Shear performance of concrete-grouting material-concrete connection joint under low cyclic loading
-
摘要: 聚丙烯(Polypropylene,PP)纤维灌浆料是一种高性能水泥基复合材料,具有高强、阻裂和增韧的特点,在预制构件进行钢筋套筒灌浆连接时,可以充分填补构件单元间的接缝及套筒内的空腔,提高界面的连接性能。在构件连接部位形成的混凝土-灌浆料-混凝土(CGC)连接节点的双界面的抗剪性能是保证结构整体安全性的关键。考虑键槽高度、界面配筋率、轴向压力和灌浆料饱满度,研究了低周往复荷载下CGC连接节点的破坏模式、抗剪承载力、刚度、耗能和延性的变化规律。结果表明:CGC连接节点破坏形态以界面水平贯穿裂缝为主,轴向压力的增加使键槽发展出斜向裂缝的同时,节点呈现“X”型剪切斜裂缝;增大键槽高度和轴向压力,能提高CGC连接节点的抗剪承载力、刚度和耗能,但降低了节点的延性;其中,键槽高度由6 mm提升至12 mm和18 mm,节点抗剪承载力提升11%和43%,刚度提升11%和14%,但延性降低10%和21%;界面配筋率的增大改善了节点的抗震性能,而套筒内灌浆料的缺失使节点抗剪承载力和刚度均有下降。根据CGC连接节点的破坏模式,解析了节点双界面剪应力的组成,基于叠加原理建立了CGC连接节点双界面的抗剪承载力计算公式,计算结果与试验值吻合较好。
-
关键词:
- 低周往复荷载 /
- 聚丙烯(PP)纤维灌浆料 /
- 节点 /
- 滞回性能 /
- 抗剪承载力
Abstract: Polypropylene (PP) fiber grouting material is a high-performance cementitious composite material with high strength, crack-resistant and toughened characteristics, which can fully fill the gap between the component units and the cavity in the sleeve when prefabricated components are connected by grouted sleeve, and improve the interfacial connection performance. The shear performance of the double interface of concrete-grouting material-concrete (CGC) connection joint formed at the connection parts of components is the key to ensure the safety of the integral structure. Taking the keyway height, interfacial reinforcement ratio, axial compression ratio and grouting material fullness into consideration, the failure pattern, shear capacity, stiffness, energy dissipation and ductility of CGC connection joint under low cyclic loading were investigated. The results show that the failure pattern of CGC connection joint is dominated by horizontal penetration cracks at the interface, and the increase of axial pressure makes the keyway develop diagonal cracks while the joint shows “X”-type shear diagonal cracks; increasing the height of keyway and the axial pressure can improve the shear capacity, stiffness, and energy dissipation of the CGC connection joint, but reduces the ductility of the joint; among them, the increase of keyway height from 6 mm to 12 mm and 18 mm makes the shear capacity improve by 11% and 43%, makes the stiffness improve by 11% and 14%, but makes the ductility decrease by 10% and 21%; the increase of interfacial reinforcement ratio improves the seismic performance of the joint, while the lack of grouting material in the sleeve decreases the shear capacity and stiffness of the joint. According to the failure pattern of the CGC connection joint, the composition of the shear stress at double interface of the joint was analyzed, and the shear capacity calculation formula for the double interface of the CGC connection joint was established based on the superposition principle. tThe calculated values match well with the experimental values. -
图 14 CGC连接节点受剪钢筋销栓作用
Figure 14. Dowel action of shear reinforcement of CGC connection joints
Vb—Dowel stress of reinforcement; q—Uniform compressive stress of concrete; Mp—Bending moment of reinforcement section at plastic hinge; s—Thickness of grouting layer; l—Length of the plastic hinge from the separation interface
表 1 试件设计参数
Table 1. Design parameters of specimens
Specimen t/mm ρv Axial pressure/kN Grouting material fullness/% CGC-J1 6 0.22% 0 100 CGC-J2 12 0.22% 0 100 CGC-J3 18 0.22% 0 100 CGC-J4 12 0.48% 0 100 CGC-J5 12 0.22% 220 100 CGC-J6 12 0.22% 220 30 Notes: C—Concrete; G—Grouting material; J—Connection joint; t—Keyway height; ρv—Interfacial reinforcement ratio. 表 2 混凝土和灌浆料力学性能实测值
Table 2. Tested mechanical properties of concrete and grouting material MPa
Material categories fcu fc ft Concrete 42.5 32.3 — Grouting material 87.9 80.0 5.27 Notes: fcu—Cube compressive strength; fc—Axial compressive strength; ft—Axial tensile strength. 表 3 钢筋力学性能实测值
Table 3. Tested mechanical properties of steel bars MPa
Material categories fy fu 8 455.8 604.6 12 457.1 600.7 Notes: fy—Yield strength; fu—Ultimate strength. 表 4 CGC连接节点骨架曲线特征点参数
Table 4. Parameters of characteristic points of skeleton curves of CGC connection joints
Specimen Direction Vy/kN Δy/mm Vp/kN Δp/mm Vu/kN Δu/mm μ=Δu/Δy CGC-J1 + 152.54 4.41 156.06 4.52 132.65 6.45 1.46 − 144.92 4.30 151.54 4.53 128.81 6.67 1.55 Average 148.73 4.36 153.80 4.52 130.73 6.56 1.51 CGC-J2 + 179.60 4.08 194.36 4.52 165.21 4.99 1.22 − 140.34 3.47 145.91 4.52 124.02 5.16 1.49 Average 159.95 3.77 170.14 4.52 144.62 5.04 1.35 CGC-J3 + 201.03 5.58 210.53 6.02 178.95 6.48 1.16 − 221.57 5.06 229.06 5.32 194.70 6.12 1.21 Average 211.35 5.32 219.80 5.67 186.83 6.32 1.19 CGC-J4 + 259.68 6.36 268.13 7.50 227.91 9.14 1.44 − 244.13 5.87 247.28 6.03 210.19 8.34 1.42 Average 251.87 6.11 257.71 6.76 219.05 8.74 1.43 CGC-J5 + 596.34 17.75 643.36 21.02 546.86 21.50 1.21 − 892.06 18.55 952.45 19.51 809.58 20.00 1.08 Average 744.17 18.15 797.91 20.26 678.22 20.75 1.14 CGC-J6 + 588.20 13.41 629.67 14.99 — — — − 440.74 10.24 501.43 15.00 — — — Average 514.43 11.83 565.55 14.99 — — — Notes: Vy—Yield load, Δy—Yield displacement; Vp—Peak load, Δp—Peak displacement; Vu—Ultimate load, Δu—Ultimate displacement; μ—Ductility coefficient. 表 5 CGC连接节点双界面抗剪承载力计算值与试验值对比
Table 5. Comparison between test and calculated values of shear capacity of the double interface of CGC connection joints
Specimen Vc/kN Vk/kN Vs/kN Vb/kN VN/kN V c p/kN V p/kN V c p/V p CGC-J1 39.35 53.24 48.11 17.55 0 158.26 153.80 1.03 CGC-J2 61.75 53.24 48.11 17.55 0 180.66 170.14 1.06 CGC-J3 80.37 53.24 68.73 17.55 0 219.90 219.80 1.00 CGC-J4 61.75 53.24 108.56 49.08 0 272.64 257.71 1.06 CGC-J5 303.78 193.39 48.11 17.55 127.60 690.43 797.91 0.87 CGC-J6 303.78 193.39 24.06 8.77 127.60 657.60 565.55 1.16 Notes: Vc—Interfacial concrete cohesion; Vs—Interfacial friction generated by shear reinforcement; VN—Interfacial friction generated by axial pressure; V c p—Calculated values of shear capacity of the double interface of joint. V p—Test values of shear capacity of the double interface of joint. -
[1] 曹西, 缪昌铅, 潘海涛. 基于碳排放模型的装配式混凝土与现浇建筑碳排放比较分析与研究[J]. 建筑结构, 2021, 51(S2): 1233-1237.CAO Xi, MIAO Changqian, PAN Haitao. Comparative analysis and research on carbon emissions between prefabricated concrete and cast-in-place construction based on carbon emission models[J]. Building Structure, 2021, 51(S2): 1233-1237(in Chinese). [2] 白国良, 秦朝刚, 徐亚洲, 等. 装配整体式剪力墙模型结构振动台试验研究[J]. 建筑结构学报, 2018, 39(2): 17-27.BAI Guoliang, QIN Chaogang, XU Yazhou, et al. Shaking table test on monolithic precast concrete shear wall model structure[J]. Journal of Building Structures, 2018, 39(2): 17-27(in Chinese). [3] 陈萌, 赵伦, 李攀杰, 等. 聚丙烯纤维灌浆料及其钢筋套筒连接受力性能试验研究[J]. 复合材料学报, 2022, 39(2): 685-694.CHEN Meng, ZHAO Lun, LI Panjie, et al. Experimental study on mechanical properties of polypropylene fiber grouting material and its rebar sleeve connection[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 685-694(in Chinese). [4] GOU S K, DING R, FAN J S, et al. Seismic performance of a novel precast concrete beam-column connection using low-shrinkage engineered cementitious composites[J]. Construction and Building Materials, 2018, 192: 643-656. doi: 10.1016/j.conbuildmat.2018.10.103 [5] 杨俊, 周建庭, 张中亚, 等. UHPC-NC 键槽界面抗剪性能研究[J]. 中国公路学报, 2021, 34(8): 132-144.YANG Jun, ZHOU Jiantin, ZHANG Zhongya, et al. Shear performance of keyway interface between UHPC and normal concrete[J]. China Journal of Highway and Transport, 2021, 34(8): 132-144(in Chinese). [6] 王鹏刚, 赵明海, 田砾, 等. 预制键槽式UHPC与后浇混凝土界面粘结抗剪性能[J]. 复合材料学报, 2024, 41(5): 2633-2644.WANG Penggang, ZHAO Minghai, TIAN Li, et al. Interface shear resistance of precast keyway UHPC and post-cast normal concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2633-2644(in Chinese). [7] 朱俊涛, 刘亚文, 王娟, 等. 钢绞线网增强ECC与混凝土刻槽式界面粘结性能试验[J]. 复合材料学报, 2023, 40(5): 2913-2925.ZHU Juntao, LIU Yawen, WANG Juan, et al. Experimental on bond properties of grooved interface between high-strength steel wire mesh reinforced ECC and concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2913-2925(in Chinese). [8] 赵勇, 万宇杰, 王晓峰. 钢筋套筒灌浆接缝受剪性能试验研究[J]. 建筑结构学报, 2021, 42(2): 221-230.ZHAO Yong, WAN Yujie, WANG Xiaofeng. Experimental study on shear performance of steel sleeve grouting joint[J]. Journal of Building Structures, 2021, 42(2): 221-230(in Chinese). [9] 张文莹, 杨联萍, 余少乐, 等. 双面叠合剪力墙关键问题研究: 水平连接节点抗震性能试验[J]. 土木工程学报, 2018, 51(12): 28-41.ZHANG Wenying, YANG Lianping, YU Shaole, et al. Research on key issues of the double-superimposed shear wall: Experimental study on seismic performance of horizontal connections[J]. China Civil Engineering Journal, 2018, 51(12): 28-41(in Chinese). [10] BIRKELAND P W, BIRKELAND H W. Connections in precast concrete construction[J]. Journal Proceedings, 1966, 63(3): 345-368. [11] PENG G, NIU D T, HU X P, et al. Experimental study of the interfacial bond strength between cementitious grout and normal concrete substrate[J]. Construction and Building Materials, 2021, 273: 122057. doi: 10.1016/j.conbuildmat.2020.122057 [12] ZHAO Y, ZOU R B, DING T, et al. Experimental study of the shear behaviour of concrete-grout-concrete joints[J]. Journal of Building Engineering, 2021, 43: 103095. doi: 10.1016/j.jobe.2021.103095 [13] RANDL N. Design recommendations for interface shear transfer in FIB Model Code 2010[J]. Structural Concrete, 2013, 14(3): 230-241. doi: 10.1002/suco.201300003 [14] LIU T X, WANG Z, GUO J, et al. Shear strength of dry joints in precast UHPC segmental bridges: Experimental and theoretical research[J]. Journal of Bridge Engineering, 2019, 24(1): 04018100. doi: 10.1061/(ASCE)BE.1943-5592.0001323 [15] ROBERTS C L, BREEN J E, KREGER M E. Measurement based revisions for segmental bridge design criteria[J]. Research Rep, 1993, 1234-3F. [16] 郭辉. 纤维增强水泥基灌浆料及其钢筋套筒灌浆连接力学性能研究[D]. 郑州: 郑州大学, 2020.GUO Hui. Study on Mechanical properties of fiber-reinforced cementitious grouting material and rebar sleeve grouting Splice[D]. Zhengzhou: Zhengzhou University, 2020(in Chinese). [17] 中华人民共和国住房和城乡建设部. 钢筋连接用灌浆套筒: JG/T 398—2019[S]. 北京: 中国标准出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Grouting sleeve for steel bar connection: JG/T 398—2019[S]. Beijing: Standards Press of China, 2019(in Chinese). [18] 中华人民共和国住房和城乡建设部. 钢筋套筒灌浆连接应用技术规程: JGJ 355—2015[S]. 北京: 中国建筑工业出版社, 2015.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for grout sleeve splicing of rebars: JGJ 355—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese). [19] 中华人民共和国住房和城乡建设部. 钢筋连接用套筒灌浆料: JG/T 408—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Cementitious grout for sleeve of rebar splicing: JG/T 408—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [20] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [21] 中华人民共和国住房和城乡建设部. 水泥基灌浆材料应用技术规范: GB/T 50448—2015[S]. 北京: 中国建筑工业出版社, 2015.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for application of cementitious grout: GB/T 50448—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese). [22] 中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021.Standardization Administration of the People’s Republic of China. Metallic materials-tensile testing-part 1: Method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021(in Chinese). [23] 肖顺, 李向民, 许清风. 装配整体式混凝土结构套筒灌浆质量检测与缺陷整治的研究进展[J]. 建筑结构, 2021, 51(5): 104-116XIAO Shun, LI Xiangmin, XU Qingfeng. Research progress of quality detection and defect repair for sleeve grouting in assembled monolithic concrete structure[J]. Building Structure, 2021, 51(5): 104-116(in Chinese). [24] 苗启松, 钟勃健, 李爱群, 等. 灌浆缺陷套筒连接预制剪力墙抗震性能试验研究[J/OL]. 工程力学: 1-11[2024-04-29]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230515.1904.006.html.MIAO Qisong, ZHONG Bojian, LI Aiqun, et al. Experimental study of seismic performance of precast concrete shear walls connected using grouted sleeves with defects[J/OL]. Engineering Mechanics: 1-11[2024-04-29]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230515.1904.006.html (in Chinese). [25] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for seismic test of buildings: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese). [26] PARK R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1989, 22(3): 155-166. doi: 10.5459/bnzsee.22.3.155-166 [27] AASHTO. AASHTO LRFD bridge design specifications[S]. Washington, DC: American Association of State Highway and Transportation Officials, 2010. [28] GARBACZ A, COURARD L, KOSTANA K. Characterization of concrete surface roughness and its relation to adhesion in repair systems[J]. Materials Characterization, 2006, 56(4-5): 281-289. doi: 10.1016/j.matchar.2005.10.014 [29] 秦朝刚, 高志尧, 杨龙, 等. 预制混凝土套筒灌浆连接双界面受剪性能研究[J/OL]. 建筑结构学报: 1-13[2024-07-09]. http://kns.cnki.net/kcms/detail/11.1931.TU.20240702.1611.008.html.QIN Chaogang, GAO Zhiyao, YANG Long, et al. Study on shear resistance of precast concrete sleeve grouting joint with double interface[J/OL]. Journal of Building Structures: 1-13[2024-07-09]. http://kns.cnki.net/kcms/detail/11.1931.TU.20240702.1611.008.html (in Chinese). [30] 杨龙. 剪压复合作用下灌浆料与混凝土粘结双界面力学性能分析[D]. 西安: 长安大学, 2023.YANG Long. Analysis of mechanical properties of the double interface between grout and concrete under shear compression composite action[D]. Xi’an: Chang’an University, 2023(in Chinese). [31] FENG J H, FANG S, CHEN M Z, et al. Effect of joint width on shear behaviour of wet joints using reactive powder concrete with confining stress[J]. Engineering Structures, 2023, 293: 116566. doi: 10.1016/j.engstruct.2023.116566 [32] 石璐, 范亮. 预制装配式多键群剪力键力学行为试验研究[J]. 土木与环境工程学报 (中英文), 2022, 44(4): 105-112.SHI Lu, FAN Liang. Experimental study on mechanical behavior of prefabricated multi group shear key[J]. Journal of Civil and Environmental Engineering, 2022, 44(4): 105-112(in Chinese). [33] TAERWE L, MATTHYS S. Fib model code for concrete structures 2010[M]. Ernst & Sohn, Wiley, 2013. [34] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
计量
- 文章访问数: 41
- HTML全文浏览量: 22
- 被引次数: 0