留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂硫电池凝胶聚合物电解质:合成工艺及先进表征技术

于淼 解姝媛 薛嘉仪 张莹莹 刘景海 吴桐 段莉梅

于淼, 解姝媛, 薛嘉仪, 等. 锂硫电池凝胶聚合物电解质:合成工艺及先进表征技术[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 于淼, 解姝媛, 薛嘉仪, 等. 锂硫电池凝胶聚合物电解质:合成工艺及先进表征技术[J]. 复合材料学报, 2024, 42(0): 1-14.
YU Miao, XIE Shuyuan, XUE Jiayi, et al. Gel polymer electrolytes for lithium sulfur batteries: synthesis and advanced characterization techniques[J]. Acta Materiae Compositae Sinica.
Citation: YU Miao, XIE Shuyuan, XUE Jiayi, et al. Gel polymer electrolytes for lithium sulfur batteries: synthesis and advanced characterization techniques[J]. Acta Materiae Compositae Sinica.

锂硫电池凝胶聚合物电解质:合成工艺及先进表征技术

基金项目: 国家自然科学基金(22361034, 21461018, 21961025, 21961024);内蒙古自治区直属高校基本科研业务费项目(GXKY22087);2020年度内蒙古自治区本级事业单位引进优秀人才科研启动绩效项目(RCQD20002);内蒙古民族大学博士科研基金项目(BS614);内蒙古自治区“草原英才”工程青年领军人才(KYCYYC23001)
详细信息
    通讯作者:

    吴桐,博士,讲师,主要研究方向为锂离子二次电池和锂硫电池 E-mail: wutong932@imun.edu.cn

    段莉梅,博士,教授,博士生导师,主要研究方向为光电催化材料 E-mail: duanlm@imun.edu.cn

  • 中图分类号: TQ152; TB332

Gel polymer electrolytes for lithium sulfur batteries: synthesis and advanced characterization techniques

Funds: National Natural Science Foundation of China (No.22361034, 21461018, 21961025, 21961024); Basic research funds for universities directly under the Inner Mongolia Autonomous Region (No. GXKY22087) ; 2020 Inner Mongolia Autonomous Region at the same level of public institutions to introduce outstanding talents scientific research Start Performance Project (RCQD20002); Doctoral Research Fund of Inner Mongolia University for Nationalities (BS614); Young Leading Talents of "Grassland Talents" Project of Inner Mongolia Autonomous Region (KYCYYC23001)
  • 摘要: 凝胶聚合物电解质(GPE)的应用为改善锂硫电池的安全性和抑制穿梭效应提供一种有希望的方案。凝胶聚合物电解质能够改善全固态电解质与双电极之间存在的高界面阻抗所带来的电荷转移受阻、锂沉积不均匀等问题,有效解决容量衰减快、循环稳定性差等缺陷。本文针对锂硫电池中制备凝胶聚合物电解质所采用的原位聚合和非原位聚合两种不同的工艺手段进行介绍,通过阐述不同合成工艺改进凝胶聚合物电解质基底的方法,重点分析不同工艺所带来的“收益”,并介绍了具有实时性和精准性的原位表征仪器在锂硫电池中的应用,指出原位先进表征技术对锂硫电池电极材料设计的指导作用,并供科研工作者开发研究更适宜产业化的凝胶聚合物电解质的合成工艺,展望未来锂硫电池凝胶聚合物电解质合成设计的发展方向。

     

  • 图  1  锂硫电池凝胶聚合物电解质(GPE)的不同合成工艺及其先进表征技术

    Figure  1.  Different synthesis techniques and advanced characterization techniques of lithium-sulfur battery gel-polymer electrolyte (GPE)

    图  2  (a) TOC晶体结构及PVFH-TOC-PEG电解质合成示意图[32] (b) PVDF - HFP@m-Co3O4(s)-NH2的合成路线示意图[33] (c) PEO-PAN-LLZO GPE在Li-S电池中的性能提升机制示意图[35] (d) 聚合物凝胶形成机制示意图[36]

    Figure  2.  (a) Crystal structure of TOC and schematic illustration for the synthesis of the PVFH-TOC-PEG electrolyte[32] (b) Schematic illustration of the synthesis route of PVDF−HFP@m-Co3O4(s)-NH2[33] (c) Schematic illustration for the performance improvement mechanisms of PEO-PAN-LLZO CGPE applied in the Li-S battery[35] (d) Schematic diagram of formation mechanism for the polymer gel polymer[36]

    图  3  用LiPF6/Al2O3/PE隔膜实现液态电解质的原位界面聚合[37]

    Figure  3.  Schematic illustration showing the in situ interfacial polymerization of liquid electrolyte realized with the LiPF6/Al2O3/PE separator[37]

    图  4  (a)倍率为0.1 C时Li-TAA/S/C电池的充放电循环曲线 (b) Li-TAA/S/C和Li-S/C电池的倍率性能 (c) Li-TAA/S/C和Li-S/C电池的循环性能(倍率为0.1 C)[38]

    Figure  4.  (a) Charge and discharge cycle curve of Li-TAA/S/C battery at 0.1 C rate (b) Rate performance of Li-TAA/S/C and Li-S/ C cells (c) Cycling performance of Li-TAA/S/C and Li-S/C cells (rate: 0.1 C)[38]

    图  5  (a) DOL与PVA-CN合成IPN-GPE的两步反应机制 (b)具有非对称GPE网络的Li|IPN-GPE|S电池示意图[39] (c) 高离子导电性SHGP凝胶电解质的原理图和工作原理 (d) PEGDE与PEI聚合合成方案[40] (e) 采用CNT/Mo2 C/S正极和GPE的电池中的性能提升机制示意图[41] (f) 当与锂箔静态接触时,LE、PDOL和PDOL@InPc的原理图和光学图像[42]

    Figure  5.  (a) The two-step reaction mechanisms of DOL and PVA-CN to form the IPN-GPE (b) Schematic diagram of the LijIPN-GPEjS battery with the asymmetric GPE network[39] (c) The schematic illustration and the working principle of high ionic conductive SHGP gel electrolyte (d) Synthesis scheme of the polar polymer by polymerization of PEGDE and PEI[40] (e) Schematic illustration for the performance improvement mechanisms of The cells with CNT/Mo2C/S cathodes and GPE[41] (f) Schematic and optical images of LE, PDOL, and PDOL@InPc when in static contact with lithium foil[42]

    图  6  不同温度下Li2S沉积分解TEM图像[47]

    Figure  6.  TEM images of Li2S deposition decomposition at different temperatures[47]

    图  7  (a) Li2S2和Li2S的成核、生长、沉积、溶解等动态过程[50] (b) 可溶性多硫化锂的in-situ UV-Vis光谱 (c) 硫正极上Li2Sx的动态分布情况[53] (d) 有/无 BSOC的Li/S电池负极侧的原位S K-edge XAS 光谱[54]

    Figure  7.  (a) Dynamic processes of nucleation, growth, deposition, and dissolution of Li2S2 and Li2S[50] (b) in-situ UV-Vis spectra of soluble lithium polysulfide (c) Dynamic distribution of Li2Sx on the positive sulfur electrode[53] (d) In situ/operando S K-edge XAS observations at the anodic side of Li/S cells with/without BSOC layer[54]

    表  1  运用不同合成工艺GPE的优点及其组装锂硫电池的性能参数

    Table  1.   The advantages of using different synthetic processes GPE and the performance parameters of assembling lithium-sulfur batteries

    合成工艺 优点 GPE 离子电导率 面载量 放电比容量 循环性能
    非原位聚合法 合成凝胶流程简便,容易在分子水平进行修饰,兼容性更好,易于整合多种材料的优点 PVFH-TOC-PEG 8×10−3 S·cm−1(25℃) 5 mg·cm−2 1103 mA·h·g−1
    (2 mA·cm−1)
    8 mA·cm−2, 650次循环后放电比容量680 mA·h·g−1
    PVDF-HFP-m-Co3O4-NH3 3.23×10−3 S·cm−1
    (室温)
    2 mg·cm−2 - 0.5 C, 150次循环后放电比容量620 mA·h·g−1
    PVDF-HFP-Al2O3 1.85×10−3 S·cm−1
    (室温)
    1 mg·cm−2 1233 mA·h·g−1
    (0.1 C)
    0.1 C, 150次循环后放电比容量841.5 mA·h·g−1
    PEO-PAN-Li7La3Zr2O2 2.1×10−3 S·cm−1(30℃) 2±0.3 mg·cm−2 1459 mA·h·g−1
    (0.1 C)
    1 C, 300次循环后放电比容量575 mA·h·g−1
    PI10 6.22×10−3 S·cm−1
    (室温)
    1 mg·cm−2 - 0.2 C, 450次循环后放电比容量1154.3 mA·h·g−1
    原位界面聚合法 在硫正极到锂负极间形成固化程度不同的GPE,解决正极/GPE界面稳定性较差的问题 PDOL 5.56×10−3 S·cm−1
    (室温)
    2 mg·cm−2 1102 mA·h·g−1
    (0.1 C)
    0.1 C, 200次循环后放电比容量805 mA·h·g−1
    PDOL - 1.5 mg·cm−2 760 mA·h·g−1
    (0.5 C)
    0.1 C, 200次循环后放电比容量645 mA·h·g−1
    原位溶液聚合法 扬弃了传统GPE合成过程中的聚合物材料溶解、干燥涂膜等复杂工序,制取便捷、操作安全 PVA-CN/PDOL 3.23×10−3 S·cm−1(25℃) 1.5 mg·cm−2 - 0.5 C, 500次循环后放电比容量807 mA·h·g−1
    SHGP 0.75×10−3 S·cm−1(30℃) 2.5 mg·cm−2 950 mA·h·g−1
    (0.2 C)
    0.5 C, 100次循环后放电比容量715 mA·h·g−1
    PDOL 2.5×10−2 S·cm−1
    (室温)
    1 mg·cm−2 1024 mA·h·g−1
    (0.05 C)
    0.5 C, 100次循环后放电比容量521 mA·h·g−1
    PDOL@InPc 3.7×10−3 S·cm−1
    (室温)
    1.5±0.02 mg·cm−2 1194.7 mA·h·g−1
    (0.2 C)
    0.2 C, 260次循环后放电比容量673.5 mA·h·g−1
    Notes: GPE are the gel polymer electrolyte; PVFH-TOC-PEG are the Polyvinylidene fluoride - hexafluoropropylene -Ti32O16(OCH2CH2O)32(RCOO)16(EGH)16(R:t-CH3CH2CH2CH2-, EGH:-OCH2CH2OH)- polyethylene glycol; PVDF-HFP-m-Co3O4-NH3 are the Polyvinylidene fluoride - cohexafluoropropylene - ammoniated mesoporous cobalt tetroxide; PVDF-HFP-Al2O3 are the Polyvinylidene fluoride - total hexafluoropropylene - aluminum oxide; PEO-PAN-Li7La3Zr2O2 are the Polyethylene oxide - polyacrylonitrile - lithium lanthanum zirconium oxygen; PI10 are the polyimide10; PDOL are the Poly (1, 3-dioxopentylene); PVA-CN/PDOL are the Cyanopolyvinyl alcohol/ Poly (1, 3-dioxopentylene); SHGP are the novel gel polymer synthesized from polyethylene glycol diglycidyl ester and branched polyethylene imide; PDOL@InPc is indium phthalocyanine added to poly1, 3-dioxopentane.
    下载: 导出CSV

    表  2  不同原位表征方法及其用途

    Table  2.   Different in situ characterization methods and their uses

    原位表征方法 特点 测试对象 在锂硫电池中的用途
    in-situ TEM 提供电化学反应过程中电极在高空间分辨率下的实时综合信息,探究锂硫电池中的微观结构演变和化学组成变化 锂硫电池循环过程中的固态产物 观测锂硫电池中Li2S的结晶状态及其演变
    in-situ AFM 结合模拟电池环境条件,并跟踪这种环境下观测物的形貌演变 固体材料表面结构(包括绝缘体) 观测正极侧不溶性Li2S及Li2S2演变过程和负极侧SEI形成及演变途径

    元素表征
    in-situ Raman及
    in-situ UV-Vis
    根据拉曼散射光谱和紫外吸收光谱的不同来确定不同分子的组成结构 锂硫电池循环过程中产生的多硫化物 观测锂硫电池体系中,正极/电解质界面处多硫化锂的分布情况
    in-situ XAS 不依赖长程有序结构而对目标原子近邻结构敏感,能够得到材料局部几何结构和电子结构信息 催化剂及多硫化物 定量测定硫中几种含硫物种的含量,研究材料与多硫化物相互作用
    下载: 导出CSV
  • [1] EVARTS E. Lithium batteries: To the limits of lithium[J]. Nature, 2015, 526: S93-S95. doi: 10.1038/526S93a
    [2] LI S, HUANG J, CUI Y et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nat. Nanotechnol, 2022, 17: 613-621. doi: 10.1038/s41565-022-01107-2
    [3] YUE L, WANG X, CHEN L, et al. In situ interface engineering of highly nitrogen-rich triazine-based covalent organic frameworks for an ultra-stable, dendrite-free lithium-metal anode[J]. Energy & Environmental Science, 2024, 17(3): 1117-1131.
    [4] SU C C, AMINE K. Dicarbonyl Electrolyte for High-Voltage Lithium Metal Batteries: Importance of the Entropy of Solvation in Bidentate Solvent[J]. ACS Energy Letters, 2023, 9(1): 118-125.
    [5] LIU X, WANG G, LV Z, et al. A Perspective on Uniform Plating Behavior of Mg Metal Anode: Diffusion Limited Theory versus Nucleation Theory[J]. Advanced Materials, 2024, 36(9): 2306395. doi: 10.1002/adma.202306395
    [6] JI L, JIA Y, WANG X, et al. Strong adsorption, catalysis and lithiophilic modulation of carbon nitride for lithium/sulfur battery[J]. Nanotechnology, 2021, 32(19): 192002. doi: 10.1088/1361-6528/abe002
    [7] LIU S, LI J, YAN X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium–sulfur batteries[J]. Advanced Materials, 2018, 30(12): 1706895. doi: 10.1002/adma.201706895
    [8] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithium–sulfur batteries[J]. Chemical reviews, 2014, 114(23): 11751-11787. doi: 10.1021/cr500062v
    [9] JI L, WANG X, JIA Y, et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry[J]. Advanced Functional Materials, 2020, 30(28): 1910533. doi: 10.1002/adfm.201910533
    [10] WANG Z, FAN Q, SI Y, et al. A Self-regulatory organosulfur copolymer cathode towards high performance lithium-sulfur batteries[J]. Energy Storage Materials, 2023, 58: 222-231. doi: 10.1016/j.ensm.2023.03.020
    [11] HUANG Y, WANG Y, FU Y. A thermoregulating separator based on black phosphorus/MOFs heterostructure for thermo-stable lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 454: 140250. doi: 10.1016/j.cej.2022.140250
    [12] HAN Z, REN H R, HUANG Z, et al. A permselective coating protects lithium anode toward a practical lithium–sulfur battery[J]. ACS nano, 2023, 17(5): 4453-4462. doi: 10.1021/acsnano.2c10047
    [13] WU T, YE J, LI T, et al. Tetrathiafulvalene as a multifunctional electrolyte additive for simultaneous interface amelioration, electron conduction, and polysulfide redox regulation in lithium-sulfur batteries[J]. Journal of Power Sources, 2022, 536: 231482. doi: 10.1016/j.jpowsour.2022.231482
    [14] WU T, SUN G, LU W, et al. A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries[J]. Electrochimica Acta, 2020, 353: 136529. doi: 10.1016/j.electacta.2020.136529
    [15] Y. V[J]. Mikhaylik, US Patent[P], 2008, 354: 680.
    [16] SHI C, SHAO S, ZONG C, et al. Organothiols for dual-interface modification of high performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 448: 137552. doi: 10.1016/j.cej.2022.137552
    [17] QIU H, SONG Y, GU J, et al. A bifunctional electrolyte additive ammonium hexafluorophosphate for long cycle life lithium-sulfur batteries[J]. Materials Letters, 2023, 351: 134986. doi: 10.1016/j.matlet.2023.134986
    [18] XU R, ZHANG S, WANG X, et al. Recent developments of all-solid-state lithium secondary batteries with sulfide inorganic electrolytes[J]. Chemistry-A European Journal, 2018, 24(23): 6007-6018. doi: 10.1002/chem.201704568
    [19] FU K K, GONG Y, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1568-1575.
    [20] YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200. doi: 10.1002/anie.201304762
    [21] CUI Y, LI J, YUAN X, et al. Emerging Strategies for Gel Polymer Electrolytes with Improved Dual-Electrode Side Regulation Mechanisms for Lithium-Sulfur Batteries[J]. Chemistry-An Asian Journal, 2022, 17(21): e202200746. doi: 10.1002/asia.202200746
    [22] FENTON D E. Complex of alkali metal ions with poly (ethylene oxide)[J]. polymer, 1973, 14: 589.
    [23] MICHOT T, NISHIMOTO A, WATANABE M. Electrochemical properties of polymer gel electrolytes based on poly (vinylidene fluoride) copolymer and homopolymer[J]. Electrochimica Acta, 2000, 45(8-9): 1347-1360. doi: 10.1016/S0013-4686(99)00343-6
    [24] JIA M, LI T, YANG D, et al. Polymer Electrolytes for Lithium-Sulfur Batteries: Progress and Challenges[J]. Batteries, 2023, 9(10): 488. doi: 10.3390/batteries9100488
    [25] QIAN J, JIN B, LI Y, et al. Research progress on gel polymer electrolytes for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021, 56: 420-437. doi: 10.1016/j.jechem.2020.08.026
    [26] NAIR J R, BELLA F, ANGULAKSHMI N, et al. Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries[J]. Energy Storage Materials, 2016, 3: 69-76. doi: 10.1016/j.ensm.2016.01.008
    [27] HU J K, YUAN H, YANG S J, et al. Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2022, 71: 612-618. doi: 10.1016/j.jechem.2022.04.048
    [28] SONG J, NOH H, LEE H, et al. Polysulfide rejection layer from alpha-lipoic acid for high performance lithium–sulfur battery[J]. Journal of Materials Chemistry A, 2015, 3(1): 323-330. doi: 10.1039/C4TA03625E
    [29] LI W, PANG Y, ZHU T, et al. A gel polymer electrolyte based lithium-sulfur battery with low self-discharge[J]. Solid State Ionics, 2018, 318: 82-87. doi: 10.1016/j.ssi.2017.08.018
    [30] CHIU L L, CHUNG S H. Composite gel-polymer electrolyte for high-loading polysulfide cathodes[J]. Journal of Materials Chemistry A, 2022, 10(26): 13719-13726. doi: 10.1039/D2TA01867E
    [31] ZHANG H, LU H, CHEN J, et al. A novel filler for gel polymer electrolyte with a high lithium-ion transference number toward stable cycling for lithium-metal anodes in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48622-48633.
    [32] PEI F, DAI S, GUO B, et al. Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium–sulfur batteries with high gravimetric energy densities[J]. Energy & Environmental Science, 2021, 14(2): 975-985.
    [33] LI J, CHEN X, YUE W. Mesoporous Co3O4-Modified Gel Polymer Electrolyte Applied in Lithium–Sulfur Batteries[J]. ACS Applied Energy Materials, 2022, 5(12): 15548-15558. doi: 10.1021/acsaem.2c03130
    [34] WANG H M, WANG Z Y, ZHOU C, et al. A gel polymer electrolyte with Al2O3 nanofibers skeleton for lithium-sulfur batteries[J]. Science China Materials, 2023, 66(3): 913-922. doi: 10.1007/s40843-022-2252-1
    [35] XIE P, YANG R, ZHOU Y, et al. Rationally designing composite gel polymer electrolyte enables high sulfur utilization and stable lithium anode[J]. Chemical Engineering Journal, 2022, 450: 138195. doi: 10.1016/j.cej.2022.138195
    [36] ZHANG H, CHEN J, LIU J, et al. Gel electrolyte with flame retardant polymer stabilizing lithium metal towards lithium-sulfur battery[J]. Energy Storage Materials, 2023, 61: 102885. doi: 10.1016/j.ensm.2023.102885
    [37] WANG W P, ZHANG J, YIN Y X, et al. A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries[J]. Advanced Materials, 2020, 32(23): 2000302. doi: 10.1002/adma.202000302
    [38] LI C C, WANG W P, FENG X X, et al. High-Performance Quasi-Solid-State Lithium-Sulfur Battery with a Controllably Solidified Cathode-Electrolyte Interface[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 19066-19074.
    [39] YANG Y J, WANG R, XUE J X, et al. In situ forming asymmetric bi-functional gel polymer electrolyte in lithium–sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(48): 27390-27397. doi: 10.1039/D1TA06007D
    [40] ZHOU J, JI H, LIU J, et al. A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery[J]. Energy Storage Materials, 2019, 22: 256-264. doi: 10.1016/j.ensm.2019.01.024
    [41] ZHANG Y J, XING Z Y, WANG W P, et al. Mo2C Electrocatalysts for Kinetically Boosting Polysulfide Conversion in Quasi-Solid-State Lithium-Sulfur Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45651-45660.
    [42] GUO Y, LU J, JIN Z, et al. InPc-modified gel electrolyte based on in situ polymerization in practical high-loading lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 469: 143714. doi: 10.1016/j.cej.2023.143714
    [43] HAN D D, LIU S, LIU Y T, et al. Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2018, 6(38): 18627-18634. doi: 10.1039/C8TA07685E
    [44] ZHAO E, NIE K, YU X, et al. Advanced characterization techniques in promoting mechanism understanding for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707543. doi: 10.1002/adfm.201707543
    [45] ZHANG L, QIAN T, ZHU X, et al. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries[J]. Chemical Society Reviews, 2019, 48(22): 5432-5453. doi: 10.1039/C9CS00381A
    [46] MAHANKALI K, THANGAVEL N K, REDDY A L M. In situ electrochemical mapping of lithium-sulfur battery interfaces using AFM-SECM[J]. Nano Letters, 2019, 19(8): 5229-5236. doi: 10.1021/acs.nanolett.9b01636
    [47] WANG Z, TANG Y, ZHANG L, et al. In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures[J]. Small, 2020, 16(28): 2001899. doi: 10.1002/smll.202001899
    [48] LANG S Y, SHI Y, GUO Y G, et al. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie International Edition, 2016, 55(51): 15835-15839. doi: 10.1002/anie.201608730
    [49] SONG Y X, SHI Y, WAN J, et al. Dynamic visualization of cathode/electrolyte evolution in quasi-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(25): 2000465. doi: 10.1002/aenm.202000465
    [50] TAN J, LIU D, XU X, et al. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: a review[J]. Nanoscale, 2017, 9(48): 19001-19016. doi: 10.1039/C7NR06819K
    [51] WU H L, HUFF L A, GEWIRTH A A. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries[J]. ACS applied materials & interfaces, 2015, 7(3): 1709-1719.
    [52] LUO Y, FANG Z, DUAN S, et al. Direct Monitoring of Li2S2 Evolution and Its Influence on the Reversible Capacities of Lithium-Sulfur Batteries[J]. Angewandte Chemie International Edition, 2023, 62(11): e202215802. doi: 10.1002/anie.202215802
    [53] MENG X, LIU Y, MA Y, et al. Diagnosing and Correcting the Failure of the Solid-State Polymer Electrolyte for Enhancing Solid-State Lithium-Sulfur Batteries[J]. Advanced Materials, 2023, 35(22): 2212039. doi: 10.1002/adma.202212039
    [54] JIA L, WANG J, REN S, et al. Unraveling shuttle effect and suppression strategy in lithium/sulfur cells by in situ/operando X-ray absorption spectroscopic characterization[J]. Energy & Environmental Materials, 2021, 4(2): 222-228.
    [55] PREHAL C, VON MENTLEN J M, Drvarič T S, et al. On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering[J]. Nature communications, 2022, 13(1): 6326. doi: 10.1038/s41467-022-33931-4
    [56] ZHANG X, LI X, ZHANG Y, et al. Accelerated Li+ Desolvation for Diffusion Booster Enabling Low-Temperature Sulfur Redox Kinetics via Electrocatalytic Carbon-Grazfted-CoP Porous Nanosheets[J]. Advanced Functional Materials, 2023, 33(36): 2302624. doi: 10.1002/adfm.202302624
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 修回日期:  2024-06-12
  • 录用日期:  2024-06-21
  • 网络出版日期:  2024-07-05

目录

    /

    返回文章
    返回