留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石(100)-(111)面微沉积钨/铜复合材料制备与性能

王长瑞 李宏钊 田威 胡俊山 廖文和

王长瑞, 李宏钊, 田威, 等. 金刚石(100)-(111)面微沉积钨/铜复合材料制备与性能[J]. 复合材料学报, 2022, 39(12): 6004-6016. doi: 10.13801/j.cnki.fhclxb.20211228.002
引用本文: 王长瑞, 李宏钊, 田威, 等. 金刚石(100)-(111)面微沉积钨/铜复合材料制备与性能[J]. 复合材料学报, 2022, 39(12): 6004-6016. doi: 10.13801/j.cnki.fhclxb.20211228.002
WANG Changrui, LI Hongzhao, TIAN Wei, et al. Preparation and properties of tungsten micro-deposited on diamond (100)-(111) facets/Cu composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6004-6016. doi: 10.13801/j.cnki.fhclxb.20211228.002
Citation: WANG Changrui, LI Hongzhao, TIAN Wei, et al. Preparation and properties of tungsten micro-deposited on diamond (100)-(111) facets/Cu composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6004-6016. doi: 10.13801/j.cnki.fhclxb.20211228.002

金刚石(100)-(111)面微沉积钨/铜复合材料制备与性能

doi: 10.13801/j.cnki.fhclxb.20211228.002
基金项目: 国家自然科学基金(52075250);中国博士后科学基金(2020M683376);直升机传动技术国家重点实验室项目(HTL-O-19G09)
详细信息
    通讯作者:

    田威,博士,教授,博士生导师,研究方向为航空航天机器人智能装配技术与装备 E-mail: tw_nj@nuaa.edu.cn

  • 中图分类号: TB333

Preparation and properties of tungsten micro-deposited on diamond (100)-(111) facets/Cu composites

  • 摘要: 金刚石/铜复合材料具有密度低、热导率高及热膨胀系数(CTE)可调等优点,与核心芯片具有良好的热匹配性能,在高热流密度电子封装领域具有广泛的应用前景。然而,金刚石与铜界面润湿性差,限制了其应用。为了改善金刚石与铜之间的润湿性,采用真空微沉积技术在金刚石表面沉积钨膜,并结合放电等离子烧结(SPS)技术制备了金刚石/铜复合材料。研究了金刚石(100)和(111)面钨镀层的形成、结构、复合材料断口形貌、致密性(RD)及导热性能(TC)。结果表明:在1050℃高温下,当沉积时间为60 min时,镀层表面较均匀、光滑、致密性高,且金刚石(100)面镀层的形成优先于(111)面。镀层外延生长在金刚石表面,生成了WC-W2C-W的梯度结构。复合材料的断裂由金刚石颗粒与铜基体的脱黏及铜基体的韧性断裂组成,界面结合紧密。在沉积工艺为1050℃且50 min时,镀钨金刚石颗粒镀层厚度为331.46 nm,制备的金刚石/铜复合材料致密度与导热率最高,分别为99.71%和459 W/(m·K)。

     

  • 图  1  原始金刚石颗粒(100)与(111)面形貌

    Figure  1.  Morphologies of diamond (100) and (111) facet

    图  2  沉积法制备镀钨金刚石/铜复合材料的流程示意图

    Figure  2.  Schematic of W coated diamond particles/copper composites deposited by micro-deposition method

    TC—Thermal conductivity; SPS—Spark plasma sintering

    图  3  放电等离子烧结技术(SPS)制备金刚石微沉积钨/铜复合材料工艺曲线

    Figure  3.  Process of diamond/copper composite by spark plasma sintering (SPS)

    图  4  在1050℃下不同沉积时间镀钨金刚石(100)面微观组织

    Figure  4.  Microstructures of W-coated diamond (100) facet at 1050℃ for different holding time

    图  5  在1050℃下不同沉积时间镀钨金刚石(111)面微观组织

    Figure  5.  Microstructure of W-coated diamond (111) facet at 1050℃ for different holding time

    图  6  在1050℃下不同沉积时间镀钨金刚石XRD图谱

    Figure  6.  XRD patterns of W-coated diamond at 1050℃ for different holding time

    图  7  金刚石镀层厚度理论与实验值对比分析

    Figure  7.  Theoretical and experimental thickness analysis of diamond coating

    图  8  在1050oC下不同沉积时间镀钨金刚石镀层厚度

    Figure  8.  Thickness of W-coated diamond at 1050℃ for different holding time

    D—Plating thickness

    图  9  在1050℃下不同沉积时间镀钨金刚石/铜复合材料断口形貌

    Figure  9.  Fracture morphologies of W-coated diamond/copper composites surface at 1050℃ for different plating time

    图  10  在1050℃下沉积50 min时镀钨金刚石/铜复合材料断口形貌

    Figure  10.  Fracture morphologies of W-coated diamond/copper composites surface at 1050℃ for 50 min

    图  11  在1050℃下沉积不同时间镀钨金刚石/铜复合材料XRD图谱

    Figure  11.  XRD patterns of W coated diamond particles/copper composites deposited at 1050℃ for different plating time

    图  12  金刚石/铜复合材料致密度与热导率:(a) 致密度(RD)与导热率(TC);(b) 本文TC与其他文献的对比

    Figure  12.  Relative density and thermal conductivity of diamond/copper composites: (a) Relative density (RD) and thermal conductivity (TC); (b) Comparison of the TC between this study and the literatures

  • [1] 姜海涛, 崔健磊, 殷东平, 等. 雷达功率组件的金刚石微通道热沉激光加工工艺[J]. 中国机械工程, 2021, 32(3):261-268. doi: 10.3969/j.issn.1004-132X.2021.03.002

    JIANG Haitao, CUI Jianlei, YIN Dongping, et al. Femtosecond laser processing technology of diamond micro-channel heat sink based on radar power module[J]. China Mechanical Engineering,2021,32(3):261-268(in Chinese). doi: 10.3969/j.issn.1004-132X.2021.03.002
    [2] ZWEBEN C. Advances in high-performance thermal mana-gement materials: A review[J]. Journal of Advanced Materials,2007,39:3-10.
    [3] AZINA C, ROGER J, JOULAIN A, et al. Solid-liquid co-existent phase process: Towards fully dense and thermally efficient Cu/C composite materials[J]. Journal of Alloys and Compounds,2018,738:292-300. doi: 10.1016/j.jallcom.2017.12.196
    [4] GANIJA M, OTTAWAY D, VEITCH P, et al. Cryogenic, high power, near diffraction limited, Yb: YAG slab laser[J]. Optics Express,2013,21(6):6973-6978. doi: 10.1364/OE.21.006973
    [5] CHEN M H, LI H Z, WANG C R, et al. Progress in heat conduction of diamond/Cu composites with high thermal conductivity[J]. Rare Metal Materials and Engineering,2020,49(12):4146-4158.
    [6] NOSAEVA K, AL-SAWAF T, JOHN W, et al. Multifinger indium phosphide double-heterostructure transistor circuit technology with integrated diamond heat sink layer[J]. IEEE Transactions on Electron Devices,2016,63(5):1-7.
    [7] AZMI K, DERMAN M N, BAKRI A, et al. Cu-SiCp compo-sites as advanced electronic packaging materials[J]. Key Engineering Materials,2014,594-595:852-856.
    [8] YOSHIDA K, MORIGAMI H. Thermal properties of diamond/copper composite material[J]. Microelectronics Reliability,2004,44(2):303-308. doi: 10.1016/S0026-2714(03)00215-4
    [9] WEBER L, TAVANGAR R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites[J]. Scripta Materialia,2007,57(11):988-991. doi: 10.1016/j.scriptamat.2007.08.007
    [10] ROSINSKI M, CINPIUSKI L J, GRZONKA A, et al. Synthesis and characterization of the diamond/copper composites produced by the pulse plasma sintering (PPS) method[J]. Diamond and Related Materials,2012,27-28:29-35. doi: 10.1016/j.diamond.2012.05.008
    [11] ABYZOV A, KRUSZEWSKI M, CIUPINSKI L, et al. Diamond-tungsten based coating–copper composites with high thermal conductivity produced by Pulse Plasma Sintering[J]. Materials & Design,2015,76:97-109.
    [12] HELL J, CHIRTOC M, EISENMENGER-SITTNER C, et al. Characterisation of sputter deposited niobium and boron interlayer in the copper–diamond system[J]. Surface & Coatings Technology,2012,208:24-31.
    [13] LI H Z, WANG C R, WU L M, et al. Optimization of process parameters, microstructure, and thermal conductivity properties of Ti-coated diamond/copper composites prepared by spark plasma sintering[J]. Journal of Materials Science: Materials in Electronics,2021,32:9115-9125. doi: 10.1007/s10854-021-05579-1
    [14] PAN Y P, HE X B, REN S B, et al. Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique[J]. Vacuum,2018,153:74-81. doi: 10.1016/j.vacuum.2018.03.052
    [15] PATRYCJUSZ M, DOMINIAK A, ROMAN D, et al. Thermal conductivity enhancement of copper–diamond composites by sintering with chromium additive[J]. Journal of Thermal Analysis and Calorimetry,2013,116(2):881-885.
    [16] 王艳辉. 金刚石磨料表面镀钛层的制备、结构、性能及应用[D]. 秦皇岛: 燕山大学, 2003.

    WANG Yanhui. Preparation, structure, properties and applications of titanium coating on diamond abrasive[D]. Qinhuangdao: Yanshan University, 2003(in Chinese).
    [17] 张纯, 王日初, 彭超群, 等. 表面镀钨层对金刚石/铜复合材料热导率的影响[J]. 稀有金属材料与工程, 2016, 45(10):2692-2696.

    ZHANG Chun, WANG Richu, PENG Chaoqun, et al. Effects of tungsten coating layer on thermal conductivity of diamond-copper composites[J]. Rare Metal Materials and Engineering,2016,45(10):2692-2696(in Chinese).
    [18] 李毅, 于爱兵, 洪鑫, 等. 旋转摩擦挤压加温法制备金刚石表面Ti涂层[J]. 复合材料学报, 2022, 39(1):292-301.

    LI Yi, YU Aibing, HONG Xin, et al. Fabrication of Ti layer on diamond surface with rotary friction extrusion heating method[J]. Acta Materiae Compositae Sinica,2022,39(1):292-301(in Chinese).
    [19] WANG C R, LI H Z, CHEN M H, et al. Microstructure and thermo-physical properties of Cu-Ti double-layer coated diamond/Cu composites fabricated by spark plasma sintering[J]. Diamond and Related Materials,2020,109:108041. doi: 10.1016/j.diamond.2020.108041
    [20] GRZONKA J, KRUSZEWSKI M J, ROSIŃSKI M, et al. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route[J]. Materials Characterization,2015,99:188-194. doi: 10.1016/j.matchar.2014.11.032
    [21] CIUPIŃSKI L, KRUSZEWSKI M, GRZONKA J, et al. Design of interfacial Cr3C2, carbide layer via optimization of sintering parameters used to fabricate copper/diamond compo-sites for thermal management applications[J]. Materials & Design,2017,120:170-185.
    [22] HE J S, WANG X T, ZHANG Y, et al. Thermal conductivity of Cu-Zr/diamond composites produced by high tempera-ture-high pressure method[J]. Composites Part B: Engi-neering,2015,68:22-26. doi: 10.1016/j.compositesb.2014.08.023
    [23] ZHANG H L, WU J H, ZHANG Y, et al. Effect of metal matrix alloying on mechanical strength of diamond particle-reinforced aluminum composites[J]. Journal of Materials Engineering and Performance,2015,24(6):2556-2562. doi: 10.1007/s11665-015-1527-9
    [24] BAI G Z, WANG L H, ZHANG Y J, et al. Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix[J]. Materials Characterization,2019,152:265-275. doi: 10.1016/j.matchar.2019.04.015
    [25] HARKINS W D. Energy relations of the surface of solids I. Surface energy of the diamond[J]. The Journal of Chemi-cal Physics,1942,10(5):268-272. doi: 10.1063/1.1723719
    [26] ZHANG H D, ZHANG J J, LIU Y, et al. Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface[J]. Scripta Materialia,2018,152:84-88. doi: 10.1016/j.scriptamat.2018.04.021
    [27] MA S D, ZHAO N Q, SHI C S, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J]. Applied Surface Science,2017,402:372-383. doi: 10.1016/j.apsusc.2017.01.078
    [28] WANG Y L, DUAN K Y, WANG K K, et al. Structure and thermal properties of layered Ti-clad diamond/Cu compo-sites prepared by SPS and HP[J]. Rare Metal Materials and Engineering,2018,47(7):2011-2016. doi: 10.1016/S1875-5372(18)30173-5
    [29] YUSHIN D I, SMIRNOV A V, SOLIS P, et al. Modeling process of spark plasma sintering of powder materials by finite element method[J]. Materials Science Forum,2015,834:41-50. doi: 10.4028/www.scientific.net/MSF.834.41
    [30] MIZUUCHI K, INOUE K, AGARI Y, et al. Effect of boron addition on the thermal conductivity of Cu/diamond compo-sites fabricated by SPS[J]. Journal of the Japan Society of Powder & Powder Metallurgy,2015,62(1):27-34.
    [31] MIZUUCHI K, INOUE K, AGARI Y, et al. Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid–liquid co-existent state by SPS[J]. Composites Part B: Engineering,2011,42(5):1029-1034. doi: 10.1016/j.compositesb.2011.03.028
    [32] CHEN H, JIA C C, LI S J, et al. Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy compo-sites prepared by HPHT technique[J]. International Jour-nal of Minerals, Metallurgy, and Materials,2012,19(4):364-371. doi: 10.1007/s12613-012-0565-7
    [33] XIN L, TIAN X, YANG W S, et al. Enhanced stability of the diamond/Al composites by W coatings prepared by the magnetron sputtering method[J]. Journal of Alloys and Compounds,2018,763:305-313. doi: 10.1016/j.jallcom.2018.05.310
    [34] CHUPRINA V G. Physicochemical interaction and structure development during the formation of metal gas-transfer coatings on diamond (review). 1. Kinetics[J]. Soviet Powder Metallurgy & Metal Ceramics,1992,31(7):578-583.
    [35] 闫建明. 金刚石/铜复合材料的界面调控和导热性能研究[D]. 郑州: 郑州大学, 2018.

    YAN Jianming. Study on interface control and thermal conductivity of diamond/Cu composites[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [36] ZHANG C, WANG R C, CAI Z Y. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J]. Surface and Coatings Technology,2015,277:299-307. doi: 10.1016/j.surfcoat.2015.07.059
    [37] JIA J H, BAI S X, XIONG D G, et al. Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration[J]. Ceramics International,2019,45:10810-10818. doi: 10.1016/j.ceramint.2019.02.156
    [38] CHANG R, ZANG J B, WANG Y H, et al. Preparation of the gradient Mo layers on diamond grits by spark plasma sintering and their effect on Fe-based matrix diamond composites[J]. Journal of Alloys and Compounds,2017,695:70-75. doi: 10.1016/j.jallcom.2016.10.172
    [39] GU M Y, ZHANG G D, WU R J. Interfacial bondings in Grf/Al composites[J]. Progress in Natural Science Material International,1997,7:600.
    [40] CHU K, LIU Z F, JIA C C, et al. Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles[J]. Journal of Alloys and Compounds,2010,529:453-458.
    [41] 王海鹏, 彭坤. 基体中Ti元素含量对金刚石/Cu-Ti复合材料热导率的影响[J]. 复合材料学报, 2018, 35(4):910-919.

    WANG Haipeng, PENG Kun. Influence of minor Ti addition in matrix on the thermal conductivity of diamond/Cu-Ti composites[J]. Acta Materiae Compositae Sinica,2018,35(4):910-919(in Chinese).
    [42] CHU K, JIA C C, GUO H, et al. Microstructure and thermal conductivity of Cu-B/diamond composites[J]. Journal of Composite Materials,2013,47(23):2945-2953. doi: 10.1177/0021998312460259
  • 加载中
图(12)
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  617
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 修回日期:  2021-11-29
  • 录用日期:  2021-12-20
  • 网络出版日期:  2021-12-28
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回