留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低周往复荷载下混凝土-灌浆料-混凝土连接节点抗剪性能

秦朝刚 王张龙 张一程 荀凯杰

秦朝刚, 王张龙, 张一程, 等. 低周往复荷载下混凝土-灌浆料-混凝土连接节点抗剪性能[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 秦朝刚, 王张龙, 张一程, 等. 低周往复荷载下混凝土-灌浆料-混凝土连接节点抗剪性能[J]. 复合材料学报, 2024, 42(0): 1-14.
QIN Chaogang, WANG Zhanglong, ZHANG Yicheng, et al. Shear performance of concrete-grouting material-concrete connection joint under low cyclic loading[J]. Acta Materiae Compositae Sinica.
Citation: QIN Chaogang, WANG Zhanglong, ZHANG Yicheng, et al. Shear performance of concrete-grouting material-concrete connection joint under low cyclic loading[J]. Acta Materiae Compositae Sinica.

低周往复荷载下混凝土-灌浆料-混凝土连接节点抗剪性能

基金项目: 国家自然科学基金项目(51908042)
详细信息
    通讯作者:

    秦朝刚,博士,副教授,硕士生导师,研究方向为低碳装配式混凝土结构体系与设计理论 E-mail: qinchaogang@chd.edu.cn

  • 中图分类号: TU375

Shear performance of concrete-grouting material-concrete connection joint under low cyclic loading

Funds: National Natural Science Foundation of China (51908042)
  • 摘要: 聚丙烯(Polypropylene,PP)纤维灌浆料是一种高性能水泥基复合材料,具有高强、阻裂和增韧的特点,在预制构件进行钢筋套筒灌浆连接时,可以充分填补构件单元间的接缝及套筒内的空腔,提高界面的连接性能。在构件连接部位形成的混凝土-灌浆料-混凝土(CGC)连接节点的双界面的抗剪性能是保证结构整体安全性的关键。考虑键槽高度、界面配筋率、轴向压力和灌浆料饱满度,研究了低周往复荷载下CGC连接节点的破坏模式、抗剪承载力、刚度、耗能和延性的变化规律。结果表明:CGC连接节点破坏形态以界面水平贯穿裂缝为主,轴向压力的增加使键槽发展出斜向裂缝的同时,节点呈现“X”型剪切斜裂缝;增大键槽高度和轴向压力,能提高CGC连接节点的抗剪承载力、刚度和耗能,但降低了节点的延性;其中,键槽高度由6 mm提升至12 mm和18 mm,节点抗剪承载力提升11%和43%,刚度提升11%和14%,但延性降低10%和21%;界面配筋率的增大改善了节点的抗震性能,而套筒内灌浆料的缺失使节点抗剪承载力和刚度均有下降。根据CGC连接节点的破坏模式,解析了节点双界面剪应力的组成,基于叠加原理建立了CGC连接节点双界面的抗剪承载力计算公式,计算结果与试验值吻合较好。

     

  • 图  1  试件设计(单位:mm)

    Figure  1.  Specimen design (Unit: mm)

    图  2  试件制作过程

    Figure  2.  Manufacturing procedures of specimens

    图  3  加载装置

    Figure  3.  Loading device

    图  4  加载制度

    Figure  4.  Loading strategy

    图  5  位移计测点布置图(单位:mm)

    Figure  5.  Arrangement of displacement transducers (Unit: mm)

    图  6  CGC连接节点试验现象对比

    Figure  6.  Comparison of test phenomena of CGC connection joints

    The number before - stands for load displacement; - stands for positive direction; the number after - stands for cyclic order under the load displacement

    图  7  CGC连接节点破坏形态

    Figure  7.  Failure patterns of CGC connection joints

    图  8  CGC连接节点界面典型破坏形态

    Figure  8.  Typical failure pattern of the interface of CGC connection joints

    图  9  CGC连接节点承载力退化曲线

    Figure  9.  Strength deterioration curves of CGC connection joints

    图  10  CGC连接节点滞回曲线和骨架曲线

    Figure  10.  Hysteresis curves and skeleton curves of CGC connection joints

    图  11  CGC连接节点累积滞回耗能

    Figure  11.  Accumulated energy dissipation of CGC connection joints

    图  12  CGC连接节点键槽应力平衡状态

    Figure  12.  Stress equilibrium state of keyways of CGC connection joints

    N—Axial pressure; V—Shear force; Vk—Shear capacity of keyway; h—Keyway width; σx—Horizontal stress of keyway; σy—Normal stress at the interface; τ2—Shear stress of keyway root

    图  13  莫尔圆中键槽应力状态

    Figure  13.  Stress state of keyways in Mohr’s circle

    σ1—Maximum tensile stress, σ2—Maximum compressive stress

    图  14  CGC连接节点受剪钢筋销栓作用

    Figure  14.  Dowel action of shear reinforcement of CGC connection joints

    Vb—Dowel stress of reinforcement; q—Uniform compressive stress of concrete; Mp—Bending moment of reinforcement section at plastic hinge; s—Thickness of grouting layer; l—Length of the plastic hinge from the separation interface

    表  1  试件设计参数

    Table  1.   Design parameters of specimens

    Specimen t/mm ρv Axial pressure/kN Grouting material fullness/%
    CGC-J1 6 0.22% 0 100
    CGC-J2 12 0.22% 0 100
    CGC-J3 18 0.22% 0 100
    CGC-J4 12 0.48% 0 100
    CGC-J5 12 0.22% 220 100
    CGC-J6 12 0.22% 220 30
    Notes: C—Concrete; G—Grouting material; J—Connection joint; t—Keyway height; ρv—Interfacial reinforcement ratio.
    下载: 导出CSV

    表  2  混凝土和灌浆料力学性能实测值

    Table  2.   Tested mechanical properties of concrete and grouting material MPa

    Material categories fcu fc ft
    Concrete 42.5 32.3
    Grouting material 87.9 80.0 5.27
    Notes: fcu—Cube compressive strength; fc—Axial compressive strength; ft—Axial tensile strength.
    下载: 导出CSV

    表  3  钢筋力学性能实测值

    Table  3.   Tested mechanical properties of steel bars MPa

    Material categories fy fu
    8 455.8 604.6
    12 457.1 600.7
    Notes: fy—Yield strength; fu—Ultimate strength.
    下载: 导出CSV

    表  4  CGC连接节点骨架曲线特征点参数

    Table  4.   Parameters of characteristic points of skeleton curves of CGC connection joints

    Specimen Direction Vy/kN Δy/mm Vp/kN Δp/mm Vu/kN Δu/mm μ=Δu/Δy
    CGC-J1 + 152.54 4.41 156.06 4.52 132.65 6.45 1.46
    144.92 4.30 151.54 4.53 128.81 6.67 1.55
    Average 148.73 4.36 153.80 4.52 130.73 6.56 1.51
    CGC-J2 + 179.60 4.08 194.36 4.52 165.21 4.99 1.22
    140.34 3.47 145.91 4.52 124.02 5.16 1.49
    Average 159.95 3.77 170.14 4.52 144.62 5.04 1.35
    CGC-J3 + 201.03 5.58 210.53 6.02 178.95 6.48 1.16
    221.57 5.06 229.06 5.32 194.70 6.12 1.21
    Average 211.35 5.32 219.80 5.67 186.83 6.32 1.19
    CGC-J4 + 259.68 6.36 268.13 7.50 227.91 9.14 1.44
    244.13 5.87 247.28 6.03 210.19 8.34 1.42
    Average 251.87 6.11 257.71 6.76 219.05 8.74 1.43
    CGC-J5 + 596.34 17.75 643.36 21.02 546.86 21.50 1.21
    892.06 18.55 952.45 19.51 809.58 20.00 1.08
    Average 744.17 18.15 797.91 20.26 678.22 20.75 1.14
    CGC-J6 + 588.20 13.41 629.67 14.99
    440.74 10.24 501.43 15.00
    Average 514.43 11.83 565.55 14.99
    Notes: Vy—Yield load, Δy—Yield displacement; Vp—Peak load, Δp—Peak displacement; Vu—Ultimate load, Δu—Ultimate displacement; μ—Ductility coefficient.
    下载: 导出CSV

    表  5  CGC连接节点双界面抗剪承载力计算值与试验值对比

    Table  5.   Comparison between test and calculated values of shear capacity of the double interface of CGC connection joints

    Specimen Vc/kN Vk/kN Vs/kN Vb/kN VN/kN V c p/kN V p/kN V c p/V p
    CGC-J1 39.35 53.24 48.11 17.55 0 158.26 153.80 1.03
    CGC-J2 61.75 53.24 48.11 17.55 0 180.66 170.14 1.06
    CGC-J3 80.37 53.24 68.73 17.55 0 219.90 219.80 1.00
    CGC-J4 61.75 53.24 108.56 49.08 0 272.64 257.71 1.06
    CGC-J5 303.78 193.39 48.11 17.55 127.60 690.43 797.91 0.87
    CGC-J6 303.78 193.39 24.06 8.77 127.60 657.60 565.55 1.16
    Notes: Vc—Interfacial concrete cohesion; Vs—Interfacial friction generated by shear reinforcement; VN—Interfacial friction generated by axial pressure; V c p—Calculated values of shear capacity of the double interface of joint. V p—Test values of shear capacity of the double interface of joint.
    下载: 导出CSV
  • [1] 曹西, 缪昌铅, 潘海涛. 基于碳排放模型的装配式混凝土与现浇建筑碳排放比较分析与研究[J]. 建筑结构, 2021, 51(S2): 1233-1237.

    CAO Xi, MIAO Changqian, PAN Haitao. Comparative analysis and research on carbon emissions between prefabricated concrete and cast-in-place construction based on carbon emission models[J]. Building Structure, 2021, 51(S2): 1233-1237(in Chinese).
    [2] 白国良, 秦朝刚, 徐亚洲, 等. 装配整体式剪力墙模型结构振动台试验研究[J]. 建筑结构学报, 2018, 39(2): 17-27.

    BAI Guoliang, QIN Chaogang, XU Yazhou, et al. Shaking table test on monolithic precast concrete shear wall model structure[J]. Journal of Building Structures, 2018, 39(2): 17-27(in Chinese).
    [3] 陈萌, 赵伦, 李攀杰, 等. 聚丙烯纤维灌浆料及其钢筋套筒连接受力性能试验研究[J]. 复合材料学报, 2022, 39(2): 685-694.

    CHEN Meng, ZHAO Lun, LI Panjie, et al. Experimental study on mechanical properties of polypropylene fiber grouting material and its rebar sleeve connection[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 685-694(in Chinese).
    [4] GOU S K, DING R, FAN J S, et al. Seismic performance of a novel precast concrete beam-column connection using low-shrinkage engineered cementitious composites[J]. Construction and Building Materials, 2018, 192: 643-656. doi: 10.1016/j.conbuildmat.2018.10.103
    [5] 杨俊, 周建庭, 张中亚, 等. UHPC-NC 键槽界面抗剪性能研究[J]. 中国公路学报, 2021, 34(8): 132-144.

    YANG Jun, ZHOU Jiantin, ZHANG Zhongya, et al. Shear performance of keyway interface between UHPC and normal concrete[J]. China Journal of Highway and Transport, 2021, 34(8): 132-144(in Chinese).
    [6] 王鹏刚, 赵明海, 田砾, 等. 预制键槽式UHPC与后浇混凝土界面粘结抗剪性能[J]. 复合材料学报, 2024, 41(5): 2633-2644.

    WANG Penggang, ZHAO Minghai, TIAN Li, et al. Interface shear resistance of precast keyway UHPC and post-cast normal concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2633-2644(in Chinese).
    [7] 朱俊涛, 刘亚文, 王娟, 等. 钢绞线网增强ECC与混凝土刻槽式界面粘结性能试验[J]. 复合材料学报, 2023, 40(5): 2913-2925.

    ZHU Juntao, LIU Yawen, WANG Juan, et al. Experimental on bond properties of grooved interface between high-strength steel wire mesh reinforced ECC and concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2913-2925(in Chinese).
    [8] 赵勇, 万宇杰, 王晓峰. 钢筋套筒灌浆接缝受剪性能试验研究[J]. 建筑结构学报, 2021, 42(2): 221-230.

    ZHAO Yong, WAN Yujie, WANG Xiaofeng. Experimental study on shear performance of steel sleeve grouting joint[J]. Journal of Building Structures, 2021, 42(2): 221-230(in Chinese).
    [9] 张文莹, 杨联萍, 余少乐, 等. 双面叠合剪力墙关键问题研究: 水平连接节点抗震性能试验[J]. 土木工程学报, 2018, 51(12): 28-41.

    ZHANG Wenying, YANG Lianping, YU Shaole, et al. Research on key issues of the double-superimposed shear wall: Experimental study on seismic performance of horizontal connections[J]. China Civil Engineering Journal, 2018, 51(12): 28-41(in Chinese).
    [10] BIRKELAND P W, BIRKELAND H W. Connections in precast concrete construction[J]. Journal Proceedings, 1966, 63(3): 345-368.
    [11] PENG G, NIU D T, HU X P, et al. Experimental study of the interfacial bond strength between cementitious grout and normal concrete substrate[J]. Construction and Building Materials, 2021, 273: 122057. doi: 10.1016/j.conbuildmat.2020.122057
    [12] ZHAO Y, ZOU R B, DING T, et al. Experimental study of the shear behaviour of concrete-grout-concrete joints[J]. Journal of Building Engineering, 2021, 43: 103095. doi: 10.1016/j.jobe.2021.103095
    [13] RANDL N. Design recommendations for interface shear transfer in FIB Model Code 2010[J]. Structural Concrete, 2013, 14(3): 230-241. doi: 10.1002/suco.201300003
    [14] LIU T X, WANG Z, GUO J, et al. Shear strength of dry joints in precast UHPC segmental bridges: Experimental and theoretical research[J]. Journal of Bridge Engineering, 2019, 24(1): 04018100. doi: 10.1061/(ASCE)BE.1943-5592.0001323
    [15] ROBERTS C L, BREEN J E, KREGER M E. Measurement based revisions for segmental bridge design criteria[J]. Research Rep, 1993, 1234-3F.
    [16] 郭辉. 纤维增强水泥基灌浆料及其钢筋套筒灌浆连接力学性能研究[D]. 郑州: 郑州大学, 2020.

    GUO Hui. Study on Mechanical properties of fiber-reinforced cementitious grouting material and rebar sleeve grouting Splice[D]. Zhengzhou: Zhengzhou University, 2020(in Chinese).
    [17] 中华人民共和国住房和城乡建设部. 钢筋连接用灌浆套筒: JG/T 398—2019[S]. 北京: 中国标准出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Grouting sleeve for steel bar connection: JG/T 398—2019[S]. Beijing: Standards Press of China, 2019(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 钢筋套筒灌浆连接应用技术规程: JGJ 355—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for grout sleeve splicing of rebars: JGJ 355—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [19] 中华人民共和国住房和城乡建设部. 钢筋连接用套筒灌浆料: JG/T 408—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Cementitious grout for sleeve of rebar splicing: JG/T 408—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [20] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [21] 中华人民共和国住房和城乡建设部. 水泥基灌浆材料应用技术规范: GB/T 50448—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for application of cementitious grout: GB/T 50448—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [22] 中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People’s Republic of China. Metallic materials-tensile testing-part 1: Method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [23] 肖顺, 李向民, 许清风. 装配整体式混凝土结构套筒灌浆质量检测与缺陷整治的研究进展[J]. 建筑结构, 2021, 51(5): 104-116

    XIAO Shun, LI Xiangmin, XU Qingfeng. Research progress of quality detection and defect repair for sleeve grouting in assembled monolithic concrete structure[J]. Building Structure, 2021, 51(5): 104-116(in Chinese).
    [24] 苗启松, 钟勃健, 李爱群, 等. 灌浆缺陷套筒连接预制剪力墙抗震性能试验研究[J/OL]. 工程力学: 1-11[2024-04-29]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230515.1904.006.html.

    MIAO Qisong, ZHONG Bojian, LI Aiqun, et al. Experimental study of seismic performance of precast concrete shear walls connected using grouted sleeves with defects[J/OL]. Engineering Mechanics: 1-11[2024-04-29]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230515.1904.006.html (in Chinese).
    [25] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for seismic test of buildings: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [26] PARK R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1989, 22(3): 155-166. doi: 10.5459/bnzsee.22.3.155-166
    [27] AASHTO. AASHTO LRFD bridge design specifications[S]. Washington, DC: American Association of State Highway and Transportation Officials, 2010.
    [28] GARBACZ A, COURARD L, KOSTANA K. Characterization of concrete surface roughness and its relation to adhesion in repair systems[J]. Materials Characterization, 2006, 56(4-5): 281-289. doi: 10.1016/j.matchar.2005.10.014
    [29] 秦朝刚, 高志尧, 杨龙, 等. 预制混凝土套筒灌浆连接双界面受剪性能研究[J/OL]. 建筑结构学报: 1-13[2024-07-09]. http://kns.cnki.net/kcms/detail/11.1931.TU.20240702.1611.008.html.

    QIN Chaogang, GAO Zhiyao, YANG Long, et al. Study on shear resistance of precast concrete sleeve grouting joint with double interface[J/OL]. Journal of Building Structures: 1-13[2024-07-09]. http://kns.cnki.net/kcms/detail/11.1931.TU.20240702.1611.008.html (in Chinese).
    [30] 杨龙. 剪压复合作用下灌浆料与混凝土粘结双界面力学性能分析[D]. 西安: 长安大学, 2023.

    YANG Long. Analysis of mechanical properties of the double interface between grout and concrete under shear compression composite action[D]. Xi’an: Chang’an University, 2023(in Chinese).
    [31] FENG J H, FANG S, CHEN M Z, et al. Effect of joint width on shear behaviour of wet joints using reactive powder concrete with confining stress[J]. Engineering Structures, 2023, 293: 116566. doi: 10.1016/j.engstruct.2023.116566
    [32] 石璐, 范亮. 预制装配式多键群剪力键力学行为试验研究[J]. 土木与环境工程学报 (中英文), 2022, 44(4): 105-112.

    SHI Lu, FAN Liang. Experimental study on mechanical behavior of prefabricated multi group shear key[J]. Journal of Civil and Environmental Engineering, 2022, 44(4): 105-112(in Chinese).
    [33] TAERWE L, MATTHYS S. Fib model code for concrete structures 2010[M]. Ernst & Sohn, Wiley, 2013.
    [34] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-07-15
  • 录用日期:  2024-08-02
  • 网络出版日期:  2024-08-28

目录

    /

    返回文章
    返回