Preparation and electrochemical properties of triphenyl blue doped graphene/polypyrrole composite aerogels
-
摘要:
目的 将具有独特掺杂结构的聚吡咯(PPy)与丰富多孔结构的石墨烯(GE)气凝胶复合,可实现两种材料优势互补,进一步提高复合气凝胶电极的电化学性能。本文利用一步水热法制备曲利苯蓝(TB)掺杂GE/PPy复合气凝胶,利用氧化石墨烯(GO)与TB的组装作用,协同实现GE/PPy复合气凝胶的多孔结构构筑与多重掺杂。 方法 将TB原位引入GO与吡咯单体混合体系,调控TB的浓度(1,3,5,8mmol/L),利用水热法一步制备得到TB掺杂GE/PPy复合气凝胶。采用扫描电子显微镜(SEM)、傅立叶红外光谱仪(FTIR)、拉曼光谱仪(Raman)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等仪器对样品进行表征测试;采用电化学工作站、蓝电电池测试系统对三电极、二电极体系进行循环伏安(CV)、恒电流充放电(GCD)、电化学交流阻抗(EIS)及循环寿命等电化学性能测试。 结果 ①复合气凝胶材料的形貌:复合材料的SEM形貌分析表明,PPy-GO呈现出褶皱薄片相互堆叠的结构,TB的引入有利于气凝胶三维多孔结构的构筑,当TB浓度为5 mmol·L,形成规则的三维多孔网络结构,TB浓度继续升高导致水凝胶力学性能下降。②复合气凝胶材料的化学及掺杂结构分析:FTIR谱图中,PPy-GO、TB/PPy-GO复合气凝胶材料中位于1406、1558 cm的PPy特征峰发生明显的红移,表明TB中的含氧基团或共轭苯环结构与吡咯、GO之间存在氢键或π-π共轭作用。复合气凝胶材料中未探测到GO的-OH(1400、1291 cm)、C-O(1735、1056 cm)等特征峰,说明复合材料中GO的含氧官能团已基本脱除。Raman谱图I/I值的变化表明,适当引入TB有利于 GO的还原及片层结构的规整排列。XPS谱图进一步证实PPy的成功聚合,GO的还原以及TB的掺杂作用,适量引入TB有助于气凝胶材料中PPy掺杂水平的提高,从而提高复合材料的电化学性能。③复合气凝胶材料的结晶结构分析:XRD谱图中,复合气凝胶材料中GO衍射特征峰完全消失,表明复合气凝胶材料中的GO被还原为GE;复合气凝胶中PPy的衍射峰强度有所增强,表明TB的引入有利于PPy分子链的规整排列。④复合气凝胶材料的三电极电化学性能:引入TB后,复合材料的比电容明显提高,且随着TB浓度增加表现出先增后减的趋势,在TB浓度为5 mmol· L(TB-5/PPy-GO)时达到峰值,其在1 A·g的电流密度下的比电容可达392 F·g,在10 A·g的高电流密度下,比电容为281 F·g ,电容保持率为72%。引入TB后,复合材料的比电容明显提高且具有良好的倍率性能。⑤非对称超级电容器的电化学性能:器件在1 A·g的电流密度下,TB-5/PPy-GO器件的质量比电容为101 F·g,能量密度达35.89 Wh·kg,功率密度为400 W·kg。在电流密度5 A·g下循环10,000圈后,电容保持率约为80.45%,并且将其组装串联起来可以成功点亮LED灯牌。器件的电位窗口可拓宽至1.6 V。将TB-5/PPy-GO器件在不同角度下重复弯曲100次后,比电容值几乎没有变化。表现出良好的超电容特性。⑥TB/PPy-GO复合气凝胶材料的合成机理: TB分子与GO之间存在π-π共轭效应,p-π共轭效应及氢键等多重非共价相互作用,其诱导TB在GO表面进行自组装。锚定在GO表面的TB分子一方面可有效地阻止RGO片层重新团聚和堆积,另一方面可起到协同还原GO的作用。值得一提的是,锚定在GO表面的TB分子可诱导吡咯分子在GO片层表面聚合为有序高分子链;同时对PPy起到多重掺杂的作用,有利于复合气凝胶超电容性能的提高 结论 利用简便的一步水热法制备得到TB掺杂GE/PPy复合气凝胶。SEM分析表明适量TB的引入有利于构筑规整有序的3D多孔结构。结构表征分析表明,复合气凝胶中GO被成功还原,同时PPy成功聚合,适量引入TB有助于气凝胶材料PPy掺杂水平的提高。所制备的TB掺杂复合气凝胶电极材料中,TB-5/PPy-GO在1A·g的电流密度下可获得最高的比电容(392 F·g);经过10000次充/放电循环后,比电容保持率可达85%,表现出良好的循环稳定性。TB-5/PPy-GO作为正极,活性炭作为负极组装的非对称超电容器,在功率密度为400 W·kg,能量密度高达为35.89 Wh·kg,10,000次循环后器件的电容保持率可达80%,表现出优良的超电容特性。 Abstract: The combination of polypyrrole (PPy) with a unique doping structure and graphene (GE) aerogel with a rich porous structure can realize the complementary advantages of the two materials. Triphenyl blue (TB) doped GE/PPy composite aerogel was prepared by one-step hydrothermal method. The scanning electron microscope (SEM), Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy (Raman) and X-ray energy spectrometer (XPS) were used to characterize the morphological structure, chemical structure, and doping structure of the composite electrode material. The results showed that TB doped GE/PPy composite aerogel provided three porous network structure. Conductive PPy can be successfully polymerized as graphene oxide was reduced in the composite hydrogel. Due to the introduction of TB, the doping level of the composite hydrogel has been increased. The electrochemical tests demonstrated that the prepared TB-5/PPy-GO (TB concentration of 5 mmol·L−1) aerogel exhibited superior specific capacitance of 392 F·g−1 at 1 A·g−1. The capacitance retention rate can reach 85% after 10,000 cycles. The hybrid device, which was assembled with TB-5/PPy-GO and active carbon as positive and negative electrode, respectively, demonstrated maximum energy of 35.89 Wh·kg−1 at 400 W·kg−1, suggesting its good supercapacitive performances.-
Key words:
- supercapacitor /
- graphene /
- polypyrrole /
- aerogl /
- triphenyl blue /
- electrochemical properties
-
图 7 PPy-GO、GBPs的CV(10 mV·s−1)(a),TB-5/PPy-GO的CV(b),PPy-GO、GBPs的GCD(1 A·g−1)(c),TB-5/PPy-GO的GCD(d),PPy-GO、GBPs的EIS(e),TB-5/PPy-GO的10,000圈循环稳定性测试(10 A·g−1)(f)
Figure 7. CV of PPy-GO, GBPs (10 mV·s−1) (a), CV of TB-5/PPy-GO(b), GCD of PPy-GO, GBPs (1 A·g−1) (c), GCD of TB-5/PPy-GO(d), PPy-GO, EIS of GBPs(e), 10,000 cycle stability test of TB-5/PPy-GO (10 A·g−1) (f)
表 1 聚吡咯(PPy)/曲利苯蓝(TB)/氧化石墨烯(GO)复合气凝胶的原材料配比
Table 1. The ratios of the raw materials used in the polypyrrole (PPy)/ Triphenyl blue (TB)/ Graphene oxide (GO) composite aerogels
Sample Py/mg GO/mg TB/(mmol·L−1) PPy-GO 140 56 0 TB-1/PPy-GO 140 56 1 TB-3/PPy-GO 140 56 3 TB-5/PPy-GO 140 56 5 TB-8/PPy-GO 140 56 8 Notes: PPy-GO, TB-1/PPy-GO, TB-3/PPy-GO, TB-5/PPy-GO and TB-8/PPy-GO represent the concentration of TB in the prepared composite aerogel as 0,1,3,5,8 mmol·L−1, respectively. -
[1] SANATI S, ABAZARI R, ALBERO J, et al. Metal–organic framework derived bimetallic materials for electrochemical energy storage[J]. Angewandte Chemie International Edition,2021,60(20):11048-11067. doi: 10.1002/anie.202010093 [2] ZHANG T Q, MAO Z F, SHI X J, et al. Tissue-derived carbon microbelt paper: a high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors[J]. Energy & Environmental Science,2022,15(1):158-168. [3] FEI R X, WANG H W, WANG Q, et al. In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors[J]. Advanced Energy Materials,2020,10(47):2002741. doi: 10.1002/aenm.202002741 [4] SUN R, QIN Z X, LIU X L, et al. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3 D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries fan[J]. ACS Sustainable Chemistry & Engineering,2021,9(35):11769-11777. [5] FAN W, SHI Y Q, GAO W, et al. Graphene–carbon nanotube aerogel with a scroll-interconnected-sheet structure as an advanced framework for a high-performance asymmetric supercapacitor electrode[J]. ACS Applied Nano Materials,2018,1(9):4435-4441. doi: 10.1021/acsanm.8b00605 [6] SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and Mechanisms of Asymmetric Supercapacitors[J]. Chemical Reviews,2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252 [7] BHOJANE P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding[J]. Journal of Energy Storage,2022,45:103654. doi: 10.1016/j.est.2021.103654 [8] GONCALVES R, PAIVA R S, LIMA T M, et al. Carbon nitride/polypyrrole composite supercapacitor: Boosting performance and stability[J]. Electrochimica Acta,2021,368:137570. doi: 10.1016/j.electacta.2020.137570 [9] ZHAN Y, HU Y, CHEN Y, et al. In-situ synthesis of flexible nanocellulose/carbon nanotube/polypyrrole hydrogels for high-performance solid-state supercapacitors[J]. Cellulose,2021,28(11):7097-7108. doi: 10.1007/s10570-021-03998-1 [10] WEI W, TANG Q L, LIU T, et al. Preparation and properties of polypyrrole/polyamide 6 nanocomposite film with core-shell architecture for the high-performance flexible supercapacitor[J]. Composites Communications,2020,22:100468. doi: 10.1016/j.coco.2020.100468 [11] 辛国祥, 王蒙蒙, 翟耀, 等 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2021, 38(4): 1272-1282.XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1272-1282(in Chinese). [12] DONG C, ZHANG X L, YU Y J, et al. An ionic liquid-modified RGO/polyaniline composite for high-performance flexible all-solid-state supercapacitors[J]. Chemical Communications,2020,56(80):11993-11996. doi: 10.1039/D0CC04691D [13] 杨云强, 张佳丽, 章海霞, 等 聚 3, 4-乙烯二氧噻吩/纳米多孔金复合电极的制备及其在超级电容器中的应用[J]. 复合材料学报, 2020, 37(12): 3160-3167.YANG Yunqiang, ZHANG Jiali, ZHANG Haixia, et al. Preparation of poly 3, 4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3160-3167(in Chinese). [14] ZHOU M Y, LI Y Q, GONG Q, et al. Polythiophene grafted onto single-wall carbon nanotubes through oligo(ethylene oxide) linkages for supercapacitor devices with enhanced electrochemical performance[J]. ChemElectroChem,2019,6(17):4595-4607. doi: 10.1002/celc.201901074 [15] ZHANG Q R, LI W Z, ZHU Z T, et al. Facile growth of hierarchical SnO2@PPy composites on carbon cloth as all-solid-state flexible supercapacitors[J]. Journal of Alloys and Compounds,2022,906:164275. doi: 10.1016/j.jallcom.2022.164275 [16] SHEN M, CHEN L, REN S B, et al. Construction of CuO/PPy heterojunction nanowire arrays on copper foam as integrated binder-free electrode material for high-performance supercapacitor[J]. Journal of Electroanalytical Chemistry,2021,891:115272. doi: 10.1016/j.jelechem.2021.115272 [17] LI J M, LI X, WEI W L, et al. Hollow core-shell polypyrrole@poly(1, 5-diaminoanthraquinone) composites with superior electrochemical performance for supercapacitors[J]. Electrochimica Acta,2021,395:139193. doi: 10.1016/j.electacta.2021.139193 [18] 周浪, 王涛. 石墨烯/功能聚合物复合材料[J]. 复合材料学报, 2020, 37(5):997-1014.ZHOU Lang, WANG Tao. Graphene/functional polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(5):997-1014(in Chinese). [19] WANG Y Y, LIU G Q, LIU Y F, et al. Heterostructural conductive polymer with multi-dimensional carbon materials for capacitive energy storage[J]. Applied Surface Science,2021,558:149910. doi: 10.1016/j.apsusc.2021.149910 [20] YE S B, FENG J C. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors[J]. ACS Applied Materials & Interfaces,2014,6(12):9671-9679. [21] PARK J W, PARK S J, KWON O S, et al. In situ synthesis of graphene/polyselenophene nanohybrid materials as highly flexible energy storage electrodes[J]. Chemistry of Materials,2014,26(7):2354-2360. doi: 10.1021/cm500577v [22] YANG J J, WENG W, LIANG Y X, et al. Heterogeneous graphene/polypyrrole multilayered microtube with enhanced capacitance[J]. Electrochimica Acta,2019,304:378-385. doi: 10.1016/j.electacta.2019.03.015 [23] YE S, FENG J. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors[J]. ACS Applied Materials & Interfaces 2014, 6 (12), 9671-9679. [24] 喻航达. 石墨烯-导电高分子复合凝胶的制备与性能研究[D]. 武汉: 武汉工程大学, 2019.YU Hangda. Preparation and properties of graphene/conductive polymer composite gel[D]. Wuhan: Wuhan Institute of Technology, 2019(in Chinese). [25] ZHANG E H, LIU W F, LIU X G, et al. Pulse electrochemical synthesis of polypyrrole/graphene oxide@graphene aerogel for high-performance supercapacitor[J]. RSC Advances,2020,10(20):11966-11970. doi: 10.1039/D0RA01181A [26] YANG J B, JI X X, LIU L B, et al. One step fabrication of graphene/polypyrrole/Ag composite electrode towards compressible supercapacitor[J]. Journal of Alloys and Compounds,2020,820:153081. doi: 10.1016/j.jallcom.2019.153081 [27] YANG C Y, ZHANG P F, NAUTIYAL A, et al. Tunable three-dimensional nanostructured conductive polymer hydrogels for energy-storage applications[J]. ACS Applied Materials & Interfaces,2019,11(4):4258-4267. [28] ALVES APP, KOIZUMI R, SAMANTA A, et al. One-step electrodeposited 3 D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance[J]. Nano Energy,2017,31:225-232. doi: 10.1016/j.nanoen.2016.11.018 [29] RAJESH M, RAJ C J, KIM B C, et al. Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films[J]. Electrochimica Acta,2016,220:373-383. doi: 10.1016/j.electacta.2016.10.118 [30] YANG J, WANG X, LI B, et al. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting[J]. Advanced Functional Materials,2017,27(17):1606497. doi: 10.1002/adfm.201606497 [31] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368 [32] WANG Q L, SONG H M, LI W Q, et al. Facile synthesis of polypyrrole/graphene composite aerogel with Alizarin Red S as reactive dopant for high-performance flexible supercapacitor[J]. Journal of Power Sources,2022,517:230737. doi: 10.1016/j.jpowsour.2021.230737 [33] SHI K Y, ZHITOMIRSKY I. Polypyrrole nanofiber–carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant[J]. Journal of Materials Chemistry A,2013,1(38):11614-11622. doi: 10.1039/c3ta12466e [34] 黄凯. 三维石墨烯及其复合材料的制备与性能研究[D]. 上海: 中国科学院大学, 2018.HUANG Kai. The study on preparation and properties of three dimensional graphene and graphene-based composites [D]. Shanghai: Chinese Academy of Sciences, 2018(in Chinese). [35] TANG L H, WANG Y, LI Y M, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Advanced Functional Materials,2009,19(17):2782-2789. doi: 10.1002/adfm.200900377 [36] LIM S P, PANDIKUMAR A, LIM Y S, et al. In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells[J]. Scientific Reports,2014,4(1):1-7. [37] CHAO A P, CHEN Z X, WANG Y K, et al. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials[J]. Synthetic Metals,2019,252:135-141. doi: 10.1016/j.synthmet.2019.04.019 -

计量
- 文章访问数: 196
- HTML全文浏览量: 130
- 被引次数: 0