留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有不同拓扑结构的海藻酸钠-明胶复合水凝胶的3D打印制备及其性能

孙士儒 刘阳 王景辉 连小洁 安美文

孙士儒, 刘阳, 王景辉, 等. 具有不同拓扑结构的海藻酸钠-明胶复合水凝胶的3D打印制备及其性能[J]. 复合材料学报, 2022, 39(8): 4049-4056. doi: 10.13801/j.cnki.fhclxb.20210917.001
引用本文: 孙士儒, 刘阳, 王景辉, 等. 具有不同拓扑结构的海藻酸钠-明胶复合水凝胶的3D打印制备及其性能[J]. 复合材料学报, 2022, 39(8): 4049-4056. doi: 10.13801/j.cnki.fhclxb.20210917.001
SUN Shiru, LIU Yang, WANG Jinghui, et al. Preparation and properties of sodium alginate-gelatin composite hydrogels with different topological structures by 3D printing[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4049-4056. doi: 10.13801/j.cnki.fhclxb.20210917.001
Citation: SUN Shiru, LIU Yang, WANG Jinghui, et al. Preparation and properties of sodium alginate-gelatin composite hydrogels with different topological structures by 3D printing[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4049-4056. doi: 10.13801/j.cnki.fhclxb.20210917.001

具有不同拓扑结构的海藻酸钠-明胶复合水凝胶的3D打印制备及其性能

doi: 10.13801/j.cnki.fhclxb.20210917.001
基金项目: 国家自然科学基金(31870934;12002232);山西省重点研发计划-国际科技合作资助项目(201803D421076);功能蛋白山西省重点实验室联合共建协议(213310462—J)
详细信息
    作者简介:

    安美文,博士,教授,博士生导师,研究方向为生物力学  E-mail:meiwen_an@163.com

    通讯作者:

    刘阳,博士,副教授,硕士生导师,研究方向为生物力学、生物材料  E-mail:liu_yang_tai_yuan@163.com

    安美文,博士,教授,博士生导师,研究方向为生物力学 E-mail: meiwen_an@163.com

  • 中图分类号: TB332

Preparation and properties of sodium alginate-gelatin composite hydrogels with different topological structures by 3D printing

  • 摘要: 模拟皮肤真皮胶原蛋白纤维多角度排列的结构—3D打印相邻两层纤维夹角分别为45°、60°和90°三种拓扑结构的海藻酸钠(SA)-明胶(GEL)复合支架,研究拓扑结构对水凝胶支架性能的影响。SEM表征支架的微观结构,测量各组支架的含水率、孔隙率、力学性能、溶胀率和体外降解率,FTIR测试SA、GEL和复合水凝胶的官能团,细胞计数试剂盒(CCK-8)和免疫荧光染色检测支架对成纤维细胞(HFb)的毒性与支架的生物相容性进行表征。结果表明:各组支架拓扑结构清晰;FTIR图谱中吸收峰的相对位置提供了支架材料的化学结构;三组支架含水率和孔隙率均大于80%;45°、60°和90°支架的压缩弹性模量分别为(3.57±0.14) kPa、(3.18±0.31) kPa和(2.03±0.29) kPa。CCK-8结果表明,三组支架上细胞活性均保持在无支架对照组的90%以上。微丝和核染色结果显示,HFb接种第1天时在45°支架上的铺展优于其他两组,随着时间增加,HFb在三组支架上明显增殖,表明支架具有良好的细胞相容性。本文设计与表征了不同拓扑结构SA-GEL支架的性能,并为后续组织工程真皮的构建及在三维基质上分析HFb集体迁移的研究提供了重要基础。

     

  • 图  1  3D打印不同拓扑结构海藻酸钠(SA)-明胶(GEL)支架模型

    Figure  1.  3D Print a different topology sodium alginate (SA)-gelatin (GEL) composite scaffolds model

    图  2  不同SA-GEL支架的微观形貌

    Figure  2.  Micromorphologies of different SA-GEL scaffolds

    图  3  SA、GEL和SA-GEL水凝胶的FTIR图谱

    Figure  3.  FTIR spectra of SA, GEL and SA-GEL hydrogel

    图  4  不同拓扑结构SA-GEL支架的含水率

    Figure  4.  Moisture content of different topological SA-GEL scaffolds

    图  5  不同SA-GEL支架的力学性能:(a) 应力-应变关系曲线;(b) 压缩弹性模量

    Figure  5.  Mechanical properties of different SA-GEL scaffolds: (a) Stress-strain curves; (b) Compression modulus

    图  6  不同拓扑结构SA-GEL支架的溶胀率

    Figure  6.  Swelling ratio of different SA-GEL topological scaffolds

    图  7  不同拓扑结构SA-GEL支架的体外降解率

    Figure  7.  Degradation ratio of different SA-GEL topological scaffolds in vitro

    图  8  细胞计数试剂盒(CCK-8)法测试三组SA-GEL支架1天 (a)、4天 (b)、7天 (c) 的细胞活性和细胞增殖对应的光密度(OD)值 (d)

    Figure  8.  Cell counting kit-8 (CCK-8) determined cell viability in three groups of SA-GEL scaffolds 1 day (a), 4 days (b), 7 days (c) and cell proliferation respond optical density (OD) value (d)

    图  9  45° ((a)~(c))、60° ((d)~(f))、90° ((g)~(i)) SA-GEL支架分别培养1、4、7天后的微丝、核染色(细胞骨架—绿色荧光、细胞核—蓝色荧光)

    Figure  9.  Microfilament and nuclear staining of 45° ((a)-(c)), 60° ((d)-(f)) and 90° ((g)-(i)) SA-GEL scaffolds for 1 day, 4 days, 7 days, respectively(Cytoskeleton—Green fluorescence, Nucleus—Blue fluorescence)

    表  1  不同拓扑结构SA-GEL支架的孔隙率

    Table  1.   Porosity of different topological SA-GEL scaffolds

    Support typePorosity/%
    45° 81.51±2.97
    60° 84.47±1.68
    90° 83.64±0.34
    下载: 导出CSV
  • [1] XIONG S, ZHANG X, LU P, et al. A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization[J]. Scientific Reports,2017,7(1):4288-4300. doi: 10.1038/s41598-017-04149-y
    [2] MAVER T, MAVER U, KARIN S, et al. Advanced therapies of skin injuries[J]. Wiener Klinische Wochenschrift,2015,127(5):187-198.
    [3] HERNDON D N, BARROW R E, RUTAN R L, et al. A compa-rison of conservative versus early excision. Therapies in severely burned patients[J]. Annals of Surgery,1989,209(5):547-554. doi: 10.1097/00000658-198905000-00006
    [4] KOMAL V, ATUL C, SHWETA T, et al. Advances in skin regeneration using tissue engineering[J]. International Journal of Molecular Sciences,2017,18(4):789-808.
    [5] 肖仕初, 郑勇军. 组织工程皮肤现状与挑战[J]. 中华烧伤杂志, 2020, 36(3):166-170. doi: 10.3760/cma.j.cn501120-20191202-00449

    XIAO Shichu, ZHENG Yongjun. Status and challenges of tissue engineered skin[J]. Chinese Journal of Burns,2020,36(3):166-170(in Chinese). doi: 10.3760/cma.j.cn501120-20191202-00449
    [6] MEL A D, SEIFALIAN A M, BIRCHALL M A. Orchestrating cell/material interactions for tissue engineering of surgical implants[J]. Macromolecular Bioscience,2012,12(8):1010-1021. doi: 10.1002/mabi.201200039
    [7] YU J R, NAVARRO J, COBURN J C, et al. Current and future perspectives on skin tissue engineering: Key features of biomedical research, translational assessment, and clinical application[J]. Advanced Healthcare Materials,2019,8(5):61-80.
    [8] 曹成波, 王一兵, 沈翔, 等. 组织工程皮肤支架材料[J]. 中国生物工程杂志, 2005, 36(10):58-62.

    CAO Chengbo, WANG Yibing, SHEN Xiang, et al. Scaffolds for skin tissue engineering[J]. Journal of Chinese Biotechnology,2005,36(10):58-62(in Chinese).
    [9] DV A, ND A, NB B, et al. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances[J]. Biomaterials,2019,216:119267-119336. doi: 10.1016/j.biomaterials.2019.119267
    [10] LIU J, CHI J, WANG K, et al. Full-thickness wound healing using 3D bioprinted gelatin-alginate scaffolds in mice: A histopathological study[J]. International Journal of Clini-cal and Experimental Pathology, 2016,15(6): 241-257.
    [11] PAHLEVANZADEH F, MOKHTARI H, BAKHSHESHIRAD H R, et al. Recent trends in three-dimensional bioinks based on alginate for biomedical applications[J]. Materials, 2020, 13(18): 3980-4017.
    [12] BALAKRISHNAN B, BANERJEE R. Biopolymer-based hydrogels for cartilage tissue engineering[J]. Chemical Reviews,2011,111(8):4453-4474. doi: 10.1021/cr100123h
    [13] ABOWSKA M B, CIERLUK K, JANKOWSKA A M, et al. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting[J]. Materials,2021,14(4):858-882. doi: 10.3390/ma14040858
    [14] PELTOLA S M, MELCHELS F, GRIJPMA D W, et al. A review of rapid prototyping techniques for tissue engineering purposes, annals of medicine, informa healthcare[J]. Informa Uk Ltd Uk,2009,62(1):336-352.
    [15] CUI H, NOWICKI M, FISHER J P, et al. 3D bioprinting for organ regeneration[J]. Advanced Healthcare Materials,2016,6(1):1601118.
    [16] SMANDRI A, NORDIN A, HWEI N M, et al. Natural 3D-printed bioinks for skin regeneration and wound healing: A systematic review[J]. Polymers, 2020, 12(8): 1782-1811.
    [17] JANG J, JU Y P, GE G, et al. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics[J]. Biomaterials,2017,156:88-106.
    [18] 赖晓文, 何晓升, 钟晓春, 等. 增生性瘢痕组织内透明质酸含量与含水量[J]. 赣南医学院学报, 2008, 28(3):324-325. doi: 10.3969/j.issn.1001-5779.2008.03.005

    LAI Xiaowen, HE Xiaosheng, ZHONG Xiaochun, et al. Hyaluronic acid content and water content in hypertrophic scar tissue[J]. Journal of Gannan Medical College,2008,28(3):324-325(in Chinese). doi: 10.3969/j.issn.1001-5779.2008.03.005
    [19] 左丹英, 王琰, 陶咏真. 组织工程皮肤支架材料与制备方法的研究进展[J]. 武汉纺织大学学报, 2010, 23(2):22-26.

    ZUO Danying, WANG Yan, TAO Yongzhen. Research progress in materials and preparation methods of skin tissue engineering scaffoldings[J]. Journal of Wuhan Textile University,2010,23(2):22-26(in Chinese).
    [20] 张豪杰, 邢天龙, 周燕, 等. 具有梯度孔结构特征的聚己内酯多孔支架的3D打印制备及表征[J]. 高校化学工程学报, 2018, 32(3):708-717.

    ZHANG Haojie, XING Tianlong, ZHOU Yan, et al. Preparation and characterization of polycaprolactone porous scaffolds with gradient pore structure by 3D printing[J]. Jour-nal of Chemical Engineering,2018,32(3):708-717(in Chinese).
    [21] 蒋柯. 海藻酸钠-明胶复合凝胶支架打印过程研究及性能分析[D]. 杭州: 杭州电子科技大学, 2019.

    JIANG Ke. Study on printing process and performance analysis of sodium alginate-gelatin composite gel scaffold[D]. Hangzhou: Hangzhou Dianzi University, 2019(in Chinese).
    [22] WANG X, WANG Q, XU C. Nanocellulose-based inks for 3D bioprinting: Key aspects in research development and challenging perspectives in applications-A mini review[J]. Bioengineering,2020,7(2):40-60.
    [23] XU C, MOLINO B Z, WANG X, et al. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application[J]. Journal of Mater-ials Chemistry B,2018,6(43):7066-7075. doi: 10.1039/C8TB01757C
    [24] WANG S, XIONG Y, CHEN J, et al. Three dimensional printing bilayer membrane scaffold promotes wound healing[J]. Frontiers in Bioengineering and Biotechnology,2019,7:348-379.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1189
  • HTML全文浏览量:  579
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2021-09-01
  • 录用日期:  2021-09-06
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回