留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

墨水直写技术制造纤维强韧陶瓷基复合材料的研究进展与挑战

陈晓旖 李刘颂 郭欢 李兴泽 代吉祥 沙建军

陈晓旖, 李刘颂, 郭欢, 等. 墨水直写技术制造纤维强韧陶瓷基复合材料的研究进展与挑战[J]. 复合材料学报, 2024, 42(0): 1-18.
引用本文: 陈晓旖, 李刘颂, 郭欢, 等. 墨水直写技术制造纤维强韧陶瓷基复合材料的研究进展与挑战[J]. 复合材料学报, 2024, 42(0): 1-18.
CHEN Xiaoyi, LI Liusong, GUO Huan, et al. Research progress and challenges in manufacturing fiber reinforced ceramic matrix composites using direct ink writing technology[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Xiaoyi, LI Liusong, GUO Huan, et al. Research progress and challenges in manufacturing fiber reinforced ceramic matrix composites using direct ink writing technology[J]. Acta Materiae Compositae Sinica.

墨水直写技术制造纤维强韧陶瓷基复合材料的研究进展与挑战

基金项目: 辽宁省自然科学基金(2023MS094);陕西省航天复合材料重点实验室开放基金(ZX20220525)
详细信息
    通讯作者:

    代吉祥,博士,副教授,硕士生导师,研究方向为陶瓷基复合材料 E-mail: jxdai@dlut.edu.cn

  • 中图分类号: TQ174; TB332

Research progress and challenges in manufacturing fiber reinforced ceramic matrix composites using direct ink writing technology

Funds: Liaoning Provincial Natural Science Foundation (2023MS094); Open Funding Project of Shaanxi Key Laboratory of Aerospace Composite (ZX20220525)
  • 摘要: 先进陶瓷及其复合材料凭借优异的性能已被广泛应用于航空航天领域,目前采用三维打印技术实现这类材料的快速低成本制备成为核心问题。与传统工艺相比,现有三维打印陶瓷材料普遍面临着脆性特征明显及损伤容限能低的问题,因此纤维复合陶瓷材料的三维打印技术成为研究热点。综述了近年来国内外基于墨水直写技术制备纤维强韧陶瓷基复合材料的技术路线及特点,围绕这类材料的组成成分、工艺路径与力学性能的关系,综合分析了不同陶瓷墨水的设计、纤维引入的方式、致密化工艺的选择、打印构件关键性能之间的有机联系,指出了当前的主要问题并对未来研究方向进行了展望。

     

  • 图  1  先进陶瓷及其复合材料三维打印工艺及断裂韧性

    Figure  1.  3 D printing process and fracture toughness of advanced ceramics and their composite materials

    图  2  近五年公开发表的墨水直写 (DIW)工艺制造纤维强韧陶瓷基复合材料(DIW-FRCMC)的文献数量及其应用领域

    Figure  2.  Number of publicly published literature on direct ink writing (DIW) technologies for printing fiber reinforced ceramic matrix composites (DIW-FRCMC) in the past five years and their application areas

    图  3  通过DIW工艺制备的先进陶瓷零部件[27-28]

    Figure  3.  Advanced ceramic components prepared by DIW process[27-28]

    图  4  DIW工艺中陶瓷墨水组分设计及其相关作用机制

    Figure  4.  Component design and related mechanism of ceramic ink in DIW process

    图  5  分散剂对打印性能的影响:(a) 不同聚合物分子量的流变性能;(b) 不同聚合物分子量的维型能力[34]

    Figure  5.  Effect of dispersants on printing performance: (a) rheological properties of different polymer molecular weights; (b) dimensional ability of different polymermolecular weights[34]

    图  6  粘合剂对打印性能的影响:(a) 墨水形态;(b) 流变性能;(c) 核壳结构;(d) F-D理论曲线[22,35-36]

    Figure  6.  The effect of adhesive on printing performance: (a) ink morphology; (b) rheological properties; (c) core shell structure;(d) F-D theoretical curve [22,35-36]

    图  7  陶瓷先驱体墨水的DIW打印成型:(a) 打印工艺流程;(b) 打印结构的厚度变化;(c) PCS先驱体墨水黏度和剪切速率;(d) BPCS先驱体墨水黏度与剪切速率[27,40-41]

    Figure  7.  DIW printing molding of ceramic precursor ink: (a) printing process flow; (b) the thickness variation of the printing structure; (c) PCS precursor ink viscosity and shear rate; (d) viscosity and shear rate of BPCS precursor ink[27,40-41]

    图  8  改性先驱体的DIW打印设备及工艺:(a) 紫外辅助打印设备;(b) 光敏效应墨水的打印成型;(c) 光热效应墨水的打印成型[45-46]

    Figure  8.  DIW printing equipment and process for modified precursors: (a) UV assisted printing equipment; (b) printing and molding of photosensitive ink; (c) printing and forming of photothermal effect ink[45-46]

    图  9  DIW工艺中短切纤维的加入方式:(a) 预先浸渍;(b) 共同挤出

    Figure  9.  The addition method of short cut fibers in the DIW process: (a) pre-impregnation; (b) co-extrusion

    图  10  短切纤维复合材料的DIW打印成型:(a) 短切纤维体积分数和长度范围;(b) 分散剂对纤维分布影响;(c) 构件的尺寸偏差比;(d) 核壳结构复合长丝共同挤出示意图[16,19,36,40,47-48]

    Figure  10.  DIW printing forming of short cut fiber composite materials: (a) volume fraction and length range of short cut fibers; (b) the effect of dispersants on fiber distribution; (c) the dimensional deviation ratio of components; (d) schematic diagram of co-extrusion of core-shell structure composite filament[16,19,36,40,47-48]

    图  11  DIW工艺中连续纤维的加入方式:(a) 连续纤维的表面上浆过程;(b) 斜插式喷嘴设计;(c) 折角式喷嘴设计;(d) 无折角喷嘴设计;(e) 超声辅助设计

    Figure  11.  Addition method of continuous fibers in DIW process: (a) surface sizing process of continuous fibers; (b) design of oblique insertion nozzle; (c) design of angled nozzles; (d) non angled nozzle design; (e) ultrasound assisted design

    图  12  连续纤维复合材料的DIW打印成型:(a) 多核打印系统示意图;(b) 多核墨水的流速分布;(c) 螺杆旋转输运连续纤维;(d) 超声辅助纤维分离技术[20,35,51]

    Figure  12.  DIW printing molding of continuous fiber composite: (a) schematic diagram of multi-core printing system; (b) flow rate distribution of multi-core ink; (c) continuous fiber of screw rotation; (d) ultrasonic assisted fiber separation technology[20,35,51]

    图  13  用于DIW打印技术的后致密化工艺流程

    Figure  13.  Post-compaction process flow for DIW printing technology

    图  14  DIW和PIP工艺的结合:(a) 典型工艺路线;(b) PIP致密化周期;(c) PIP致密化后的微结构[53-54]

    Figure  14.  Combination of DIW and PIP processes: (a) typical process route; (b) pip densification cycle; (c) microstructure after PIP densification[53-54]

    图  15  DIW和CVI工艺的结合:(a) 工艺流程;(b) CVI致密化周期与拉伸强度;(c) CVI工艺制备纤维涂层;(d) 纤维表面涂层显微结构[47,55]

    Figure  15.  Combination of DIW and CVI process: (a) process flow; (b) CVI compaction cycle and tensile strength; (c) preparation of fiber coating by CVI process; (d) microstructure of fiber surface coating[47,55]

    图  16  DIW和RMI工艺的结合:(a) Csf/ZrB2-SiC复合材料制备工艺示意图;(b) 致密化后的微观组织形貌[49]

    Figure  16.  Combination of DIW and RMI processes:(a) schematic diagram of Csf/ZrB2-SiC composite preparation process; (b) microscopic tissue morphology after densification[49]

    图  17  纤维强韧化机制:(a) 短切纤维核壳结构;(b) 高取向短切纤维裂纹扩展示意图;(c) 连续纤维核壳结构;(d) 连续纤维裂纹扩展示意图[20,36,47,52]

    Figure  17.  Fiber strong toughness mechanism: (a) short cut fiber core shell structure; (b) schematic diagram of high orientation short cut fiber crack expansion; (c) continuous fiber core shell structure; (d) schematic diagram of continuous fiber crack expansion[20,36,47,52]

    表  1  DIW制造陶瓷/陶瓷复材研究中的构件性能

    Table  1.   The mechanical properties of ceramic composite materials manufacturing using the DIW technique

    Ceramic phase Enhanced phase Slurry design Fiber extrusion
    method
    Densification
    process
    Fracture
    toughness/
    (MPa·m½)
    Bending
    strength/MPa
    Tensile
    strength/MPa
    Ref.
    SiC Ceramic powder Sintering 27.3 [27]
    SiC Continuous carbon fiber Ceramic powder Angle deviation Sintering 219 [35]
    SiC Short carbon fiber Ceramic powder Co-extrusion
    17.5 vol%
    PIP 2.71 123 [36]
    PMSSQ Short carbon fiber Ceramic precursor Pre-impregnation
    33 vol%
    Pyrolysis [40]
    Al2O3 Modified precursor Sintering 156.6 [45]
    SiC Short carbon fiber Ceramic powder Pre-impregnation
    17.5 vol%
    CVI、LSI 5.82 274 [47]
    SiC Short carbon fiber Ceramic powder Pre-impregnation
    20 vol%
    LSI、Carbonization 253.63 53.68 [48]
    SiC Continuous carbon fiber Ceramic powder No angle deviation PIP 3.77 146 [51]
    ZrB2
    SiC
    Continuous carbon fiber Ceramic powder No angle deviation Low temperature hot pressing 10.04 388.3 [20]
    SiC Continuous carbon fiber Ceramic powder Angle deviation Sintering 232 [50]
    PCS Ceramic precursor PIP、CVI 129.7 [53]
    PCS Short silicon carbide fiber Ceramic precursor Pre-impregnation
    10 vol%
    Pyrolysis 102.2 [19]
    ZrB2 Short carbon fiber Ceramic powder Fiber prefabricated
    components
    1 wt%
    CVI、SI、RMI [49]
    Notes: PMSSQ is Polymethylsilsesquioxane; PCS is Polycarbosilane; PIP is Precursor infiltration pyrolysis process; CVI is Chemical vapor infiltration process; LSI is Liquid silicon infiltration process; SI is Slurry impregnation process; RMI is Reactive melt infiltration process.
    下载: 导出CSV
  • [1] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2): 1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Journal of Composite Materials, 2007, 24(2): 1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001
    [2] KRENKEL W. Carbon fiber reinforced cmc for high-performance structures[J]. International Journal of Applied Ceramic Technology, 2004, 1(2): 188-200. doi: 10.1111/j.1744-7402.2004.tb00169.x
    [3] 汤素芳, 胡成龙, 熊艳丽, 等. 超高温陶瓷改性碳基/陶瓷基复合材料的多尺度构筑与性能研究进展[J]. 装备环境工程, 2019, 16(10): 40-48.

    TANG Sufang, HU Chenglong, XIONG Yanli, et al. Research progress on multi-scale structure construction and properties of ultra-high[J]. Equipment Environmental Engineering, 2019, 16(10): 40-48(in Chinese).
    [4] 杜善义, 方岱宁, 孟松鹤, 等. “近空间飞行器的关键基础科学问题”重大研究计划结题综述[J]. 中国科学基金, 2017, 31(2): 109-114.

    DU Shanyi, FANG Daoning, MENG Songhe, et al. Summary of major research programs of "Key Basic Science Issues of Near-space Vehicle"[J]. The China Science Foundation, 2017, 31(2): 109-114(in Chinese).
    [5] 韩杰才, 洪长青, 张幸红, 等. 新型轻质热防护复合材料的研究进展[J]. 载人航天, 2015, 21(4): 315-321. doi: 10.3969/j.issn.1674-5825.2015.04.001

    HAN Jiecai, HONG Changqing, ZHANG Xinhong, et al. Research progress of novel lightweight thermal protection composites[J]. Manned space flight, 2015, 21(4): 315-321(in Chinese). doi: 10.3969/j.issn.1674-5825.2015.04.001
    [6] 吴甲民, 陈敬炎, 陈安南, 等. 陶瓷零件增材制造技术及在航空航天领域的潜在应用[J]. 航空制造技术, 2017, 60(10): 40-49.

    WU Jiamin, CHEN Jingyan, CHEN Annan, et al. Additive manufacturing of ceramic components and its potential application in aerospace field[J]. Aviation manufacturing technology, 2017, 60(10): 40-49(in Chinese).
    [7] 梁栋, 何汝杰, 方岱宁. 陶瓷材料与结构增材制造技术研究现状[J]. 现代技术陶瓷, 2017, 38(4): 231-247.

    LIANG Dong, HE Rujie, FANG Daining. Development of Additive Manufacturing of Ceramics[J]. Modern technology ceramics, 2017, 38(4): 231-247(in Chinese).
    [8] CHEN Y L, ZHANG J M, LI Z F, et al. Manufacturing Technology of Lightweight Fiber-Reinforced Composite Structures in Aerospace: Current Situation and toward Intellectualization[J]. Aerospace, 2023, 10(3): 206-206. doi: 10.3390/aerospace10030206
    [9] FLEISHER A, ZOLOTARYOV D, KOVALEVSKY A, et al. Reaction bonding of silicon carbides by Binder Jet 3D-Printing, phenolic resin binder impregnation and capillary liquid silicon infiltration[J]. Ceramics International, 2019, 45(14): 18023-18029. doi: 10.1016/j.ceramint.2019.06.021
    [10] PANT M, PIDGE P, NAGDEVE L, et al. A Review of Additive Manufacturing in Aerospace Application[J]. RCMA, 2021, 31(2): 109-115. doi: 10.18280/rcma.310206
    [11] Air Force looking to additive manufacturing to expand hypersonic flight capabilities[N]. 2018, https://phys.org/news/2018-04-air-additive-hypersonic-flight-capabilities.html.
    [12] WEST B, et al. Additive Manufacturing for Affordable Rocket Engines[N]. NASA Technical Reports Server, 2016.
    [13] MARTA I, GABRIELE N, MARINELLA L, et al. UV-assisted 3d printing of glass and carbon fiber-reinforced dual-cure polymer composites[J]. Materials, 2016, 9(7): 583-595. doi: 10.3390/ma9070583
    [14] SANG L, HAN S, PENG X, et al. Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105518-105529. doi: 10.1016/j.compositesa.2019.105518
    [15] MELENKA G W, CHEUNG B K O, SCHOFIELD J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures[J]. Composite Structures, 2016, 153: 866-875. doi: 10.1016/j.compstruct.2016.07.018
    [16] LI S, LI Y F, WANG Q W, et al. Fabrication of 3D-SiC/aluminum alloy interpenetrating composites by DIW and pressureless infiltration[J]. Ceramics International, 2021, 47(17): 24340-24347. doi: 10.1016/j.ceramint.2021.05.147
    [17] 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. doi: 10.15541/jim20220515

    YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics[J]. Journal of Inorganic Materials, 2023, 38(5): 477-488(in Chinese). doi: 10.15541/jim20220515
    [18] 陈小武, 董绍明, 倪德伟, 等. 碳纤维增强超高温陶瓷基复合材料研究进展[J]. 中国材料进展, 2019, 38(9): 843-854. doi: 10.7502/j.issn.1674-3962.201906016

    CHEN Xiaowu, DONG Shaoming, NI Dewei, et al. Progress on carbon fiber reinforced ultra-high temperature ceramic matrix composites[J]. Material progress in China, 2019, 38(9): 843-854(in Chinese). doi: 10.7502/j.issn.1674-3962.201906016
    [19] KEMP J W, DIAZ A A, MALEK E C, et al. Direct ink writing of ZrB2-SiC chopped fiber ceramic composites[J]. Additive Manufacturing, 2021, 44(10): 102-049.
    [20] LIU Y, CHENG Y, MA D, et al. Continuous carbon fiber reinforced ZrB2-SiC composites fabricated by direct ink writing combined with low-temperature hot-pressing[J]. Journal of the European Ceramic Society, 2022, 42(9): 3699-3707. doi: 10.1016/j.jeurceramsoc.2022.03.045
    [21] REVELO F C, COLORADO A H. 3D printing of kaolinite clay ceramics using the Direct Ink Writing (DIW) technique[J]. Ceramics International, 2018, 44(5): 5673-5682. doi: 10.1016/j.ceramint.2017.12.219
    [22] LU Z L, MIAO K, ZHU W, et al. Fractions design of irregular particles in suspensions for the fabrication of multiscale ceramic components by gelcasting[J]. Journal of the European Ceramic Society, 2018, 38(2): 671-678. doi: 10.1016/j.jeurceramsoc.2017.08.002
    [23] LEWICKI J P, RODRIGUEZ J N, ZHU C, et al. 3D-Printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties[J]. Scientific Reports, 2017, 7(14): 43401.
    [24] 姜一帆, 赵凤起, 李辉, 等. 墨水直写增材制造技术及其在含能材料领域的研究进展[J]. 火炸药学报, 2022, 45(1): 1-19.

    JIANG Yifan, ZHAO Fengqi, LI Hui, et al. Direct ink writing technology for additive manufacturing and its research progress in energetic materials[J]. Journal of Explosives, 2022, 45(1): 1-19(in Chinese).
    [25] DECKERS J, VLEUGELS J, KRUTHL J P. Additive manufacturing of ceramics: a review[J]. Journal of Ceramic Science and Technology, 2014, 5(4): 245-260.
    [26] 刘应军. 连续碳纤维增韧 ZrB2基复合材料的界面调控及其高温性能研究 [D]. 大连理工大学, 2023.

    LIU Yingjun. Interface modulation and high-temperature properties of continuous Cf/ZrB2-based composites[D]. Dalian University of Technology, 2023.
    [27] LARSON M C, CHOI J J, GALLARDO A P, et al. Direct ink writing of silicon carbide for microwave optics[J]. Advanced Engineering Materials, 2016, 18(1): 39-45. doi: 10.1002/adem.201500298
    [28] CHANDRASEKARAN S, Lu R, LANDINGHAM R, et al. Additive manufacturing of graded B4C-Al cermets with complex shapes[J]. Materials Design, 2020, 188: 108-516.
    [29] 顾薛苏, 殷杰, 崔崇, 等. C_f/SiC复合材料的原料高效改性及其3D打印制备研究进展[J]. 现代技术陶瓷, 2022, 43(4): 229-245.

    GU Xuesu, YIN Jie, CUI Chong, et al. Research Progress on Efficient Modification of Cf/SiC Composites and 3D Printing Preparation[J]. Modern technical ceramics, 2022, 43(4): 229-245(in Chinese).
    [30] LAURA D, MARIA P G. Rheological characterization of ceramic inks for 3D direct ink writing: A review[J]. Journal of the European Ceramic Society, 2021, 41(16): 18-33. doi: 10.1016/j.jeurceramsoc.2021.08.031
    [31] 杨红霞, 刘卫东. 分散剂在陶瓷浆料制备中的应用[J]. 陶瓷科学与艺术, 2004, 38(6): 1006-2874. doi: 10.3969/j.issn.1671-7643.2004.06.002

    YANG Hongxia, LIU Weidong. Application Of Dispersants In The Preparation Of Slurry[J]. Ceramic Science and Art, 2004, 38(6): 1006-2874(in Chinese). doi: 10.3969/j.issn.1671-7643.2004.06.002
    [32] ZHOU T S. Dispersant and its application in the preparation of ceramics[J]. Journal of Hubei University(Natural Science Edition), 2001, 23(4): 331-335.
    [33] 季福元. 聚合物分散剂在特种陶瓷浆料制备中的应用[J]. 江苏陶瓷, 2000, 33(4): 16-17.

    JI Fuyuan. The Application of Polymer Disperser in Preparation of Special Ceramics Slurry[J]. Jiangsu Ceramics, 2000, 33(4): 16-17(in Chinese).
    [34] COSTAKIS J W, RUESCHHOFF M L, DIAZ I A, et al. Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions[J]. Journal of the European Ceramic Society, 2016, 36(14): 3249-3256. doi: 10.1016/j.jeurceramsoc.2016.06.002
    [35] CHEN R Y, ADAM B, JOSHUA R, et al. Additive manufacturing of continuous carbon fiber-reinforced SiC ceramic composite with multiple fiber bundles by an extrusion-based technique[J]. Ceramics International, 2023, 49(6): 9839-9847. doi: 10.1016/j.ceramint.2022.11.157
    [36] XIA Y L, LU Z L, CAO J W, et al. Microstructure and mechanical property of Cf/SiC core/shell composite fabricated by direct ink writing[J]. Scripta Materialia, 2018, 165: 84-88.
    [37] LI S, LU Z L, ZHANG H T, et al. Rheological behavior of multi-sized SiC inks containing polyelectrolyte complexes specifically for direct ink writing[J]. Journal of the European Ceramic Society, 2022, 42(12): 4810-4816. doi: 10.1016/j.jeurceramsoc.2022.04.048
    [38] SONG S Y, PARK M S, LEE D, et al. Optimization and characterization of high-viscosity ZrO2 ceramic nanocomposite resins for supportless stereolithography[J]. Materials & Design, 2019, 180: 107-960.
    [39] REICHERT F, LANGHOF N, KRENKEL W. Influence of thermal fiber pretreatment on microstructure and mechanical properties of C/C-SiC with thermoplastic polymer-derived matrices[J]. Advanced Engineering Materials, 2015, 17(8): 1119-1126. doi: 10.1002/adem.201500193
    [40] FRANCHIN G, LARISSA W, PAOLO C. Direct ink writing of ceramic matrix composite structures[J]. Journal of the American Ceramic Society, 2017, 100(10): 4397-4401. doi: 10.1111/jace.15045
    [41] CHEN H, WANG X, XUE F, et al. 3D printing of SiC ceramic: Direct ink writing with a solution of preceramic polymers[J]. Journal of the European Ceramic Society, 2018, 38(16): 5294-5300. doi: 10.1016/j.jeurceramsoc.2018.08.009
    [42] YANASE I, OGAWARA R, KOBAYASHI H. Synthesis of boron carbide powder from polyvinyl borate precursor[J]. Materials Letters, 2008, 63(1): 91-93.
    [43] 王浩, 王金龙, 苟燕子. 先驱体转化法制备高性能碳化硼陶瓷材料研究进展[J]. 无机材料学报, 2017, 32(8): 785-791. doi: 10.15541/jim20160524

    WANG Hao, WANG Jinlong, GOU Yanzi. Progress of advanced boron carbide ceramic materials prepared by precursor derived method[J]. Journal of Inorganic Materials, 2017, 32(8): 785-791(in Chinese). doi: 10.15541/jim20160524
    [44] WEI L, LI J, ZHANG S, et al. Fabrication of SiOC ceramic with cellular structure via UV-Assisted direct ink writing[J]. Ceramics International, 2020, 46(3): 3637-3643. doi: 10.1016/j.ceramint.2019.10.083
    [45] RAU D A, FORGIARINI M, WILLIAMS C B. Hybridizing direct ink write and mask-projection vat photopolymerization to enable additive manufacturing of high viscosity photopolymer resins[J]. Additive Manufacturing, 2021, 42(6): 101-996.
    [46] 党文涛. 3D打印生物陶瓷支架用于骨组织修复和治疗 [D]. 中国科学院大学, 2019.

    DANG Wentao. 3D printed-bioceramic scaffolds for bone tissue regeneration and therapy[D]. University of Chinese Academy of Sciences, 2019(in Chinese).
    [47] LU Z L, XIA Y L, MIAO K, et al. Microstructure control of highly oriented short carbon fibres in SiC matrix composites fabricated by direct ink writing[J]. Ceramics International, 2019, 45(14): 17262-17267. doi: 10.1016/j.ceramint.2019.05.283
    [48] WANG W, BAI X, ZHANG L, et al. Additive manufacturing of Csf/SiC composites with high fiber content by direct ink writing and liquid silicon infiltration[J]. Ceramics International, 2022, 48(3): 3895-3903. doi: 10.1016/j.ceramint.2021.10.176
    [49] LU J, NI D, LIAO C, et al. Fabrication and microstructure evolution of Csf/ZrB2-SiC composites via direct ink writing and reactive melt infiltration[J]. Journal of Advanced Ceramics, 2021, 10(6): 1371-1380. doi: 10.1007/s40145-021-0512-z
    [50] CHEN R, BRATTEN A, RITTENHOUSE J, et al. Additive manufacturing of high mechanical strength continuous Cf/SiC composites using a 3D extrusion technique and polycarbosilane-coated carbon fibers[J]. Journal of the American Ceramic Society, 2023, 106(7): 4028-4037. doi: 10.1111/jace.19079
    [51] 李赛, 随雨浓, 苗恺, 等. 基于直写成型的连续碳纤维增韧碳化硅复合材料制备与性能研究[J]. 航空制造技术, 2021, 64(15): 36-41.

    LI Sai, SUI Yunong, MIAO Kai, et al. Research on preparation and properties of direct ink writing of continuous carbon fiber reinforced silicon carbide ceramic matrix composites[J]. Aviation Manufacturing Technology, 2021, 64(15): 36-41(in Chinese).
    [52] 王长顺, 吴思琪, 闫春泽, 等. SiC陶瓷增材制造技术的研究及应用进展[J]. 科学通报, 2022, 67(11): 1137-1154.

    WANG Changshun, WU Siqi, YAN Chunze, et al. Research and applications of additive manufacturing technology of SiC ceramics[J]. Scientific Bulletin, 2022, 67(11): 1137-1154(in Chinese).
    [53] XIONG H, ZHAO L, CHEN H, et al. Building SiC-based composites from polycarbosilane-derived 3D-SiC scaffolds via polymer impregnation and pyrolysis (PIP)[J]. Journal of the European Ceramic Society, 2020, 41(2): 1121-1131.
    [54] XU T, CHENG S, JIN L, et al. High-temperature flexural strength of SiC ceramics prepared by additive manufacturing[J]. International Journal of Applied Ceramic Technology, 2020, 17(2): 438-448. doi: 10.1111/ijac.13454
    [55] XIONG H, CHEN H, CHEN Z, et al. 3D-SiC decorated with SiC whiskers: Chemical vapor infiltration on the porous 3D-SiC lattices derived from polycarbosilane-based suspensions[J]. Ceramics International, 2020, 46(5): 6234-6242. doi: 10.1016/j.ceramint.2019.11.092
    [56] 沙建军, 代吉祥, 张兆甫. 纤维增韧高温陶瓷基复合材料(Cf, SiCf/SiC)应用研究进展[J]. 航空制造技术, 2017, 538(19): 16-32.

    SHA Jianjun, DAI Jixiang, ZHANG Zhaofu. Research and application progress of fiber-reinforced high temperature ceramic matrix composites: Cf/SiC and SiCf/SiC[J]. Aviation Manufacturing Technology, 2017, 538(19): 16-32(in Chinese).
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-19
  • 修回日期:  2024-05-17
  • 录用日期:  2024-06-03
  • 网络出版日期:  2024-06-25

目录

    /

    返回文章
    返回