Property assessment of wood-based photothermal evaporator with 2D+3D water supplying
-
摘要: 近年来,随着经济和社会快速发展,全球淡水资源需求量不断增加,导致全球淡水资源愈加紧缺。海水淡化是目前解决淡水短缺问题最好的方式之一。为实现海水的快速蒸发,本课题制备了高度为20 mm、碳化层厚度为3 mm的脱木素轻木木基光热材料(CDW),通过SEM、FT-IR、Raman光谱、Uv-Vis-NIR吸收光谱等表征实验证实所制备的材料具有丰富的孔道和良好的吸光性能,有利于水的光热蒸发。构建2D+3D供水的小型光热蒸发器,采用吸水纸向光热材料供水,对所制备的CDW材料进行了光热水蒸发性能评价,所获得的平均蒸发速率为1.5310 kg/(m2·h),较碳化原木有明显提升。通过与无供水情况下的光热实验对比,证实吸水纸能够稳定给材料提供水源;通过与材料直接接触水面的3D供水情况作对比,证实了2D+3D供水结构的优越性。Abstract: In recent years, with the rapid development of the economy and society, the global demand for freshwater resources has been continuously increasing, leading to an increasing shortage of freshwater resources worldwide. Desalination of seawater is one of the best ways to solve the problem of freshwater shortage recently. In order to achieve rapid evaporation of seawater, a photothermal material based on a delignified balsa wood (CDW) was prepared, which had a height of 20 mm and a carbonization layer with thickness of 3 mm. Characterization experiments such as SEM, FT-IR, Raman, and UV-Vis-NIR absorption spectrum have confirmed that the prepared material has abundant pores and high solar absorbance, which is beneficial for photothermal evaporation. A small photothermal evaporator with 2D+3D water supplying paths, transferring water to the photothermal material using absorbent paper, was used to evaluate the evaporation performance of CDW. The average evaporation rate of the prepared CDW material is 1.5310 kg/(m2·h). The evaporation rate is higher than the directly carbonized balsa wood. The comparison between the above results and that without water supply confirmed that the absorbent paper can steadily supply water to the material. The advantages of the 2D+3D water supplying structure are also observed when compared with the 3D water supplying structure.
-
Key words:
- Balsa wood /
- Evaporation /
- Solar energy /
- Carbonized wood /
- Seawater desalination /
- Composite
-
图 1 光热实验示意图 (a)装置整体(1—氙灯,2—小型蒸发器,3—电子天平); (b)2D+3D供水通道示意图(1—碳化层,2、4、9—PS隔热泡沫,3—材料输水层,5—空气层,6—吸水纸,7—水体,8—烧杯)
Figure 1. Schematic diagram of photothermal experiment (a) Apparatus(1- xenon lamp, 2- small evaporator, 3- elec-tronic balance); (b)Schematic diagram of 2D+3D water supply channel(1- carbonization layer, 2、4、9- PS insulated foam, 3- material water transport layer, 5- air, 6- absorbent paper, 7- water, 8- beaker)
表 1 CDW与其他文献工作报道的材料对比表
Table 1. Comparison of materials reported by CDW and other literatures (1 sun)
Material Evaporation rate/(kg·(m2·h)−1) Evaporation efficiency/% Reference APDA-Wood 0.91 77.0 Zou et al.(2021) CS-Wood 0.95 67.9 Wang et al.(2019) F-Wood 1.05 72.0 Xue et al.(2020) CPS 1.20 82.2 Lu et al.(2020) Fe-D-Wood 1.30 73.0 Song et al.(2021) ALD/Chinese Ink-coated Wood 1.31 82.2 Yang et al.(2019) PPy-Wood 1.33 83.0 Huang et al.(2019) Wood@ATP 1.42 90.8 Chen et al.(2017) CDW 1.53 91.5 This work Notes:APDA-Wood: Wood-based material modified with arginine polydopamine; CS-Wood: candle soot-decorated wood;
F-Wood: Wood treated with alcohol flame; CPS: Carbonized pencil shaving; Fe-D-Wood: Fe3O4/polyvinyl alcohol decorated delignified wood; ALD/Chinese Ink-coated Wood: Wood-based material loaded with Chinese ink; PPy-Wood: Wood loaded with polypyrrole; Wood@ATP: Aluminophosphate-treated wood; CDW: Carbonized delignified wood. -
[1] 白炳林. 基于碳复合材料光热转换太阳能蒸汽海水淡化实验研究[D]. 内蒙古: 内蒙古工业大学, 2020.BAI B L. Experimental study on seawater desalination of solar steam generation based on photothermal conversion of carbon composites[D]. Neimenggu: Inner Mongolia University of Technology, 2020(in Chinese). [2] WANG Z H, LIU Y M, TAO P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J]. Small, 2014, 10(16): 3234-3239. doi: 10.1002/smll.201401071 [3] GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5(1): 4449. doi: 10.1038/ncomms5449 [4] NI G, LI G, BORISKINA SVETLANA V, et al. Steam generation under one sun enabled by a floating structure with thermal concentration[J]. Nature Energy, 2016, 1(9): 16126. doi: 10.1038/nenergy.2016.126 [5] 王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10): 123-133.WANG Z, WANG X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123-133(in Chinese). [6] 王小青, 戴鑫建, 管浩等. 木基太阳能界面蒸发器研究进展[J]. 林业工程学报, 2023, 8(3): 1-10.WANG X Q, DAI X J, GUAN H, et al. Research progress of wood-based interfacial solar steam generator[J]. Journal of Forestry Engineering, 2023, 8(3): 1-10(in Chinese). [7] 杨林涛. 木基光热转化材料的制备及海水淡化性能研究[D]. 哈尔滨: 东北林业大学, 2020.YANG L T. Preparation of wood-based photothermal conversion materials and their seawater desalination performance[D]. Haerbin: Northeast Forestry University, 2020(in Chinese). [8] 施镭, 周凝宇, 杨青峰等. 木基光热复合材料用于海水淡化的研究进展[J]. 化工新型材料, 2022, 50(S1): 66-74+82.SHI L, ZHOU N Y, YANG Q F, et al. Research progress on wood-based photothermal composite for seawater desalination[J]. New Chemical Materials, 2022, 50(S1): 66-74+82(in Chinese). [9] 于郑月. 植物光热转换材料的制备及水处理性能研究[D]. 哈尔滨: 哈尔滨师范大学, 2022.YU Z Y. Preparation of plant photothermal conversion materials and study on water treatment performance[D]. Haerbin: Harbin Normal University, 2022(in Chinese). [10] LI Y J, GAO T T, YANG Z, et al. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J]. Nano Energy, 2017, 41: 201-209. doi: 10.1016/j.nanoen.2017.09.034 [11] LI W G, ZHENG L, BERTELSMANN K, et al. Portable Low-Pressure Solar Steaming-Collection Unisystem with Polypyrrole Origamis[J]. Advanced Materials, 2019, 31(29): 1900720. doi: 10.1002/adma.201900720 [12] LI X Q, XU W C, TANG M Y, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): 13953-13958. doi: 10.1073/pnas.1613031113 [13] ZHOU X Y, ZHAO F, GUO Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8): 1985-1992. [14] JIANG Q, GHOLAMI DERAMI H, GHIM D, et al. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2017, 5(35): 18397-18402. doi: 10.1039/C7TA04834C [15] ZHAO F, ZHOU X Y, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology, 2018, 13(6): 489-495. doi: 10.1038/s41565-018-0097-z [16] STORER D P, PHELPS J L, WU X, et al. Graphene and Rice-Straw-Fiber-Based 3D photothermal aerogels for highly efficient solar evaporation[J]. ACS applied materials & intefaces, 2020, 12(13): 15279-15287. [17] GU Y J, WANG D N, GAO Y, et al. Solar-powered high-performance lignin-wood evaporator for solar steam generation[J]. Advanced Functional Materials, 2023, 33: 2306947. doi: 10.1002/adfm.202306947 [18] 石晓桐, 郝晓峰, 孙德林, 等. 脱木质素处理对木材组分和物化性能的影响研究[J]. 林产工业, 2023, 60(5): 21-25,44.SHI X T, HAO X F, SUN D L, et al. Effects of delignification treatment on wood composition and physicochemical properties[J]. China Forest Products Industry, 2023, 60(5): 21-25,44(in Chinese). [19] 刘慧滢, 杜金保, 印青等. 木材用于太阳能界面蒸发器的研究进展[J]. 化工新型材料, 2023, 51(S2): 588-595.LIU H Y, DU J B, YIN Q, et al. Research progress on wood for solar interface evaporators[J]. New Chemical Materials, 2023, 51(S2): 588-595(in Chinese). [20] 杨林涛, 李淑君, 张显权等. 太阳能驱动的木基表面水蒸气发生器的制备及性能测试[J]. 东北林业大学学报, 2020, 48(6): 100-104. doi: 10.3969/j.issn.1000-5382.2020.06.019YANG L T, LI S J, ZHANG X Q, et al. Preparation and performance test of solar-powered wood-based surface water vapor generator[J]. Journal of Northeast Forestry University, 2020, 48(6): 100-104(in Chinese). doi: 10.3969/j.issn.1000-5382.2020.06.019 [21] WINDEISEN E, STROBEL C, WEGENER G. Chemical changes during the production of thermo-treated beech wood[J]. Wood Science and Technology, 2007, 41(6): 523-536. doi: 10.1007/s00226-007-0146-5 [22] YAMAUCHI S, IIJIMA Y,DOI S. Spectrochemical characterization by FT-Raman spectroscopy of wood heat-treated at low temperatures: Japanese larch and beech[J]. Journal of Wood Science, 2005, 51(5): 498-506. [23] AGARWAL U P, MCSWEENY J D, RALPH S A. FT–Raman Investigation of Milled-Wood Lignins: Softwood, Hardwood, and Chemically Modified Black Spruce Lignins[J]. Journal of Wood Chemistry and Technology, 2011, 31(4): 324-344. doi: 10.1080/02773813.2011.562338 [24] STEWART D, WILSON H M, HENDRA P J, et al. Fourier-Transform Infrared and Raman Spectroscopic Study of Biochemical and Chemical Treatments of Oak Wood (Quercus rubra) and Barley (Hordeum vulgare) Straw[J]. Journal of Agricultural and Food Chemistry, 1995, 43(8): 2219-2225. doi: 10.1021/jf00056a047 [25] YABLONOYITCH E. Statistical ray optics[J]. Journal of the Optical Society of America, 1982, 72(7): 1917-1983. [26] YABLONOYITCH E. Intensity enhancement in textured optical sheets for solar cells[J]. Conference Record of the IEEE Photovoltaic Specialists Conference, 1982, 29(2): 501-506. [27] WANG C Y, ZHANG M, XU Y, et al. One-step synthesis of unique silica particles for the fabrication of bionic and stably superhydrophobic coatings on wood surface[J]. Advanced Powder Technology, 2014, 25(2): 530-535. doi: 10.1016/j.apt.2013.08.007 [28] TRAORE M, KAAL J, MARTINEZ CORTIZAS A. Differentiation between pine woods according to species and growing location using FTIR-ATR[J]. Wood Science and Technology, 2018, 52(2): 487-504. doi: 10.1007/s00226-017-0967-9 [29] CONG M Y, WANG F, ZHANG Y L, et al. An array structure of polydopamine/wood solar interfacial evaporator for high-efficiency water generation and desalination[J]. Solar Energy Materials and Solar Cells, 2023, 249: 112052. doi: 10.1016/j.solmat.2022.112052 [30] LI Y Y, FU Q L, ROJAS R, et al. Lignin-retaining transparent wood[J]. ChemSusChem, 2017, 10(17): 3445-3451. doi: 10.1002/cssc.201701089 [31] ZHANG M, SHI L, DU X L, et al. Janus mesoporous wood-based membrane for simultaneous oil/water separation, aromatic dyes removal, and seawater desalination[J]. Industrial Crops and Products, 2022, 188: 115643. doi: 10.1016/j.indcrop.2022.115643 [32] 宋莲. 木材表面亲疏水调控策略及高效太阳能蒸发材料的制备[D]. 南京: 南京林业大学, 2022.SONG L. Wood surface wettability control strategy and high efficiency solar evaporative materials preparation[D]. Nanjing: Nanjing Forestry University, 2022(in Chinese). [33] DELDICQUE D, ROUZAUD J-N, VELDE B. A Raman-HRTEM study of the carbonization of wood: A new Raman-based paleothermometer dedicated to archaeometry[J]. Carbon, 2016, 102: 319-329. doi: 10.1016/j.carbon.2016.02.042 [34] ÖZGENC Ö, DURMAZ S, BOYACI I H, et al. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171: 395-400. doi: 10.1016/j.saa.2016.08.026 [35] JIN K X, WANG K, CUI H S, et al. Application of Raman Spectroscopy to the Research on Lignin[J]. Scientia Silvae Sinicae, 2018, 54(3): 144-151. [36] SONG L, ZHANG X F, WANG Z, et al. Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation[J]. Desalination, 2021, 507: 115024. doi: 10.1016/j.desal.2021.115024 [37] ZOU Y, YANG P, YANG L, et al. Boosting solar steam generation by photothermal enhanced polydopamine/wood composites[J]. Polymer, 2021, 217: 123464. doi: 10.1016/j.polymer.2021.123464 [38] HUANG W, HU G, TIAN C, et al. Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation[J]. Sustainable Energy &. Fuels, 2019, 3(11): 3000-3008. [39] WANG Z, YAN Y, SHEN X, et al. Candle soot nanoparticle-decorated wood for efficient solar vapor generation[J]. Sustain Energy Fuels, 2019, 4(1): 354-361. [40] YANG H C, CHEN Z, XIE Y, et al. Chinese ink: a powerful photothermal material for solar steam generation[J]. Adv Mater Int, 2019, 6(1): 1-7. [41] LU Y, DAI T, FAN D, et al. Turning trash into treasure: Pencil waste–derived materials for solar-powered water evaporation[J]. Energy Technology, 2020, 8(10): 2000567. doi: 10.1002/ente.202000567 [42] XUE G, LIU K, CHEN Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 15052-15057. [43] CHEN T, WU Z, LIU Z, et al. Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19511-19518.
计量
- 文章访问数: 135
- HTML全文浏览量: 83
- 被引次数: 0