的制备与性能研究[D]. 上海: 中国科学院大学, 2018.

    HUANG Kai. The study on preparation and properties of three dimensional graphene and graphene-based composites [D]. Shanghai: Chinese Academy of Sciences, 2018(in Chinese).
    [35] TANG L H, WANG Y, LI Y M, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Advanced Functional Materials,2009,19(17):2782-2789. doi: 10.1002/adfm.200900377
    [36] LIM S P, PANDIKUMAR A, LIM Y S, et al. In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells[J]. Scientific Reports,2014,4(1):1-7.
    [37] CHAO A P, CHEN Z X, WANG Y K, et al. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials[J]. Synthetic Metals,2019,252:135-141. doi: 10.1016/j.synthmet.2019.04.019
  • 加载中
计量
  • 文章访问数:  196
  • HTML全文浏览量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2022-11-09
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-12-08

目录

    /

    返回文章
    返回