留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2D+3D供水的木基光热蒸发器及其性能评价

孙乐汀 刘会娥 陈爽 于洁 李婷

孙乐汀, 刘会娥, 陈爽, 等. 2D+3D供水的木基光热蒸发器及其性能评价[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 孙乐汀, 刘会娥, 陈爽, 等. 2D+3D供水的木基光热蒸发器及其性能评价[J]. 复合材料学报, 2024, 42(0): 1-9.
SUN Leting, LIU Hui’e, CHEN Shuang, et al. Property assessment of wood-based photothermal evaporator with 2D+3D water supplying[J]. Acta Materiae Compositae Sinica.
Citation: SUN Leting, LIU Hui’e, CHEN Shuang, et al. Property assessment of wood-based photothermal evaporator with 2D+3D water supplying[J]. Acta Materiae Compositae Sinica.

2D+3D供水的木基光热蒸发器及其性能评价

基金项目: 国家自然科学基金 (22078366)
详细信息
    通讯作者:

    刘会娥,博士,教授,研究方向为新型碳材料制备 E-mail: liuhuie@upc.edu.cn

  • 中图分类号: X703; TB332

Property assessment of wood-based photothermal evaporator with 2D+3D water supplying

Funds: National Natural Science Foundation of China (No.22078366)
  • 摘要: 近年来,随着经济和社会快速发展,全球淡水资源需求量不断增加,导致全球淡水资源愈加紧缺。海水淡化是目前解决淡水短缺问题最好的方式之一。为实现海水的快速蒸发,本课题制备了高度为20 mm、碳化层厚度为3 mm的脱木素轻木木基光热材料(CDW),通过SEM、FT-IR、Raman光谱、Uv-Vis-NIR吸收光谱等表征实验证实所制备的材料具有丰富的孔道和良好的吸光性能,有利于水的光热蒸发。构建2D+3D供水的小型光热蒸发器,采用吸水纸向光热材料供水,对所制备的CDW材料进行了光热水蒸发性能评价,所获得的平均蒸发速率为1.5310 kg/(m2·h),较碳化原木有明显提升。通过与无供水情况下的光热实验对比,证实吸水纸能够稳定给材料提供水源;通过与材料直接接触水面的3D供水情况作对比,证实了2D+3D供水结构的优越性。

     

  • 图  1  光热实验示意图 (a)装置整体(1—氙灯,2—小型蒸发器,3—电子天平); (b)2D+3D供水通道示意图(1—碳化层,2、4、9—PS隔热泡沫,3—材料输水层,5—空气层,6—吸水纸,7—水体,8—烧杯)

    Figure  1.  Schematic diagram of photothermal experiment (a) Apparatus(1- xenon lamp, 2- small evaporator, 3- elec-tronic balance); (b)Schematic diagram of 2D+3D water supply channel(1- carbonization layer, 2、4、9- PS insulated foam, 3- material water transport layer, 5- air, 6- absorbent paper, 7- water, 8- beaker)

    图  2  横切面的SEM (a)轻木原木(Mag=500×X); (b)脱木素木(Mag=500×X)

    Figure  2.  SEM of cross section (a)balsa (Mag=500×X); (b) delignified wood (Mag=500×X)

    图  3  纵切面的 SEM (a)轻木原木(Mag=200×X); (b)脱木素木(Mag=200×X)

    Figure  3.  SEM of longitudinal section (a)balsa (Mag=200×X); (b) delignified wood (Mag=200×X)

    图  4  碳化脱木素轻木木基光热材料(CDW)碳化层的横切面SEM (a) Mag=500×X;(b) Mag=100×X

    Figure  4.  SEM of photothermal material based on a deligni-fied balsa wood (CDW) carbonized layer’s cross section (a) Mag=500×X; (b) Mag=100×X

    图  5  CDW碳化层的纵切面SEM: 100 μm(Mag=100×X)

    Figure  5.  SEM of CDW carbonized layer’s longitudinal section: 100 μm (Mag=100×X)

    图  6  CDW和轻木原木的Uv-Vis-NIR吸收光谱

    Figure  6.  Uv-Vis-NIR absorption spectra of CDW and balsa

    图  7  CDW、脱木素木和轻木原木的FT-IR谱图

    Figure  7.  FT-IR of CDW, delignified wood and balsa

    图  8  CDW、脱木素木和轻木原木的拉曼谱图

    Figure  8.  Raman of CDW, delignified wood and balsa

    图  9  CDW在3 h内的有无供水情况 (a)水蒸发量曲线图;(b)材料顶面温度曲线图

    Figure  9.  CDW with or without water supply within 3 hours (a) weightlessness curves of water; (b) temperature curve of materials' surface

    图  10  材料(CDW、原木、脱木素木、碳化原木) 在 4 h 内 (a)水蒸发量曲线图;(b)材料顶面温度曲线图

    Figure  10.  Material (CDW, balsa, delignified balsa wood, carbonized balsa wood) within 4 hours (a) weightlessness curves of water; (b) temperature curve of materials' surface

    表  1  CDW与其他文献工作报道的材料对比表

    Table  1.   Comparison of materials reported by CDW and other literatures (1 sun)

    MaterialEvaporation rate/(kg·(m2·h)−1)Evaporation efficiency/%Reference
    APDA-Wood0.9177.0Zou et al.(2021)
    CS-Wood0.9567.9Wang et al.(2019)
    F-Wood1.0572.0Xue et al.(2020)
    CPS1.2082.2Lu et al.(2020)
    Fe-D-Wood1.3073.0Song et al.(2021)
    ALD/Chinese Ink-coated Wood1.3182.2Yang et al.(2019)
    PPy-Wood1.3383.0Huang et al.(2019)
    Wood@ATP1.4290.8Chen et al.(2017)
    CDW1.5391.5This work
    Notes:APDA-Wood: Wood-based material modified with arginine polydopamine; CS-Wood: candle soot-decorated wood;
    F-Wood: Wood treated with alcohol flame; CPS: Carbonized pencil shaving; Fe-D-Wood: Fe3O4/polyvinyl alcohol decorated delignified wood; ALD/Chinese Ink-coated Wood: Wood-based material loaded with Chinese ink; PPy-Wood: Wood loaded with polypyrrole; Wood@ATP: Aluminophosphate-treated wood; CDW: Carbonized delignified wood.
    下载: 导出CSV
  • [1] 白炳林. 基于碳复合材料光热转换太阳能蒸汽海水淡化实验研究[D]. 内蒙古: 内蒙古工业大学, 2020.

    BAI B L. Experimental study on seawater desalination of solar steam generation based on photothermal conversion of carbon composites[D]. Neimenggu: Inner Mongolia University of Technology, 2020(in Chinese).
    [2] WANG Z H, LIU Y M, TAO P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J]. Small, 2014, 10(16): 3234-3239. doi: 10.1002/smll.201401071
    [3] GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5(1): 4449. doi: 10.1038/ncomms5449
    [4] NI G, LI G, BORISKINA SVETLANA V, et al. Steam generation under one sun enabled by a floating structure with thermal concentration[J]. Nature Energy, 2016, 1(9): 16126. doi: 10.1038/nenergy.2016.126
    [5] 王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10): 123-133.

    WANG Z, WANG X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123-133(in Chinese).
    [6] 王小青, 戴鑫建, 管浩等. 木基太阳能界面蒸发器研究进展[J]. 林业工程学报, 2023, 8(3): 1-10.

    WANG X Q, DAI X J, GUAN H, et al. Research progress of wood-based interfacial solar steam generator[J]. Journal of Forestry Engineering, 2023, 8(3): 1-10(in Chinese).
    [7] 杨林涛. 木基光热转化材料的制备及海水淡化性能研究[D]. 哈尔滨: 东北林业大学, 2020.

    YANG L T. Preparation of wood-based photothermal conversion materials and their seawater desalination performance[D]. Haerbin: Northeast Forestry University, 2020(in Chinese).
    [8] 施镭, 周凝宇, 杨青峰等. 木基光热复合材料用于海水淡化的研究进展[J]. 化工新型材料, 2022, 50(S1): 66-74+82.

    SHI L, ZHOU N Y, YANG Q F, et al. Research progress on wood-based photothermal composite for seawater desalination[J]. New Chemical Materials, 2022, 50(S1): 66-74+82(in Chinese).
    [9] 于郑月. 植物光热转换材料的制备及水处理性能研究[D]. 哈尔滨: 哈尔滨师范大学, 2022.

    YU Z Y. Preparation of plant photothermal conversion materials and study on water treatment performance[D]. Haerbin: Harbin Normal University, 2022(in Chinese).
    [10] LI Y J, GAO T T, YANG Z, et al. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J]. Nano Energy, 2017, 41: 201-209. doi: 10.1016/j.nanoen.2017.09.034
    [11] LI W G, ZHENG L, BERTELSMANN K, et al. Portable Low-Pressure Solar Steaming-Collection Unisystem with Polypyrrole Origamis[J]. Advanced Materials, 2019, 31(29): 1900720. doi: 10.1002/adma.201900720
    [12] LI X Q, XU W C, TANG M Y, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): 13953-13958. doi: 10.1073/pnas.1613031113
    [13] ZHOU X Y, ZHAO F, GUO Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8): 1985-1992.
    [14] JIANG Q, GHOLAMI DERAMI H, GHIM D, et al. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2017, 5(35): 18397-18402. doi: 10.1039/C7TA04834C
    [15] ZHAO F, ZHOU X Y, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology, 2018, 13(6): 489-495. doi: 10.1038/s41565-018-0097-z
    [16] STORER D P, PHELPS J L, WU X, et al. Graphene and Rice-Straw-Fiber-Based 3D photothermal aerogels for highly efficient solar evaporation[J]. ACS applied materials & intefaces, 2020, 12(13): 15279-15287.
    [17] GU Y J, WANG D N, GAO Y, et al. Solar-powered high-performance lignin-wood evaporator for solar steam generation[J]. Advanced Functional Materials, 2023, 33: 2306947. doi: 10.1002/adfm.202306947
    [18] 石晓桐, 郝晓峰, 孙德林, 等. 脱木质素处理对木材组分和物化性能的影响研究[J]. 林产工业, 2023, 60(5): 21-25,44.

    SHI X T, HAO X F, SUN D L, et al. Effects of delignification treatment on wood composition and physicochemical properties[J]. China Forest Products Industry, 2023, 60(5): 21-25,44(in Chinese).
    [19] 刘慧滢, 杜金保, 印青等. 木材用于太阳能界面蒸发器的研究进展[J]. 化工新型材料, 2023, 51(S2): 588-595.

    LIU H Y, DU J B, YIN Q, et al. Research progress on wood for solar interface evaporators[J]. New Chemical Materials, 2023, 51(S2): 588-595(in Chinese).
    [20] 杨林涛, 李淑君, 张显权等. 太阳能驱动的木基表面水蒸气发生器的制备及性能测试[J]. 东北林业大学学报, 2020, 48(6): 100-104. doi: 10.3969/j.issn.1000-5382.2020.06.019

    YANG L T, LI S J, ZHANG X Q, et al. Preparation and performance test of solar-powered wood-based surface water vapor generator[J]. Journal of Northeast Forestry University, 2020, 48(6): 100-104(in Chinese). doi: 10.3969/j.issn.1000-5382.2020.06.019
    [21] WINDEISEN E, STROBEL C, WEGENER G. Chemical changes during the production of thermo-treated beech wood[J]. Wood Science and Technology, 2007, 41(6): 523-536. doi: 10.1007/s00226-007-0146-5
    [22] YAMAUCHI S, IIJIMA Y,DOI S. Spectrochemical characterization by FT-Raman spectroscopy of wood heat-treated at low temperatures: Japanese larch and beech[J]. Journal of Wood Science, 2005, 51(5): 498-506.
    [23] AGARWAL U P, MCSWEENY J D, RALPH S A. FT–Raman Investigation of Milled-Wood Lignins: Softwood, Hardwood, and Chemically Modified Black Spruce Lignins[J]. Journal of Wood Chemistry and Technology, 2011, 31(4): 324-344. doi: 10.1080/02773813.2011.562338
    [24] STEWART D, WILSON H M, HENDRA P J, et al. Fourier-Transform Infrared and Raman Spectroscopic Study of Biochemical and Chemical Treatments of Oak Wood (Quercus rubra) and Barley (Hordeum vulgare) Straw[J]. Journal of Agricultural and Food Chemistry, 1995, 43(8): 2219-2225. doi: 10.1021/jf00056a047
    [25] YABLONOYITCH E. Statistical ray optics[J]. Journal of the Optical Society of America, 1982, 72(7): 1917-1983.
    [26] YABLONOYITCH E. Intensity enhancement in textured optical sheets for solar cells[J]. Conference Record of the IEEE Photovoltaic Specialists Conference, 1982, 29(2): 501-506.
    [27] WANG C Y, ZHANG M, XU Y, et al. One-step synthesis of unique silica particles for the fabrication of bionic and stably superhydrophobic coatings on wood surface[J]. Advanced Powder Technology, 2014, 25(2): 530-535. doi: 10.1016/j.apt.2013.08.007
    [28] TRAORE M, KAAL J, MARTINEZ CORTIZAS A. Differentiation between pine woods according to species and growing location using FTIR-ATR[J]. Wood Science and Technology, 2018, 52(2): 487-504. doi: 10.1007/s00226-017-0967-9
    [29] CONG M Y, WANG F, ZHANG Y L, et al. An array structure of polydopamine/wood solar interfacial evaporator for high-efficiency water generation and desalination[J]. Solar Energy Materials and Solar Cells, 2023, 249: 112052. doi: 10.1016/j.solmat.2022.112052
    [30] LI Y Y, FU Q L, ROJAS R, et al. Lignin-retaining transparent wood[J]. ChemSusChem, 2017, 10(17): 3445-3451. doi: 10.1002/cssc.201701089
    [31] ZHANG M, SHI L, DU X L, et al. Janus mesoporous wood-based membrane for simultaneous oil/water separation, aromatic dyes removal, and seawater desalination[J]. Industrial Crops and Products, 2022, 188: 115643. doi: 10.1016/j.indcrop.2022.115643
    [32] 宋莲. 木材表面亲疏水调控策略及高效太阳能蒸发材料的制备[D]. 南京: 南京林业大学, 2022.

    SONG L. Wood surface wettability control strategy and high efficiency solar evaporative materials preparation[D]. Nanjing: Nanjing Forestry University, 2022(in Chinese).
    [33] DELDICQUE D, ROUZAUD J-N, VELDE B. A Raman-HRTEM study of the carbonization of wood: A new Raman-based paleothermometer dedicated to archaeometry[J]. Carbon, 2016, 102: 319-329. doi: 10.1016/j.carbon.2016.02.042
    [34] ÖZGENC Ö, DURMAZ S, BOYACI I H, et al. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171: 395-400. doi: 10.1016/j.saa.2016.08.026
    [35] JIN K X, WANG K, CUI H S, et al. Application of Raman Spectroscopy to the Research on Lignin[J]. Scientia Silvae Sinicae, 2018, 54(3): 144-151.
    [36] SONG L, ZHANG X F, WANG Z, et al. Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation[J]. Desalination, 2021, 507: 115024. doi: 10.1016/j.desal.2021.115024
    [37] ZOU Y, YANG P, YANG L, et al. Boosting solar steam generation by photothermal enhanced polydopamine/wood composites[J]. Polymer, 2021, 217: 123464. doi: 10.1016/j.polymer.2021.123464
    [38] HUANG W, HU G, TIAN C, et al. Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation[J]. Sustainable Energy &. Fuels, 2019, 3(11): 3000-3008.
    [39] WANG Z, YAN Y, SHEN X, et al. Candle soot nanoparticle-decorated wood for efficient solar vapor generation[J]. Sustain Energy Fuels, 2019, 4(1): 354-361.
    [40] YANG H C, CHEN Z, XIE Y, et al. Chinese ink: a powerful photothermal material for solar steam generation[J]. Adv Mater Int, 2019, 6(1): 1-7.
    [41] LU Y, DAI T, FAN D, et al. Turning trash into treasure: Pencil waste–derived materials for solar-powered water evaporation[J]. Energy Technology, 2020, 8(10): 2000567. doi: 10.1002/ente.202000567
    [42] XUE G, LIU K, CHEN Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 15052-15057.
    [43] CHEN T, WU Z, LIU Z, et al. Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19511-19518.
  • 加载中
计量
  • 文章访问数:  135
  • HTML全文浏览量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-03-28
  • 录用日期:  2024-04-04
  • 网络出版日期:  2024-04-26

目录

    /

    返回文章
    返回