留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质硅改性氯氧镁水泥复合材料的力学性能与作用机制

曹锋 乔宏霞 李双营 舒修远 崔丽君

曹锋, 乔宏霞, 李双营, 等. 生物质硅改性氯氧镁水泥复合材料的力学性能与作用机制[J]. 复合材料学报, 2023, 40(10): 5860-5871. doi: 10.13801/j.cnki.fhclxb.20230103.001
引用本文: 曹锋, 乔宏霞, 李双营, 等. 生物质硅改性氯氧镁水泥复合材料的力学性能与作用机制[J]. 复合材料学报, 2023, 40(10): 5860-5871. doi: 10.13801/j.cnki.fhclxb.20230103.001
CAO Feng, QIAO Hongxia, LI Shuangying, et al. Mechanical properties and mechanism of magnesium oxychloride cement composites modified by biomass silicon[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5860-5871. doi: 10.13801/j.cnki.fhclxb.20230103.001
Citation: CAO Feng, QIAO Hongxia, LI Shuangying, et al. Mechanical properties and mechanism of magnesium oxychloride cement composites modified by biomass silicon[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5860-5871. doi: 10.13801/j.cnki.fhclxb.20230103.001

生物质硅改性氯氧镁水泥复合材料的力学性能与作用机制

doi: 10.13801/j.cnki.fhclxb.20230103.001
基金项目: 青海省基础研究计划项目(2022-ZJ-921);国家自然科学基金项目(51868044)
详细信息
    通讯作者:

    乔宏霞,博士,教授,博士生导师,研究方向为氯氧镁水泥的性能调控 E-mail: qhxlut7706@163.com

  • 中图分类号: TU528;TB332

Mechanical properties and mechanism of magnesium oxychloride cement composites modified by biomass silicon

Funds: Basic Research Program of Qinghai Province (2022-ZJ-921); National Natural Science Foundation of China (51868044)
  • 摘要: 为了提高氯氧镁水泥的力学及耐水性能,同时解决废弃农作物青稞秸秆的资源处置问题,采用一定条件下煅烧及研磨处理制备而成的青稞秸秆灰(HBSA),改善氯氧镁水泥的力学及耐水性能。首先,对不同HBSA掺入方式及掺量的氯氧镁水泥砂浆(MOCM)的力学性能进行试验,分别测试了MOCM的抗折强度、抗压强度、折压比及软化系数的变化规律。其次,对MOCM的孔隙结构和微观结构进行测试分析,进一步阐释了掺入HBSA对MOCM力学性能影响的作用机制。研究结果表明:HBSA外掺时,MOCM可以获得较高的力学性能及耐水性能。当HBSA掺量为5wt%时,MOCM的抗折强度和抗压强度最高;当HBSA掺量为10wt%时,MOCM在饱水状态下的抗压强度损失最小,耐水性能最优。当HBSA外掺且掺量为10wt%时,MOCM的孔隙结构中有害孔和多害孔的比例显著降低,无害孔和少害孔的比例显著增加。MOCM中的水化产物Mg(OH)2能够与HBSA中的活性SiO2发生二次水化反应,生成大量的水化硅酸镁(M-S-H)凝胶,有效地填充了MOCM内部的有害孔隙,阻碍了水分的传输与侵蚀,提高了MOCM的耐水性能。

     

  • 图  1  HBSA的XRD图谱与粒径分布

    Figure  1.  XRD pattern and particle size distribution of HBSA

    图  2  不同HBSA掺量的MOCM的抗折强度

    Figure  2.  Flexural strength of MOCM with different HBSA contents

    图  3  不同HBSA掺量的MOCM的抗压强度

    Figure  3.  Compressive strength of MOCM with different HBSA contents

    图  4  不同HBSA掺量的MOCM的折压比ff/fc

    Figure  4.  Ratio of flexural strength and compressive strength (ff/fc) of MOCM with different HBSA contents

    图  5  不同HBSA掺量的MOCM的软化系数

    Figure  5.  Softening coefficient of MOCM with different HBSA contents

    R2—Fit coefficient

    图  6  不同HBSA掺量的MOCM的横向弛豫时间T2图谱(a)与孔径分布(b)

    Figure  6.  Transverse relaxation time T2 spectra (a) and pore diameter distribution (b) of MOCM with different HBSA contents

    图  7  不同HBSA掺量的MOCM的SEM图像

    Figure  7.  SEM images of MOCM with different HBSA contents

    M-S-H—Hydrated magnesium silicate

    图  8  不同HBSA掺量的MOCM的热重曲线

    Figure  8.  Thermogravimetric curves of MOCM with different HBSA contents

    图  9  3相和5相的晶体结构模型[26]

    Figure  9.  Crystal structure model of phase 3 and phase 5[26]

    图  10  生物质硅改性氯氧镁水泥复合材料的作用机制

    Figure  10.  Mechanism of magnesium oxychloride cement composites modified by biomass silicon

    表  1  青稞秸秆灰(HBSA)的化学组成

    Table  1.   Chemical compositions of highland barley strawash (HBSA)

    SiO2/wt%CaO/wt%SO3/wt%MgO/wt%Al2O3/wt%Fe2O3/wt%K2O/wt%Na2O/wt%P2O5/wt%Others/wt%
    61.7510.631.752.045.923.835.312.605.720.44
    下载: 导出CSV

    表  2  氯氧镁水泥砂浆(MOCM)的配合比设计

    Table  2.   Mix propertion design of magnesium oxychloride cement mortar (MOCM) kg/m3

    MgCl2SandSuperplasticizerWater resistant agentHBSAInternal mixing (IM)External mixing (EM)
    MgOH2OMgOH2O
    221.7 937.5 16.0 6.9 0 583.4 203.4 583.4 203.4
    29.2 554.2 211.7
    58.3 525.1 220.0
    87.5 495.9 228.4
    116.7 466.7 236.7
    175.0 408.4 253.2
    下载: 导出CSV

    表  3  不同HBSA掺量的MOCM中各类孔隙占比及孔隙率

    Table  3.   Proportion of various pores and porosity in MOCM with different HBSA contents

    Mixing methodHBSA content<0.02 μm0.02-0.05 μm0.05-0.20 μm>0.20 μmPorosity/%
    Without mixing0wt%0.032.396.080.64 9.14
    Internal mixing10wt%0.853.886.990.9612.68
    External mixing10wt%1.453.884.750.2410.32
    下载: 导出CSV
  • [1] 文静, 余红发, 吴成友, 等. 氯氧镁水泥水化历程的影响因素及水化动力学[J]. 硅酸盐学报, 2013, 41(5):588-596. doi: 10.7521/j.issn.0454-5648.2013.05.03

    WEN Jing, YU Hongfa, WU Chengyou, et al. Hydration kinetic and influencing parameters in hydration process of magnesium oxychloride cement[J]. Journal of the Chinese Ceramic Society,2013,41(5):588-596(in Chinese). doi: 10.7521/j.issn.0454-5648.2013.05.03
    [2] 王鹏辉, 乔宏霞, 冯琼, 等. 考虑个体差异的氯氧镁水泥混凝土涂层钢筋寿命预测[J]. 浙江大学学报(工学版), 2019, 53(12):2309-2316. doi: 10.3785/j.issn.1008-973X.2019.12.007

    WANG Penghui, QIAO Hongxia, FENG Qiong, et al. Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete[J]. Journal of Zhejiang University (Engineering Science),2019,53(12):2309-2316(in Chinese). doi: 10.3785/j.issn.1008-973X.2019.12.007
    [3] 曹锋, 乔宏霞, 李双营, 等. 青稞秸秆灰-氯氧镁水泥复合材料盐冻耦合损伤强度特性及孔隙特征[J]. 复合材料学报, 2023, 40(5):2972-2987.

    CAO Feng, QIAO Hongxia, LI Shuangying, et al. Strength and pore characteristics of highland barley straw ash-magnesium oxychloride cement composite under salt freezing coupling damage[J]. Acta Materiae Compositae Sinica,2023,40(5):2972-2987(in Chinese).
    [4] CHEN X Y, ZHANG T T, BI W L, et al. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement[J]. Construction and Building Materials,2019,213:528-536. doi: 10.1016/j.conbuildmat.2019.04.086
    [5] TAN Y N, LIU Y, GROVER L. Effect of phosphoric acid on the properties of magnesium oxychloride cement as a biomaterial[J]. Cement and Concrete Research,2014,56:69-74. doi: 10.1016/j.cemconres.2013.11.001
    [6] DENG D H. The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement[J]. Cement and Concrete Research,2003,33(9):1311-1317. doi: 10.1016/S0008-8846(03)00059-0
    [7] WANG Y C, WEI L Z, YU J T, et al. Mechanical properties of high ductile magnesium oxychloride cement-based composites after water soaking[J]. Cement and Concrete Composites,2018,97:248-258.
    [8] HE P P, POON C S, TSANG D C W. Effect of pulverized fuel ash and CO2 curing on the water resistance of magnesium oxychloride cement (MOC)[J]. Cement and Concrete Research,2017,97:115-122. doi: 10.1016/j.cemconres.2017.03.005
    [9] BRICHNI A. Optimisation of magnesium oxychloride cement properties by silica glass[J]. Advances in Cement Research,2016,28(10):654-663.
    [10] XU K J, XI J T, GUO Y Q, et al. Effects of a new modifier on the water-resistance of magnesite cement tiles[J]. Solid State Sciences,2011,14(1):10-14.
    [11] CAO F, QIAO H X, LI Y K, et al. Correlation evaluation between water resistance and pore structure of magnesium oxychloride cement mixed with highland barley straw ash[J]. Journal of Materials in Civil Engineering,2022,34(10):04022259. doi: 10.1061/(ASCE)MT.1943-5533.0004417
    [12] CAO F, QIAO H X, SHU X Y, et al. Potential application of highland barley straw ash as a new active admixture in magnesium oxychloride cement[J]. Journal of Building Engineering,2022,59:105108. doi: 10.1016/j.jobe.2022.105108
    [13] 曹锋, 乔宏霞, 王鹏辉, 等. 新型活性混合材料青稞秸秆灰的制备及性能[J]. 工程科学与技术, 2022, 54(4):155-163.

    CAO Feng, QIAO Hongxia, WANG Penghui, et al. Preparation and properties of highland barley straw ash as new active mixed materials[J]. Advanced Engineering Sciences,2022,54(4):155-163(in Chinese).
    [14] CAO F, QIAO H X, LI Y K, et al. Effect of highland barley straw ash admixture on properties and microstructure of concrete[J]. Construction and Building Materials,2022,315:125802. doi: 10.1016/j.conbuildmat.2021.125802
    [15] 曹锋, 谭镇, 乔宏霞, 等. 青稞秸秆灰掺入氯氧镁水泥中的活性与作用机理[J]. 功能材料, 2021, 52(12):12196-12202, 12209. doi: 10.3969/j.issn.1001-9731.2021.12.030

    CAO Feng, TAN Zhen, QIAO Hongxia, et al. Activity and mechanism of highland barley straw ash added into magnesium oxychoride cement[J]. Journal of Functional Materials,2021,52(12):12196-12202, 12209(in Chinese). doi: 10.3969/j.issn.1001-9731.2021.12.030
    [16] 董金美, 余红发, 张立明. 水合法测定活性MgO含量的试验条件研究[J]. 盐湖研究, 2010, 18(1):38-41.

    DONG Jinmei, YU Hongfa, ZHANG Liming. Study on experimental conditions of hydration methods of determining active magnesium oxide content[J]. Journal of Salt Lake Research,2010,18(1):38-41(in Chinese).
    [17] 中华人民共和国国家质量监督检验检疫总局. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2020[S]. 北京: 中国建筑工业出版社, 2020.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Methods of testing cements—Determination of strength: GB/T 17671—2020[S]. Beijing: China Building Industry Press, 2020(in Chinese).
    [18] 靳凯戎, 许星星, 陈啸洋, 等. 花岗岩石粉对硫氧镁水泥耐压强度和耐水性的影响[J]. 建筑材料学报, 2022, 25(8):767-772, 780. doi: 10.3969/j.issn.1007-9629.2022.08.001

    JIN Kairong, XU Xingxing, CHEN Xiaoyang, et al. Effect of granite powder on compressive strength and water resistance of magnesium oxysulfate cement[J]. Journal of Building Materials,2022,25(8):767-772, 780(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.08.001
    [19] CAO R L, ZHANG Z H, ZHANG Y M, et al. Relaxation characteristics and state evolution of water during the early-age reaction of alkali-activated slag as monitored by low field nuclear magnetic resonance[J]. Composites Part B: Engineering,2022,242:110025. doi: 10.1016/j.compositesb.2022.110025
    [20] 薛维培, 刘晓媛, 姚直书, 等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9):2285-2293. doi: 10.13801/j.cnki.fhclxb.20200219.001

    XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2020,37(9):2285-2293(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200219.001
    [21] 陈克凡, 乔宏霞, 王鹏辉, 等. 基于NMR的再生混凝土干湿循环可靠性评估[J]. 华中科技大学学报(自然科学版), 2020, 48(7):88-92. doi: 10.13245/j.hust.200715

    CHEN Kefan, QIAO Hongxia, WANG Penghui, et al. Reliability evaluation of recycled concrete dry-wet cycle based on NMR[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2020,48(7):88-92(in Chinese). doi: 10.13245/j.hust.200715
    [22] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999.

    WU Zhongwei, LIAN Huizhen. High performance concrete[M]. Beijing: China Railway Press, 1999(in Chinese).
    [23] GUO Y Y, ZHANG Y X, SOE K, et al. Effect of fly ash on mechanical properties of magnesium oxychloride cement under water attack[J]. Structural Concrete,2020,21(3):1181-1199. doi: 10.1002/suco.201900329
    [24] ELLINA B, BARBARA L, CHRISTOPHE C, et al. Characterization of magnesium silicate hydrate (M-S-H)[J]. Cement and Concrete Research,2018,116:309-330.
    [25] LIU Z Z, BALONIS M, HUANG J, et al. The influence of composition and temperature on hydrated phase assemblages in magnesium oxychloride cements[J]. Journal of the American Ceramic Society,2017,100(7):3246-3261. doi: 10.1111/jace.14817
    [26] LI K, WANG Y S, YAO N N, et al. Recent progress of magnesium oxychloride cement: Manufacture, curing, structure and performance[J]. Construction and Building Materials,2020,255:119381. doi: 10.1016/j.conbuildmat.2020.119381
    [27] HUANG T J, YU C, YUAN Q A, et al. Effect of alcohol leachable chloride on strength of magnesium oxychloride cement[J]. Journal of the American Ceramic Society,2020,103(10):5927-5938. doi: 10.1111/jace.17287
    [28] HUANG T J, YUAN Q, DENG D H, et al. The role of phosphoric acid in improving the strength of magnesium oxychloride cement pastes with large molar ratios of H2O/MgCl2[J]. Cement and Concrete Composites,2019,97:379-386. doi: 10.1016/j.cemconcomp.2019.01.013
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  233
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2022-12-04
  • 录用日期:  2022-12-18
  • 网络出版日期:  2023-01-03
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回