留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维/环氧树脂拉扭多耦合效应层合板设计与试验验证

崔达 张鸣昊 李道奎

崔达, 张鸣昊, 李道奎. 碳纤维/环氧树脂拉扭多耦合效应层合板设计与试验验证[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 崔达, 张鸣昊, 李道奎. 碳纤维/环氧树脂拉扭多耦合效应层合板设计与试验验证[J]. 复合材料学报, 2024, 42(0): 1-13.
CUI Da, ZHANG Minghao, LI Daokui. Design and experimental verification of carbon fiber/epoxy resin multi-coupling laminates with extension-twisting coupling effect[J]. Acta Materiae Compositae Sinica.
Citation: CUI Da, ZHANG Minghao, LI Daokui. Design and experimental verification of carbon fiber/epoxy resin multi-coupling laminates with extension-twisting coupling effect[J]. Acta Materiae Compositae Sinica.

碳纤维/环氧树脂拉扭多耦合效应层合板设计与试验验证

基金项目: 国家自然科学基金 (12302197);国防科技大学青年自主创新科学基金项目(ZK2023-38)
详细信息
    通讯作者:

    李道奎,博士,教授,博士生导师,研究方向为航天结构分析与设计、复合材料结构力学 E-mail: lidaokui@nudt.edu.cn

  • 中图分类号: TB33; O341

Design and experimental verification of carbon fiber/epoxy resin multi-coupling laminates with extension-twisting coupling effect

Funds: National Natural Science Foundation of China(12302197); Youth Independent Innovation Science Fund project of National University of Defense Technology (ZK2023-38)
  • 摘要: 针对碳纤维/环氧树脂(Carbon fiber reinforced epoxy resin,CF/EP )拉扭多耦合效应层合板湿热稳定机制不明、耦合效应不强的问题,开展碳纤维/环氧树脂拉扭多耦合效应层合板设计与试验验证研究。引入复合材料层合板的几何因子,推导了拉扭多耦合效应层合板湿热稳定条件。基于湿热稳定条件,建立了拉扭多耦合效应层合板的非对称铺层优化设计模型,利用遗传算法-序列二次规划(Genetic algorithm-sequential quadratic program,GA-SQP)混合优化算法求解得到了拉扭耦合效应最大的层合板的铺层角度规律。基于三维数字图像相关方法(Three-dimension digital image correlation,3D-DIC)完成了层合板拉扭耦合效应的测量试验。数值仿真和试验结果表明,当拉扭多耦合效应层合板的铺层角度满足其湿热稳定条件时,层合板不会发生固化变形;多耦合效应的引入能够显著提升层合板的拉扭耦合效应,最大可达30%以上。

     

  • 图  1  层合板各层坐标图

    Figure  1.  Coordinates of each layer

    H—Total thickness of laminates; zi—Out-of-plane coordinates of laminates

    图  2  CF/EP拉扭耦合层合板降温自由收缩位移云图

    Figure  2.  Cooling free displacement cloud image of CF/EP extension-twisting coupled laminates

    图  3  CF/EP拉扭耦合层合板轴向拉伸时的位移云图

    Figure  3.  Displacement of four types of CF/EP extension-twisting coupled laminates under axial tension

    图  4  CF/EP层合板几何模型示意图

    Figure  4.  Geometric model of CF/EP carbon fiber/epoxy resin multi-coupled laminates

    图  5  多耦合效应层合板试验加载装置示意图

    Figure  5.  Loading device for multi-coupled laminates

    1—Test stand; 1a—The body of test stand; 1b—Connecting disc; 1c—The beam of the test stand; 2—Connecting device; 2a—Upper fixture; 2b—Lower fixture; 2c—Outer clamping block; 2d—Outer clamping block; 3—Test pieces; 4—Loading device; 4a—Connecting rod; 4b—Weight tray; 4c—Weights

    图  6  层合板耦合效应测量系统

    Figure  6.  Test system for coupling effect of laminates

    图  7  CF/EP拉扭耦合层合板试验件

    Figure  7.  Test pieces of CF/EP laminates

    图  8  CF/EP拉扭耦合层合板试验件扭转角变形试验结果

    Figure  8.  Test results of torsion deformation of CF/EP extension-twisting coupled laminates

    图  9  CF/EP层合板试验件有限元模型

    Figure  9.  Finite element model of CF/EP test pieces

    图  10  CF/EP层合板试验件在不同拉力下的扭转角变化率

    Figure  10.  Change rate of torsion angle of CF/EP extension-twisting coupled laminates under different tensile forces

    图  11  CF/EP层合板拉扭耦合效应的鲁棒性分析结果

    Figure  11.  Robustness analysis results of extension-twisting coupling effect of CF/EP laminates

    表  1  层合板耦合类型下标表示

    Table  1.   Subscripts representing the coupling types of laminates

    Subscripts Coupling
    effects
    Subscripts Coupling
    effects
    AS:$ \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}&0 \\ {{A_{21}}}&{{A_{22}}}&0 \\ 0&0&{{A_{66}}} \end{array}} \right] $ AF:$ \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}&{{A_{16}}} \\ {{A_{21}}}&{{A_{22}}}&{{A_{26}}} \\ {{A_{61}}}&{{A_{62}}}&{{A_{66}}} \end{array}} \right] $ E-S
    B0:$ \left[ {\begin{array}{*{20}{c}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right] $ Bl:$ \left[ {\begin{array}{*{20}{c}} {{B_{11}}}&0&0 \\ 0&{{B_{22}}}&0 \\ 0&0&0 \end{array}} \right] $ E-B
    Bt:$ \left[ {\begin{array}{*{20}{c}} 0&0&{{B_{16}}} \\ 0&0&{{B_{26}}} \\ {{B_{61}}}&{{B_{62}}}&0 \end{array}} \right] $ E-T
    S-B
    Blt:$ \left[ {\begin{array}{*{20}{c}} {{B_{11}}}&0&{{B_{16}}} \\ 0&{{B_{22}}}&{{B_{26}}} \\ {{B_{61}}}&{{B_{62}}}&0 \end{array}} \right] $ E-T
    S-B
    E-B
    BS:$ \left[ {\begin{array}{*{20}{c}} {{B_{11}}}&{{B_{12}}}&0 \\ {{B_{21}}}&{{B_{22}}}&0 \\ 0&0&{{B_{66}}} \end{array}} \right] $ E-B
    S-T
    BF:$ \left[ {\begin{array}{*{20}{c}} {{B_{11}}}&0&{{B_{16}}} \\ 0&{{B_{22}}}&{{B_{26}}} \\ {{B_{61}}}&{{B_{62}}}&0 \end{array}} \right] $ E-B
    E-T
    S-B
    S-T
    DS:$ \left[ {\begin{array}{*{20}{c}} {{D_{11}}}&{{D_{12}}}&0 \\ {{D_{21}}}&{{D_{22}}}&0 \\ 0&0&{{D_{66}}} \end{array}} \right] $ DF:$ \left[ {\begin{array}{*{20}{c}} {{D_{11}}}&{{D_{12}}}&{{D_{16}}} \\ {{D_{21}}}&{{D_{22}}}&{{D_{26}}} \\ {{D_{61}}}&{{D_{62}}}&{{D_{66}}} \end{array}} \right] $ B-T
    Notes: E-T—Extension-twisting coupling effect; S-B—Shear-bend coupling effect; E-B—Extension-bending coupling effect; S-T—Shear-twist coupling effect; E-S—Extension-shearing coupling effect; B-T—Bend-twist coupling effect.
    下载: 导出CSV

    表  2  拉扭耦合层合板的耦合类型

    Table  2.   Coupling types of extension-twisting coupled laminates

    Laminate typeCoupling type
    ASBtDSE-T
    ASBtDFE-T、B-T
    ASBltDSE-T、E-B
    AFBtDSE-T、E-S
    ASBltDFE-T、E-B、B-T
    ASBFDSE-T、E-B、S-T
    AFBtDFE-T、E-S、B-T
    AFBltDSE-T、E-B、E-S
    ASBFDFE-T、E-B、S-T、B-T
    AFBltDFE-T、E-B、E-S、B-T
    AFBFDSE-T、E-B、S-T、E-S
    AFBFDFE-T、E-B、S-T、E-S、B-T
    Notes: E-T—Extension-twisting coupling effect; S-B—Shear-bend coupling effect; E-B—Extension-bending coupling effect; S-T—Shear-twist coupling effect; E-S—Extension-shearing coupling effect; B-T—Bend-twist coupling effect.
    下载: 导出CSV

    表  3  拉扭多耦合效应层合板的耦合效应几何因子解析条件

    Table  3.   Conditions for geometric factors satisfying coupling effects of multi-coupled laminates with E-T

    TypeConditions
    ASBltDS$ {\xi _3} = {\xi _4} = {\xi _6} = {\xi _{11}} = {\xi _{12}} = 0,\left| {{\xi _5}} \right| + \left| {{\xi _6}} \right| \ne 0,\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0 $
    ASBtDF$ {\xi _3} = {\xi _4} = {\xi _5} = {\xi _6} = 0,\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0,\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $
    ASBFDS$ {\xi _3} = {\xi _4} = {\xi _{11}} = {\xi _{12}} = 0,{\xi _6} \ne 0,{\text{ }}\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0{\text{ }} $
    ASBltDF$ {\xi _3} = {\xi _4} = {\xi _6} = 0,{\text{ }}{\xi _5} \ne 0,\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0,{\text{ }}\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $
    ASBFDF$ {\xi _3} = {\xi _4} = 0,{\text{ }}{\xi _6} \ne 0,\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0,{\text{ }}\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $
    下载: 导出CSV

    表  4  拉扭多耦合效应层合板湿热稳定的几何因子解析条件

    Table  4.   Conditions for hygro-thermally stable multi-coupled laminates with extension-twisting coupling effect

    TypeConditions for geometric factors
    ASBtDS$ {\xi _1} = {\xi _3} = {\xi _4} = {\xi _5} = {\xi _6} = {\xi _7} = {\xi _{11}} = {\xi _{12}} = 0,{\xi _8} \ne 0 $
    ASBtDF$ {\xi _1} = {\xi _3} = {\xi _4} = {\xi _5} = {\xi _6} = {\xi _7} = 0,{\xi _8} \ne 0,\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $
    ASBFDS$ {\xi _1} = {\xi _3} = {\xi _4} = {\xi _5} = {\xi _7} = {\xi _{11}} = {\xi _{12}} = 0,{\xi _6} \ne 0,{\xi _8} \ne 0 $
    ASBFDF$ {\xi _1} = {\xi _3} = {\xi _4} = {\xi _5} = {\xi _7} = 0,{\xi _6} \ne 0,{\xi _8} \ne 0,\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $
    下载: 导出CSV

    表  5  IM7/8552型碳纤维/环氧树脂单层板材料属性

    Table  5.   Properties of carbon IM7/8552 single layer

    Parameter Value
    Young’s modulus/GPa E1 161.0
    E2 11.38
    Shear modulus/GPa G12 5.17
    Poisson’s ratio ν21 0.38
    Thickness of single layer/mm t 0.1397
    Thermal expansivity/10−6−1 α1 −0.0181
    α2 24.3
    下载: 导出CSV

    表  6  湿热稳定的CF/EP拉扭耦合层合板

    Table  6.   Hygro-thermally stable CF/EP laminates with extension-twisting coupling effect

    Type Optimization results/(°) |b16|/ N−1
    ASBtDS [69.8/−6.7/−17.1/79.4/−30.4/
    76.9/−53.0/37.3/13.8/81.5/
    −63.2/8.5/16.9/−72.2]T
    1.69×10−5
    ASBtDF [12.9/−64.1/−63.5/−58.9/
    29.5/−3.3/40.3/55.6/51.3/
    −43.0/84.7/70.3/−19.7/
    −26.2]T
    2.25×10−5
    ASBFDS [−8.5/73.8/−24.6/64.8/64.1/
    −38.3/−48.6/29.5/−88.0/0.8/
    24.9/−75.1/−72.7/12.0]T
    2.17×10−5
    ASBFDF [−11.3/83.4/−16.7/65.7/−23.5/
    70.9/86.9/−57.8/33.8/7.2/
    28.8/−70.8/5.9/−66.3]T
    2.07×10−5
    Note: |b16|—Absolute value of extension-twisting coupling flexibility coefficient.
    下载: 导出CSV

    表  7  CF/EP层合板扭曲率变形解析解与数值解

    Table  7.   Analytical and numerical solutions of the distortion rate of CF/EP laminates

    Type Analytical ${\kappa _{xy}}$ Numerical ${\kappa _{xy}}$ Promotion
    ASBtDS 0.68×10−2 0.68×10−2 -
    ASBtDF 0.90×10−2 0.90×10−2 32.35%
    ASBFDS 0.87×10−2 0.87×10−2 27.94%
    ASBFDF 0.83×10−2 0.83×10−2 22.06%
    Note: ${\kappa _{xy}}$—The torsional curvature of laminates.
    下载: 导出CSV

    表  8  CF/EP试验件的材料属性

    Table  8.   Properties of CF/EP test pieces

    Young’s modulus/GPa E1 135.0
    E2 9.0
    Shear modulus/GPa G12 3.9
    Poisson’s ratio ν21 0.3
    Thickness of single layer/mm t 0.155
    下载: 导出CSV
  • [1] 张立, 缪维跑, 李春, 等. 基于气动弹性剪裁的大型风力机弯扭耦合叶片力学性能分析[J]. 动力工程学报, 2021, 41(8): 674-683.

    ZHANG Li, MIAO Weipao, LI Chun, et al. Mechanical performance analysis of large wind turbine bend-twist coupling blade based on aeroelastic tailoring[J]. Journal of Chinese Society of Power Engineering, 2021, 41(8): 674-683(in Chinese).
    [2] 张立, 缪维跑, 李春, 等. 基于弯扭耦合的大型风力机复合材料叶片结构特性研究[J]. 机械强度, 2021, 43(6): 1382-1392.

    ZHANG Li, MIAO Weipao, LI Chun, et al. Study of the structural characteristics of large wind turbine composite blade based on bend-twist coupling[J]. Journal of Mechanical Strength, 2021, 43(6): 1382-1392(in Chinese).
    [3] 王海生, 缪维跑, 李春, 等. 大型风力机叶片腹板偏置对弯扭耦合特性研究[J]. 机械强度, 2023, 45(4): 887-893.

    WANG Haisheng, MIAO Weipao, LI Chun, et al. Study on bend-twist coupling characteristics of web offset for large wind turbine blades[J]. Journal of Mechanical Strength, 2023, 45(4): 887-893(in Chinese).
    [4] 李谨. 基于非对称复合材料的弯曲-扭转耦合结构设计方法研究 [D]. 长沙: 国防科技大学, 2016.

    LI Jin. Investigation on Design Method for Bending-twisting Coupled Structure with Asymmetric Composite Laminates[D]. Changsha: National University of Defense Technology, 2016(in Chinese).
    [5] 沈观林, 胡更开, 刘彬. 复合材料力学, 北京: 清华大学出版社, 2013: 89-110.

    SHEN Guanlin, HU Gengkai, LIU Bin. Mechanics of composite materials, Beijing: Tsinghua University Press, 2013: 89-110(in Chinese).
    [6] CHEN H P. Study of hygrothermal isotropic layup and hygrothermal curvature-stable coupling composite laminates [C]. America: American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/American Society of Civil Engineers/American Helicopter Society Structures, Structural Dynamics, and Materials Conference, 2003.
    [7] CROSS R J, HAYNES R A, ARMANIOS E A. Families of hygro-thermally stable asymmetric laminated composites[J]. Journal of Composite Materials, 2008, 42(7): 697-716. doi: 10.1177/0021998308088597
    [8] HAYNES R A, ARMANIOS E A. New families of hygro-thermally stable composite laminates with optimal extension-twist coupling[J]. AIAA Journal, 2010, 48(12): 2954-2961. doi: 10.2514/1.J050596
    [9] HAYNES R A, ARMANIOS E A. The challenge of achieving hygrothermal stability in composite laminates with optimal couplings[J]. International Journal of Engineering Science, 2012, 59: 74-82. doi: 10.1016/j.ijengsci.2012.03.013
    [10] YORK C B. Coupled quasi-homogeneous orthotropic laminates[J]. Mechanics of Composite Materials, 2011, 47(4): 405-426. doi: 10.1007/s11029-011-9219-5
    [11] YORK C B. Tapered hygro-thermally curvature-stable laminates with non-standard ply orientations[J]. Composites Part A: Applied Science and Manufacturing, 2013, 44: 140-148. doi: 10.1016/j.compositesa.2012.08.023
    [12] LI J, LI D K. Multi-objective optimization of hygro-thermally curvature-stable antisymmetric laminates with extension-twist coupling[J]. Journal of Mechanical Science and Technology, 2014, 28(4): 1373-1380. doi: 10.1007/s12206-013-1171-y
    [13] APTE A P, HAYNES R A. Design of optimal hygrothermally stable laminates with extension-twist coupling by ant colony optimization [C]. Lisbon: 2nd International Conference on Engineering Optimization, 2010.
    [14] LUO C, GUEST J K. Optimizing topology and fiber orientations with minimum length scale control in laminated composites[J]. Journal of Mechanical Design, 2021, 143(2): 021704. doi: 10.1115/1.4047899
    [15] MORADI S, VOSOUGHI A R, ANJABIN N. Maximum buckling load of stiffened laminated composite panel by an improved hybrid PSO-GA optimization technique[J]. Thin-Walled Structures, 2021, 160: 107382. doi: 10.1016/j.tws.2020.107382
    [16] 洪厚全, 李玉亮, 徐超. 复合材料层合板屈曲优化设计的模拟退火算法应用[J]. 强度与环境, 2012, (6): 8-13. doi: 10.3969/j.issn.1006-3919.2012.06.003

    HONG Houquan, LI Yuliang, XU Chao. Optimization of composite laminates for buckling by simulated annealing algorithm[J]. Structure & Environment Engineering, 2012, (6): 8-13(in Chinese). doi: 10.3969/j.issn.1006-3919.2012.06.003
    [17] 修英姝, 崔德刚. 非对称非均衡复合材料铺层优化设计[J]. 航空学报, 2004, 25(2): 137-139. doi: 10.3321/j.issn:1000-6893.2004.02.010

    XIU Yingshu, CUI Degang. Optimum Design of Unsymmetrical and Unbalanced Composite Laminate[J]. Acta Aeronautica Et Astronautica Sinica, 2004, 25(2): 137-139(in Chinese). doi: 10.3321/j.issn:1000-6893.2004.02.010
    [18] 修英姝, 崔德刚. 复合材料层合板稳定性的铺层优化设计[J]. 工程力学, 2005, 22(6): 212-216. doi: 10.3969/j.issn.1000-4750.2005.06.037

    XIU Yingshu, CUI Degang. Ply Optimization Design for Stability of Composite Laminates[J]. Engineering Mechanics, 2005, 22(6): 212-216(in Chinese). doi: 10.3969/j.issn.1000-4750.2005.06.037
    [19] 修英姝, 崔德刚. 复合材料蜂窝夹层结构的优化设计[J]. 北京航空航天大学学报, 2004, 30(9): 855-858. doi: 10.3969/j.issn.1001-5965.2004.09.012

    XIU Yingshu, CUI Degang. Optimal design of composite sandwich structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(9): 855-858(in Chinese). doi: 10.3969/j.issn.1001-5965.2004.09.012
    [20] 修英姝. 基于遗传算法的复合材料飞机结构优化设计[D]. 北京: 北京航空航天大学, 2004.

    XIU Yingshu. Optimum Design of Composite Aircraft Structure Based on Genetic Algorithm [D]. Beijing: Beihang University, 2004(in Chinese).
    [21] SHAMSUDIN M H, CHEN J, YORK C B. Bounds on the compression buckling strength of hygro-thermally curvature-stable laminate with extension-twisting coupling[J]. International Journal of Structural Integrity, 2013, 4(4): 477-486. doi: 10.1108/IJSI-09-2012-0025
    [22] SHAMSUDIN M H, ROUSSEAU J, VERCHERY G, et al. Experimental validation of the mechanical coupling response for hygro-thermally curvature-stable laminated composite materials [C]. Frankfurt/Main: 6th International Conference “Supply on the wings” in conjunction with AIRTEC 2011 International Aerospace Supply Fair, 2011.
    [23] SHAMSUDIN M H, ROUSSEAU J, YORK C B. Warping curvature predictions for non-symmetric woven cloth laminates [C]. Cambridge: Designing Against Deformation & Fracture of Composite Materials: Engineering For Integrity Large Composite Structures, 2013.
    [24] SHAMSUDIN M H, CHEN J, YORK C B. Buckling response of hygro-thermally curvature-stable laminates with extension-twisting coupling [C]. Porto: 1st International Conference of the International Journal of Structural Integrity, 2012.
    [25] LI J, LI D K. Extension-shear coupled laminates with immunity to hygro-thermal shearing distortion[J]. Composite Structures, 2015, 123: 401-407. doi: 10.1016/j.compstruct.2014.12.032
    [26] 崔达. 复合材料弯扭耦合结构优化设计[D]. 长沙: 国防科技大学, 2018.

    CUI Da. Optimization Design of Bending-twisting Coupled Composite Structure [D]. Changsha: National University of Defense Technology, 2018(in Chinese).
  • 加载中
计量
  • 文章访问数:  42
  • HTML全文浏览量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-16
  • 修回日期:  2024-06-22
  • 录用日期:  2024-07-04
  • 网络出版日期:  2024-07-19

目录

    /

    返回文章
    返回