Design and experimental verification of carbon fiber/epoxy resin multi-coupling laminates with extension-twisting coupling effect
-
摘要: 针对碳纤维/环氧树脂(Carbon fiber reinforced epoxy resin,CF/EP )拉扭多耦合效应层合板湿热稳定机制不明、耦合效应不强的问题,开展碳纤维/环氧树脂拉扭多耦合效应层合板设计与试验验证研究。引入复合材料层合板的几何因子,推导了拉扭多耦合效应层合板湿热稳定条件。基于湿热稳定条件,建立了拉扭多耦合效应层合板的非对称铺层优化设计模型,利用遗传算法-序列二次规划(Genetic algorithm-sequential quadratic program,GA-SQP)混合优化算法求解得到了拉扭耦合效应最大的层合板的铺层角度规律。基于三维数字图像相关方法(Three-dimension digital image correlation,3D-DIC)完成了层合板拉扭耦合效应的测量试验。数值仿真和试验结果表明,当拉扭多耦合效应层合板的铺层角度满足其湿热稳定条件时,层合板不会发生固化变形;多耦合效应的引入能够显著提升层合板的拉扭耦合效应,最大可达30%以上。Abstract: In order to reveal the mechanism of hygro-thermal stability and solve the problem of insufficient coupling effect, the design and experimental verification of carbon fiber/epoxy resin (CF/EP) multi-coupled laminates with extension-twisting coupling effect were carried out. The geometric factors of the laminates were introduced, and the conditions for hygro-thermal stability of the multi-coupled laminates with extension-twisting coupling effect were deduced. Based on these conditions, the optimal design model of multi-coupled laminates with extension-twisting coupling effect was established. Genetic algorithm-sequential quadratic program (GA-SQP) hybrid optimization algorithm was used to optimize the stacking sequence of the laminates with the maximum extension-twisting coupling effect. Based on three-dimension digital image correlation (3D-DIC), the extension-twisting coupling effect of the laminates was measured. The numerical simulation and experimental results show that the multi-coupled laminates with extension-twisting effect will not undergo curing deformation when the stacking sequences meet the conditions of hygro-thermal stability. The introduction of multi-coupling effects can significantly improve the extension-twisting coupling effect of laminates and maximum increase is over 30%.
-
图 5 多耦合效应层合板试验加载装置示意图
Figure 5. Loading device for multi-coupled laminates
1—Test stand; 1a—The body of test stand; 1b—Connecting disc; 1c—The beam of the test stand; 2—Connecting device; 2a—Upper fixture; 2b—Lower fixture; 2c—Outer clamping block; 2d—Outer clamping block; 3—Test pieces; 4—Loading device; 4a—Connecting rod; 4b—Weight tray; 4c—Weights
表 1 层合板耦合类型下标表示
Table 1. Subscripts representing the coupling types of laminates
Subscripts Coupling
effectsSubscripts Coupling
effectsAS:$ \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}&0 \\ {{A_{21}}}&{{A_{22}}}&0 \\ 0&0&{{A_{66}}} \end{array}} \right] $ — AF:$ \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}&{{A_{16}}} \\ {{A_{21}}}&{{A_{22}}}&{{A_{26}}} \\ {{A_{61}}}&{{A_{62}}}&{{A_{66}}} \end{array}} \right] $ E-S B0:$ \left[ {\begin{array}{*{20}{c}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right] $ — Bl:$ \left[ {\begin{array}{*{20}{c}} {{B_{11}}}&0&0 \\ 0&{{B_{22}}}&0 \\ 0&0&0 \end{array}} \right] $ E-B Bt:$ \left[ {\begin{array}{*{20}{c}} 0&0&{{B_{16}}} \\ 0&0&{{B_{26}}} \\ {{B_{61}}}&{{B_{62}}}&0 \end{array}} \right] $ E-T
S-BBlt:$ \left[ {\begin{array}{*{20}{c}} {{B_{11}}}&0&{{B_{16}}} \\ 0&{{B_{22}}}&{{B_{26}}} \\ {{B_{61}}}&{{B_{62}}}&0 \end{array}} \right] $ E-T
S-B
E-BBS:$ \left[ {\begin{array}{*{20}{c}} {{B_{11}}}&{{B_{12}}}&0 \\ {{B_{21}}}&{{B_{22}}}&0 \\ 0&0&{{B_{66}}} \end{array}} \right] $ E-B
S-TBF:$ \left[ {\begin{array}{*{20}{c}} {{B_{11}}}&0&{{B_{16}}} \\ 0&{{B_{22}}}&{{B_{26}}} \\ {{B_{61}}}&{{B_{62}}}&0 \end{array}} \right] $ E-B
E-T
S-B
S-TDS:$ \left[ {\begin{array}{*{20}{c}} {{D_{11}}}&{{D_{12}}}&0 \\ {{D_{21}}}&{{D_{22}}}&0 \\ 0&0&{{D_{66}}} \end{array}} \right] $ — DF:$ \left[ {\begin{array}{*{20}{c}} {{D_{11}}}&{{D_{12}}}&{{D_{16}}} \\ {{D_{21}}}&{{D_{22}}}&{{D_{26}}} \\ {{D_{61}}}&{{D_{62}}}&{{D_{66}}} \end{array}} \right] $ B-T Notes: E-T—Extension-twisting coupling effect; S-B—Shear-bend coupling effect; E-B—Extension-bending coupling effect; S-T—Shear-twist coupling effect; E-S—Extension-shearing coupling effect; B-T—Bend-twist coupling effect. 表 2 拉扭耦合层合板的耦合类型
Table 2. Coupling types of extension-twisting coupled laminates
Laminate type Coupling type ASBtDS E-T ASBtDF E-T、B-T ASBltDS E-T、E-B AFBtDS E-T、E-S ASBltDF E-T、E-B、B-T ASBFDS E-T、E-B、S-T AFBtDF E-T、E-S、B-T AFBltDS E-T、E-B、E-S ASBFDF E-T、E-B、S-T、B-T AFBltDF E-T、E-B、E-S、B-T AFBFDS E-T、E-B、S-T、E-S AFBFDF E-T、E-B、S-T、E-S、B-T Notes: E-T—Extension-twisting coupling effect; S-B—Shear-bend coupling effect; E-B—Extension-bending coupling effect; S-T—Shear-twist coupling effect; E-S—Extension-shearing coupling effect; B-T—Bend-twist coupling effect. 表 3 拉扭多耦合效应层合板的耦合效应几何因子解析条件
Table 3. Conditions for geometric factors satisfying coupling effects of multi-coupled laminates with E-T
Type Conditions ASBltDS $ {\xi _3} = {\xi _4} = {\xi _6} = {\xi _{11}} = {\xi _{12}} = 0,\left| {{\xi _5}} \right| + \left| {{\xi _6}} \right| \ne 0,\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0 $ ASBtDF $ {\xi _3} = {\xi _4} = {\xi _5} = {\xi _6} = 0,\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0,\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $ ASBFDS $ {\xi _3} = {\xi _4} = {\xi _{11}} = {\xi _{12}} = 0,{\xi _6} \ne 0,{\text{ }}\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0{\text{ }} $ ASBltDF $ {\xi _3} = {\xi _4} = {\xi _6} = 0,{\text{ }}{\xi _5} \ne 0,\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0,{\text{ }}\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $ ASBFDF $ {\xi _3} = {\xi _4} = 0,{\text{ }}{\xi _6} \ne 0,\left| {{\xi _7}} \right| + \left| {{\xi _8}} \right| \ne 0,{\text{ }}\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $ 表 4 拉扭多耦合效应层合板湿热稳定的几何因子解析条件
Table 4. Conditions for hygro-thermally stable multi-coupled laminates with extension-twisting coupling effect
Type Conditions for geometric factors ASBtDS $ {\xi _1} = {\xi _3} = {\xi _4} = {\xi _5} = {\xi _6} = {\xi _7} = {\xi _{11}} = {\xi _{12}} = 0,{\xi _8} \ne 0 $ ASBtDF $ {\xi _1} = {\xi _3} = {\xi _4} = {\xi _5} = {\xi _6} = {\xi _7} = 0,{\xi _8} \ne 0,\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $ ASBFDS $ {\xi _1} = {\xi _3} = {\xi _4} = {\xi _5} = {\xi _7} = {\xi _{11}} = {\xi _{12}} = 0,{\xi _6} \ne 0,{\xi _8} \ne 0 $ ASBFDF $ {\xi _1} = {\xi _3} = {\xi _4} = {\xi _5} = {\xi _7} = 0,{\xi _6} \ne 0,{\xi _8} \ne 0,\left| {{\xi _{11}}} \right| + \left| {{\xi _{12}}} \right| \ne 0 $ 表 5 IM7/8552型碳纤维/环氧树脂单层板材料属性
Table 5. Properties of carbon IM7/8552 single layer
Parameter Value Young’s modulus/GPa E1 161.0 E2 11.38 Shear modulus/GPa G12 5.17 Poisson’s ratio ν21 0.38 Thickness of single layer/mm t 0.1397 Thermal expansivity/10−6℃−1 α1 −0.0181 α2 24.3 表 6 湿热稳定的CF/EP拉扭耦合层合板
Table 6. Hygro-thermally stable CF/EP laminates with extension-twisting coupling effect
Type Optimization results/(°) |b16|/ N−1 ASBtDS [69.8/−6.7/−17.1/79.4/−30.4/
76.9/−53.0/37.3/13.8/81.5/
−63.2/8.5/16.9/−72.2]T1.69×10−5 ASBtDF [12.9/−64.1/−63.5/−58.9/
29.5/−3.3/40.3/55.6/51.3/
−43.0/84.7/70.3/−19.7/
−26.2]T2.25×10−5 ASBFDS [−8.5/73.8/−24.6/64.8/64.1/
−38.3/−48.6/29.5/−88.0/0.8/
24.9/−75.1/−72.7/12.0]T2.17×10−5 ASBFDF [−11.3/83.4/−16.7/65.7/−23.5/
70.9/86.9/−57.8/33.8/7.2/
28.8/−70.8/5.9/−66.3]T2.07×10−5 Note: |b16|—Absolute value of extension-twisting coupling flexibility coefficient. 表 7 CF/EP层合板扭曲率变形解析解与数值解
Table 7. Analytical and numerical solutions of the distortion rate of CF/EP laminates
Type Analytical ${\kappa _{xy}}$ Numerical ${\kappa _{xy}}$ Promotion ASBtDS 0.68×10−2 0.68×10−2 - ASBtDF 0.90×10−2 0.90×10−2 32.35% ASBFDS 0.87×10−2 0.87×10−2 27.94% ASBFDF 0.83×10−2 0.83×10−2 22.06% Note: ${\kappa _{xy}}$—The torsional curvature of laminates. 表 8 CF/EP试验件的材料属性
Table 8. Properties of CF/EP test pieces
Young’s modulus/GPa E1 135.0 E2 9.0 Shear modulus/GPa G12 3.9 Poisson’s ratio ν21 0.3 Thickness of single layer/mm t 0.155 -
[1] 张立, 缪维跑, 李春, 等. 基于气动弹性剪裁的大型风力机弯扭耦合叶片力学性能分析[J]. 动力工程学报, 2021, 41(8): 674-683.ZHANG Li, MIAO Weipao, LI Chun, et al. Mechanical performance analysis of large wind turbine bend-twist coupling blade based on aeroelastic tailoring[J]. Journal of Chinese Society of Power Engineering, 2021, 41(8): 674-683(in Chinese). [2] 张立, 缪维跑, 李春, 等. 基于弯扭耦合的大型风力机复合材料叶片结构特性研究[J]. 机械强度, 2021, 43(6): 1382-1392.ZHANG Li, MIAO Weipao, LI Chun, et al. Study of the structural characteristics of large wind turbine composite blade based on bend-twist coupling[J]. Journal of Mechanical Strength, 2021, 43(6): 1382-1392(in Chinese). [3] 王海生, 缪维跑, 李春, 等. 大型风力机叶片腹板偏置对弯扭耦合特性研究[J]. 机械强度, 2023, 45(4): 887-893.WANG Haisheng, MIAO Weipao, LI Chun, et al. Study on bend-twist coupling characteristics of web offset for large wind turbine blades[J]. Journal of Mechanical Strength, 2023, 45(4): 887-893(in Chinese). [4] 李谨. 基于非对称复合材料的弯曲-扭转耦合结构设计方法研究 [D]. 长沙: 国防科技大学, 2016.LI Jin. Investigation on Design Method for Bending-twisting Coupled Structure with Asymmetric Composite Laminates[D]. Changsha: National University of Defense Technology, 2016(in Chinese). [5] 沈观林, 胡更开, 刘彬. 复合材料力学, 北京: 清华大学出版社, 2013: 89-110.SHEN Guanlin, HU Gengkai, LIU Bin. Mechanics of composite materials, Beijing: Tsinghua University Press, 2013: 89-110(in Chinese). [6] CHEN H P. Study of hygrothermal isotropic layup and hygrothermal curvature-stable coupling composite laminates [C]. America: American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/American Society of Civil Engineers/American Helicopter Society Structures, Structural Dynamics, and Materials Conference, 2003. [7] CROSS R J, HAYNES R A, ARMANIOS E A. Families of hygro-thermally stable asymmetric laminated composites[J]. Journal of Composite Materials, 2008, 42(7): 697-716. doi: 10.1177/0021998308088597 [8] HAYNES R A, ARMANIOS E A. New families of hygro-thermally stable composite laminates with optimal extension-twist coupling[J]. AIAA Journal, 2010, 48(12): 2954-2961. doi: 10.2514/1.J050596 [9] HAYNES R A, ARMANIOS E A. The challenge of achieving hygrothermal stability in composite laminates with optimal couplings[J]. International Journal of Engineering Science, 2012, 59: 74-82. doi: 10.1016/j.ijengsci.2012.03.013 [10] YORK C B. Coupled quasi-homogeneous orthotropic laminates[J]. Mechanics of Composite Materials, 2011, 47(4): 405-426. doi: 10.1007/s11029-011-9219-5 [11] YORK C B. Tapered hygro-thermally curvature-stable laminates with non-standard ply orientations[J]. Composites Part A: Applied Science and Manufacturing, 2013, 44: 140-148. doi: 10.1016/j.compositesa.2012.08.023 [12] LI J, LI D K. Multi-objective optimization of hygro-thermally curvature-stable antisymmetric laminates with extension-twist coupling[J]. Journal of Mechanical Science and Technology, 2014, 28(4): 1373-1380. doi: 10.1007/s12206-013-1171-y [13] APTE A P, HAYNES R A. Design of optimal hygrothermally stable laminates with extension-twist coupling by ant colony optimization [C]. Lisbon: 2nd International Conference on Engineering Optimization, 2010. [14] LUO C, GUEST J K. Optimizing topology and fiber orientations with minimum length scale control in laminated composites[J]. Journal of Mechanical Design, 2021, 143(2): 021704. doi: 10.1115/1.4047899 [15] MORADI S, VOSOUGHI A R, ANJABIN N. Maximum buckling load of stiffened laminated composite panel by an improved hybrid PSO-GA optimization technique[J]. Thin-Walled Structures, 2021, 160: 107382. doi: 10.1016/j.tws.2020.107382 [16] 洪厚全, 李玉亮, 徐超. 复合材料层合板屈曲优化设计的模拟退火算法应用[J]. 强度与环境, 2012, (6): 8-13. doi: 10.3969/j.issn.1006-3919.2012.06.003HONG Houquan, LI Yuliang, XU Chao. Optimization of composite laminates for buckling by simulated annealing algorithm[J]. Structure & Environment Engineering, 2012, (6): 8-13(in Chinese). doi: 10.3969/j.issn.1006-3919.2012.06.003 [17] 修英姝, 崔德刚. 非对称非均衡复合材料铺层优化设计[J]. 航空学报, 2004, 25(2): 137-139. doi: 10.3321/j.issn:1000-6893.2004.02.010XIU Yingshu, CUI Degang. Optimum Design of Unsymmetrical and Unbalanced Composite Laminate[J]. Acta Aeronautica Et Astronautica Sinica, 2004, 25(2): 137-139(in Chinese). doi: 10.3321/j.issn:1000-6893.2004.02.010 [18] 修英姝, 崔德刚. 复合材料层合板稳定性的铺层优化设计[J]. 工程力学, 2005, 22(6): 212-216. doi: 10.3969/j.issn.1000-4750.2005.06.037XIU Yingshu, CUI Degang. Ply Optimization Design for Stability of Composite Laminates[J]. Engineering Mechanics, 2005, 22(6): 212-216(in Chinese). doi: 10.3969/j.issn.1000-4750.2005.06.037 [19] 修英姝, 崔德刚. 复合材料蜂窝夹层结构的优化设计[J]. 北京航空航天大学学报, 2004, 30(9): 855-858. doi: 10.3969/j.issn.1001-5965.2004.09.012XIU Yingshu, CUI Degang. Optimal design of composite sandwich structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(9): 855-858(in Chinese). doi: 10.3969/j.issn.1001-5965.2004.09.012 [20] 修英姝. 基于遗传算法的复合材料飞机结构优化设计[D]. 北京: 北京航空航天大学, 2004.XIU Yingshu. Optimum Design of Composite Aircraft Structure Based on Genetic Algorithm [D]. Beijing: Beihang University, 2004(in Chinese). [21] SHAMSUDIN M H, CHEN J, YORK C B. Bounds on the compression buckling strength of hygro-thermally curvature-stable laminate with extension-twisting coupling[J]. International Journal of Structural Integrity, 2013, 4(4): 477-486. doi: 10.1108/IJSI-09-2012-0025 [22] SHAMSUDIN M H, ROUSSEAU J, VERCHERY G, et al. Experimental validation of the mechanical coupling response for hygro-thermally curvature-stable laminated composite materials [C]. Frankfurt/Main: 6th International Conference “Supply on the wings” in conjunction with AIRTEC 2011 International Aerospace Supply Fair, 2011. [23] SHAMSUDIN M H, ROUSSEAU J, YORK C B. Warping curvature predictions for non-symmetric woven cloth laminates [C]. Cambridge: Designing Against Deformation & Fracture of Composite Materials: Engineering For Integrity Large Composite Structures, 2013. [24] SHAMSUDIN M H, CHEN J, YORK C B. Buckling response of hygro-thermally curvature-stable laminates with extension-twisting coupling [C]. Porto: 1st International Conference of the International Journal of Structural Integrity, 2012. [25] LI J, LI D K. Extension-shear coupled laminates with immunity to hygro-thermal shearing distortion[J]. Composite Structures, 2015, 123: 401-407. doi: 10.1016/j.compstruct.2014.12.032 [26] 崔达. 复合材料弯扭耦合结构优化设计[D]. 长沙: 国防科技大学, 2018.CUI Da. Optimization Design of Bending-twisting Coupled Composite Structure [D]. Changsha: National University of Defense Technology, 2018(in Chinese).
计量
- 文章访问数: 42
- HTML全文浏览量: 29
- 被引次数: 0