留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池硅氧负极材料固相预锂化研究进展

李祥 杨乐之

李祥, 杨乐之. 锂离子电池硅氧负极材料固相预锂化研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 李祥, 杨乐之. 锂离子电池硅氧负极材料固相预锂化研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
LI Xiang, YANG Lezhi. Research progress in solid-phase prelithiation of silicon-oxygen anode material for lithium-ion batteries[J]. Acta Materiae Compositae Sinica.
Citation: LI Xiang, YANG Lezhi. Research progress in solid-phase prelithiation of silicon-oxygen anode material for lithium-ion batteries[J]. Acta Materiae Compositae Sinica.

锂离子电池硅氧负极材料固相预锂化研究进展

详细信息
    通讯作者:

    杨乐之,博士,高级工程师,硕士生导师,研究方向为新能源材料与器件 E-mail: yanglz@minmetals.com

  • 中图分类号: TB331; TB334

Research progress in solid-phase prelithiation of silicon-oxygen anode material for lithium-ion batteries

  • 摘要: 固相预锂化技术因其简单的制备工艺、环境友好性以及出色的预锂化效果已成为硅氧负极材料常用的预锂化方法之一。本文对硅氧材料(SiOx)固相预锂化技术进行了综述,分类介绍了固相预锂化技术采用的锂源,从电化学性能、工艺流程复杂性以及环境友好性等方面对各类固相预锂化技术进行了对比分析。归纳了锂源湿法包覆SiOx以及偏硅酸锂(Li2SiO3)组分调控对固相预锂化性能的提升效果。在此基础之上讨论了现有固相预锂化存在的问题、解决方法以及新的发展方向,并展望了固相预锂化在锂离子电池SiOx中的应用趋势。

     

  • 图  1  SiOx固相预锂化生产的主要工艺步骤

    Figure  1.  The main process steps of SiOx solid phase prelithiation production

    图  2  CVD碳包覆SiOx示意图(a)和SiOx@C首次脱嵌锂过程示意图(b)、锂金属固相预锂化SiOx@C示意图(c) 以及预锂化SiOx@C的脱嵌锂过程示意图(d)

    Figure  2.  Schematic diagram of CVD carbon-coated SiOx (a) and the first lithium intercalation and deintercalation process of SiOx@C (b) schematic diagram of lithium metal solid-phase prelithiation of SiOx@C (c) and the lithium deintercalation process of prelithiated SiOx@C (d).

    图  3  不同SiOx/Li比的循环性能 (a) 和首次充放电曲线 (b) [28];(c) ICE与锂粉比例的函数关系图[8]

    Figure  3.  The cycling performance (a) and initial charge-discharge curves (b) of SiOx with different SiOx/Li ratios[28]; (c) The function relationship of the proportion of ICE and lithium powder[8]

    图  4  SiOx@Li2SiO3/C样品的拉曼光谱 (a) 和 2 A·g−1下的循环性能 (b) [30]; (c) Si@ Li2SiO3制备路线示意图[31]

    Figure  4.  Raman spectra (a) and cycling performance at 2 A·g−1 (b) of SiOx@Li2SiO3/C samples [30]; (c) Si@ Li2SiO3 Preparation route diagram[31]

    图  5  LiH预锂化SiOx示意图 (a)、预锂化后的XRD图 (b)[9]; Si/TiSi2/Li2SiO3制备示意图 (c) 和倍率性能、循环容量/效率曲线(d) [33]

    Figure  5.  Schematic diagram of LiH prelithiated SiOx (a) and XRD pattern after prelithiation (b) [9]; Schematic diagram of Si/TiSi2/Li2SiO3 preparation (c) and rate performance, cycling capacity/efficiency curves (d)[33]

    图  6  LiH与LiOH固相预锂化SiOx@C后的XRD图

    Figure  6.  The XRD diagram after LiH and LiOH solid -phase prelithiated SiOx@C

    图  7  固相颗粒热处理的四个过程

    Figure  7.  The four processes of thermal treatment of solid -phase particles

    图  8  (a) Si/SiOx/Li2SiO3@C制备示意图[47]; M-Li-SiOx的制备示意图 (b) 以及反应过程原理图 (c) [48]; (d) SLMP-SiOx/C、LiBp-SiOx/C的合成过程示意图[52]; (e) ToF-SIMS元素分布图像(a, d)Li、(b, e) Si和(c, f) Li(红色)和Si(绿色)物质叠加,SLMP-SiOx/C(a、b、c), LiBp-SiOx/C(d、e、f)[52]

    Figure  8.  (a) Schematic diagram of Si/SiOx/Li2SiO3@C preparation[47]; (b) Preparation schematic of M-Li-SiOx and (c) schematic of the reaction process[48]; (d) Schematic synthesis process of SLMP-SiOx/C, LiBp-SiOx/C[52]; (e) ToF-SIMS elemental distribution images: (a, d) Li, (b, e) Si, and (c, f) overlaid images of Li (in red) and Si (in green), SLMP-SiOx/C (a, b, c), LiBp-SiOx/C (d, e, f) [52]

    图  9  (a) Li-Si-O三元材料的形成能与密度[53]; (b) 不同加热速率下热反应SiOx的TG曲线与XRD图[63]; (c) SiOx/锂粉末混合物的时间-温度-变换图和线性加热曲线[(a)和(b)[63]

    Figure  9.  (a) Formation energy and density of Li-Si-O ternary materials[53]; (b) TG curves and XRD patterns of thermally reacted SiOx at different heating rates[63]; (c) Time-temperature-transformation diagram and linear heating curves of SiOx/lithium powder mixtures [(a) and (b)][63]

    图  10  (a) Si与Li2SiO3的晶粒尺寸与容量、ICE的关系分布图[65]; (b) 脱氢驱动预锂化的相变和微观结构演化示意图[32];(c) 不同温度下Si与Li2SiO3晶粒尺寸大小[32]

    Figure  10.  (a) Graph showing the relationship distribution between the grain size of Si and Li2SiO3 and their capacity, as well as ICE. [65]; (b) Schematic illustration of phase transition and microstructure evolution driven by dehydrogenation-induced prelithiation[32]; (c) Dimensions of Si and Li2SiO3 at different temperatures[32]

    图  11  LiH预锂化SiOx前后XRD图(a)和全电池浆料产气评价(b)

    Figure  11.  XRD patterns of SiOx before and after LiH prelithiation (a) and gas evolution evaluation of the full-cell slurry (b)

    表  1  LiH与LiOH固相预锂化SiOx@C后的硅晶粒尺寸与热处理参数表

    Table  1.   Silicon grain sizes and heat treatment parameters after solid-phase prelithiation of SiOx@C with LiH and LiOH

    Heating rate/℃·min−1 Heating temperature /℃ Heat-up time/h Silicon grain size/nm
    3 750 8 LiH solid -phase
    prelithiated SiOx@C
    LiOH solid -phase
    prelithiated SiOx@C
    7.35 5.4
    下载: 导出CSV

    表  2  LiH预锂化SiOx@C前后硅晶粒尺寸对比表

    Table  2.   Comparison of silicon grain sizes before and after LiH prelithiation of SiOx@C.

    Scherrer formula(Dc)Calculated crystal faceSilicon grain size/nm
    [(k×0.1λ/(cosθ×radians(FWHM))](111)SiOx@CPrelithiated-SiOx@C
    3.607.35
    下载: 导出CSV
  • [1] KIM T H, PARK J S, CHANG S K, et al. The current move of lithium-ion batteries towards the next phase[J]. Advanced Energy Materials, 2012, 2(7): 860-872. doi: 10.1002/aenm.201200028
    [2] 刘琦, 郝思雨, 冯东, 等. 锂离子电池负极材料研究进展[J]. 复合材料学报, 2022, 39(4): 1446-1456.

    LIU Qi, Hao Siyu, FENG Dong, et al. The research progress of the negative material of lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1446-1456 (in Chinese).
    [3] ZHAO W, ZHAO C, WU H, et al. Progress, challenge and perspective of graphite-based anode materials for lithium batteries: A review[J]. Journal of Energy Storage, 2024, 81: 110409. doi: 10.1016/j.est.2023.110409
    [4] SUH S, YOON W Y, KIM D H, et al. Electrochemical behavior of SiOx anodes with variation of oxygen ratio for Li-ion batteries[J]. Electrochimica Acta, 2014, 148: 111-117. doi: 10.1016/j.electacta.2014.08.104
    [5] CHOI G, KIM J, KANG B. Understanding limited reversible capacity of a SiO electrode during the first cycle and its effect on initial coulombic efficiency[J]. Chemistry of Materials, 2019, 31(16): 6097-6104. doi: 10.1021/acs.chemmater.9b01057
    [6] LIU W R, YEN Y C, WU H C, et al. Nano-porous SiO/carbon composite anode for lithium-ion batteries[J]. Journal of applied electrochemistry, 2009, 39(9): 1643-1649. doi: 10.1007/s10800-009-9854-x
    [7] ZHANG H, LIU K, LIU Y, et al. Observably improving initial coulombic efficiency of C/SiOx anode using-CO-PO3Li2 groups in lithium-ion batteries[J]. Journal of Power Sources, 2020, 447: 227400. doi: 10.1016/j.jpowsour.2019.227400
    [8] YOM J H, HWANG S W, CHO S M, et al. Improvement of irreversible behavior of SiO anodes for lithium-ion batteries by a Solid-phase reaction at high temperature[J]. Journal of Power Sources, 2016, 311: 159-166. doi: 10.1016/j.jpowsour.2016.02.025
    [9] CHUNG D J, YOUN D, KIM S, et al. Dehydrogenation-driven Li metal-free prelithiation for high initial efficiency SiO-based lithium storage materials[J]. Nano Energy, 2021, 89: 106378. doi: 10.1016/j.nanoen.2021.106378
    [10] DING B, DING M, MA Y, et al. Effect of MgO on electrochemical properties of silicon-based anode composite material[J]. Solid State Sciences, 2022, 131: 106940. doi: 10.1016/j.solidstatesciences.2022.106940
    [11] TIAN Y F, LI G, XU D X, et al. Micrometer-sized SiMgyOx with stable internal structure evolution for high-performance Li-ion battery anodes[J]. Advanced Materials, 2022, 34(15): 2200672. doi: 10.1002/adma.202200672
    [12] RAZA A, JUNG J Y, LEE C H, et al. Swelling-controlled double-layered SiOx/Mg2SiO4/SiOx composite with enhanced initial coulombic efficiency for lithium-ion battery[J]. ACS applied materials & interfaces, 2021, 13(6): 7161-7170.
    [13] 宗菲菲, 李世友, 东红, 等. 锂离子电池预锂化补锂策略研究进展[J]. 化学通报, 2023, 86(4): 397-404.

    ZONG Feifei, LI Shiyou, DONG Hong, et al. Research on the research progress of lithium-ion battery pre-lithium nourishing strategy[J]. Chemical report, 2023, 86(4): 397-404(in Chinese).
    [14] KIM H J, CHOI S, LEE S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Lett, 2016, 16(1): 282-288. doi: 10.1021/acs.nanolett.5b03776
    [15] JANG J, KANG I, CHOI J, et al. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angewandte Chemie International Edition, 2020, 59(34): 14473-14480. doi: 10.1002/anie.202002411
    [16] 刘志宽. 硅氧负极材料电化学性能改善方法研究[D]. 长沙矿冶研究院, 2021.

    LIU Zhikuan. Research on improvement methods of electrochemical performance of silicon-oxygen negative electrode materials [D]. Changsha Institute of Mining and Metallurgy, 2021(in Chinese).
    [17] LI Y, FITCH B. Effective enhancement of lithium-ion battery performance using SLMP[J]. Electrochemistry communications, 2011, 13(7): 664-667. doi: 10.1016/j.elecom.2011.04.003
    [18] FORNEY M W, GANTER M J, STAUB J W, et al. Prelithiation of silicon-carbon nanotube anodes for lithium-ion batteries by stabilized lithium metal powder (SLMP)[J]. Nano letters, 2013, 13(9): 4158-4163. doi: 10.1021/nl401776d
    [19] JANG J, KANG I, CHOI J, et al. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angew Chem (Int Ed), 2020, 59(34): 14473-14480. doi: 10.1002/anie.202002411
    [20] WU J, CAO Y, ZHAO H, et al. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries[J]. Carbon Energy, 2019, 1(1): 57-76. doi: 10.1002/cey2.2
    [21] LI P, KIM H, MYUNG S T, et al. Diverting exploration of silicon anode into practical way: a review focused on silicon-graphite composite for lithium-ion batteries[J]. Energy Storage Materials, 2021, 35: 550-576. doi: 10.1016/j.ensm.2020.11.028
    [22] KIM J H, SOHN H J, KIM H, et al. Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries[J]. Journal of Power Sources, 2007, 170(2): 456-459. doi: 10.1016/j.jpowsour.2007.03.081
    [23] LV P, ZHAO H, GAO C, et al. Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium-ion batteries[J]. Electrochimica Acta, 2015, 152: 345-351. doi: 10.1016/j.electacta.2014.11.149
    [24] LEE J I, LEE K T, CHO J, et al. Chemical-assisted thermal disproportionation of porous silicon monoxide into silicon-based multicomponent systems[J]. Angewandte Chemie, 2012, 51(11): 2767-2771. doi: 10.1002/anie.201108915
    [25] PARK C M, CHOI W, HWA Y, et al. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(23): 4854-4860. doi: 10.1039/b923926j
    [26] YANG X, WEN Z, XU X, et al. Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium-ion batteries[J]. Journal of Power sources, 2007, 164(2): 880-884. doi: 10.1016/j.jpowsour.2006.11.010
    [27] MIYAZAKI R, OHTA N, OHNISHI T, et al. Anode properties of silicon-rich amorphous silicon suboxide films in all-Solid-phase lithium batteries[J]. Journal of Power Sources, 2016, 329: 41-49. doi: 10.1016/j.jpowsour.2016.08.070
    [28] YANG X, WEN Z, ZHANG L, et al. Synthesis and electrochemical properties of novel silicon-based composite anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2008, 464(1-2): 265-269. doi: 10.1016/j.jallcom.2007.09.088
    [29] VELUCHAMY A, DOH C H, KIM D H, et al. Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries[J]. Journal of Power Sources, 2009, 188(2): 574-577. doi: 10.1016/j.jpowsour.2008.11.137
    [30] YI X, CAI C, HAO G, et al. Facile one-pot preparation of porous SiOx@Li2SiO3/C composite from rice husks for high initial coulomb efficiency lithium-ion battery anodes[J]. Journal of Electroanalytical Chemistry, 2022, 912: 116265. doi: 10.1016/j.jelechem.2022.116265
    [31] ZHU Y, HU W, ZHOU J, et al. Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage[J]. ACS applied materials& interfaces, 2019, 11(20): 18305-18312.
    [32] CHUNG D J, YOUN D, KIM J Y, et al. Topology Optimized prelithiated SiO anode materials for lithium-ion batteries[J]. Small, 2022, 18(27): 2202209. doi: 10.1002/smll.202202209
    [33] JEONG W J, CHUNG D J, YOUN D, et al. Double-buffer-phase embedded Si/TiSi2/Li2SiO3 nanocomposite lithium storage materials by phase-selective reaction of SiO with metal hydrides[J]. Energy Storage Materials, 2022, 50: 740-750. doi: 10.1016/j.ensm.2022.06.023
    [34] ZHANG Y, CHEN M, CHEN Z, et al. Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium-ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag[J]. Journal of Alloys and Compounds, 2021, 876: 160125. doi: 10.1016/j.jallcom.2021.160125
    [35] ZHANG Y, CHEN M, CHEN Z, et al. A novel Si/TiSi2/G@C composite as anode material with excellent lithium storage performances[J]. Materials Letters, 2021, 299: 130078. doi: 10.1016/j.matlet.2021.130078
    [36] PARK O, LEE J I, CHUN M J, et al. High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer[J]. Rsc Advances, 2013, 3(8): 2538-2542. doi: 10.1039/c2ra23365g
    [37] CHOI S, LEE J C, PARK O, et al. Synthesis of micro-assembled Si/titanium silicide nanotube anodes for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(36): 10617-10621. doi: 10.1039/c3ta12444d
    [38] ZHOU S, LIU X, WANG D. Si/TiSi2 heteronanostructures as high-capacity anode material for Li-ion batteries[J]. Nano letters, 2010, 10(3): 860-863. doi: 10.1021/nl903345f
    [39] LI C, PENG P, ZHOU D W, et al. Research progress in LiBH4 for hydrogen storage: a review[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14512-14526. doi: 10.1016/j.ijhydene.2011.08.030
    [40] ORIMO S I, NAKAMORI Y, KITAHARA G, et al. Dehydriding and rehydriding reactions of LiBH4[J]. Journal of Alloys and Compounds, 2005, 404: 427-430.
    [41] ZÜTTEL A, WENGER P, RENTSCH S, et al. LiBH4 a new hydrogen storage material[J]. Journal of Power Sources, 2003, 118(1-2): 1-7. doi: 10.1016/S0378-7753(03)00054-5
    [42] XU J, MENG R, CAO J, et al. Enhanced dehydrogenation and rehydrogenation properties of LiBH4 catalyzed by graphene[J]. International journal of hydrogen energy, 2013, 38(6): 2796-2803. doi: 10.1016/j.ijhydene.2012.12.046
    [43] COMANESCU C. Recent development in nanoconfined hydrides for energy storage[J]. International Journal of Molecular Sciences, 2022, 23(13): 7111. doi: 10.3390/ijms23137111
    [44] LIN W, ZHANG X, CAI Q, et al. Dehydrogenation-driven assembly of transparent and durable superhydrophobic ORMOSIL coatings on cellulose-based substrates[J]. Cellulose, 2020, 27: 7805-7821. doi: 10.1007/s10570-020-03288-2
    [45] YOUN D, KIM N G, JEONG W J, et al. Endothermic Dehydrogenation-Driven Preventive Magnesiation of SiO for High-Performance Lithium Storage Materials[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45333-45341.
    [46] 粉末冶金原理[M]. 黄培云主编. 冶金工业出版社. 1997.

    Principle of Powder Metallurgical [M]. HUANG Peiyun editor. Metallurgical Industry Press. 1997(in Chinese).
    [47] XIE L, LIU H, LIN S, et al. Modified SiO hierarchical structure materials with improved initial coulombic efficiency for advanced lithium-ion battery anodes[J]. RSC advances, 2019, 9(20): 11369-11376. doi: 10.1039/C9RA00778D
    [48] LI Y, QIAN Y, ZHOU J, et al. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency[J]. Nano Research, 2022, 15(1): 230-237. doi: 10.1007/s12274-021-3464-2
    [49] ZHOU D Y, ZU F S, ZHANG Y J, et al. Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant[J]. Applied Physics Letters, 2014, 105(8).
    [50] GREGORY D H. Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores[J]. Journal of Materials Chemistry, 2008, 18(20): 2321-2330. doi: 10.1039/b801021h
    [51] COYLE J, APBLETT C, BRUMBACH M, et al. Structural and compositional characterization of RF magnetron cosputtered lithium silicate films: From Li2Si2O5 to lithium-rich Li8SiO6[J]. Journal of Vacuum Science & Technology A, 2017, 35(6).
    [52] YAN M Y, LI G, ZHANG J, et al. Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries[J]. ACS applied materials & interfaces, 2020, 12(24): 27202-27209.
    [53] DOH C H, VELUCHAMY A, OH M W, et al. Analysis on the formation of Li4SiO4 and Li2SiO3 through first principle calculations and comparing with experimental data related to lithium battery[J]. Journal of Electrochemical Science and Technology, 2011, 2(3): 146-151. doi: 10.33961/JECST.2011.2.3.146
    [54] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical review b, 1999, 59(3): 1758. doi: 10.1103/PhysRevB.59.1758
    [55] KRESSE G. Ab initio molecular dynamics: recent progresses and limitations[J]. Journal of non-crystalline solids, 2002, 312: 52-59.
    [56] ZHU Y, HU W, ZHOU J, et al. Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage[J]. ACS applied materials & interfaces, 2019, 11(20): 18305-18312.
    [57] ZHU H, ZHANG M, LI B, et al. Enabling improved lithium storage properties of novel LiNbMoO6 anode through co-modification by uniform Li2SiO3 thin film and oxygen vacancies[J]. Electrochimica Acta, 2020, 360: 136989. doi: 10.1016/j.electacta.2020.136989
    [58] CRUZ D, BULBULIAN S, LIMA E, et al. Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3)[J]. Journal of Solid-phase Chemistry, 2006, 179(3): 909-916. doi: 10.1016/j.jssc.2005.12.020
    [59] SUN Y, ZHANG K, CHAI R, et al. In situ artificial hybrid SEI layer enabled high-performance prelithiated SiOx anode for lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(36): 2303020. doi: 10.1002/adfm.202303020
    [60] DUAN Y, PFEIFFER H, LI B, et al. CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach[J]. Physical Chemistry Chemical Physics, 2013, 15(32): 13538-13558. doi: 10.1039/c3cp51659h
    [61] ZHU Y, HU W, ZHOU J, et al. Prelithiated surface oxide layer enabled high-performance si anode for lithium storage[J]. ACS Appl Mater Interfaces, 2019, 11(20): 18305-18312. doi: 10.1021/acsami.8b22507
    [62] SU Y S, HSIAO K C, SIREESHA P, et al. Lithium silicates in anode materials for li-ion and li metal batteries[J]. Batteries, 2022, 8(1): 2. doi: 10.3390/batteries8010002
    [63] YOM J H, SEONG I W, CHO S M, et al. Optimization of heat treatment conditions for fabricating prelithiated silicon monoxide as an anode material for lithium-ion batteries[J]. Journal of The Electrochemical Society, 2018, 165(3): A603. doi: 10.1149/2.0911803jes
    [64] CLAUS S, KLEYKAMP H, SMYKATZ-KLOSS W. Phase equilibria in the Li4SiO4-Li2SiO3 region of the pseudobinary Li2O-SiO2 system[J]. Journal of nuclear materials, 1996, 230(1): 8-11. doi: 10.1016/0022-3115(96)00022-0
    [65] BHAT A, SIREESHA P, CHEN Y S, et al. Phase control of lithium silicates for process-friendly prelithiated SiO anode materials[J]. ChemElectroChem, 2022, 9(19): e202200772. doi: 10.1002/celc.202200772
    [66] 赵杰. 材料科学基础(第三版)北京: 高等教育出版社. 2021.

    ZHAO Jie. Materials Science Basis (Third Edition) Beijing: Higher Education Press. 2021(in Chinese).
    [67] XU D X, ZHAO Y M, Chen H X, et al. Reduced volume expansion of micron-sized SiOx via closed-nanopore structure constructed by Mg-induced elemental segregation[J]. Angewandte Chemie, 2024: e202401973.
    [68] LIU B, LU H, CHU G, et al. Size effect of Si particles on the electrochemical performances of Si/C composite anodes[J]. Chinese Physics B, 2018, 27(8): 088201. doi: 10.1088/1674-1056/27/8/088201
    [69] RISDANARENI P, EKAPUTRI J J, et al. Effect of alkaline activator ratio to mechanical properties of geopolymer concrete with trass as filler[J]. Applied Mechanics and Materials, 2015, 754: 406-412.
    [70] HU B, JIANG S, SHKROB I A, et al. Understanding of prelithiation of poly (acrylic acid) binder: striking the balances between the cycling performance and slurry stability for silicon-graphite composite electrodes in Li-ion batteries[J]. Journal of Power Sources, 2019, 416: 125-131. doi: 10.1016/j.jpowsour.2019.01.068
    [71] ZOU Y, AMIRKHANIAN S, XU S, et al. Effect of different aqueous solutions on physicochemical properties of asphalt binder[J]. Construction and Building Materials, 2021, 286: 122810. doi: 10.1016/j.conbuildmat.2021.122810
    [72] WU Z, CHEN S, LIANG J, et al. Plasma treatment induced chemical changes of alkali lignin to enhance the performances of lignin-phenol-formaldehyde resin adhesive[J]. Journal of Renewable Materials, 2021, 9(11): 1959-1972. doi: 10.32604/jrm.2021.016786
    [73] Xiao Z X, Lin X Q, Zhang C X, et al. Insights into the coating Integrity and its effect on the electrochemical performance of core-shell structure SiOx@ C composite anodes[J]. Small Methods, 2023, 7(6): 2201623. doi: 10.1002/smtd.202201623
    [74] CATTARIN S, MUSIANI M M. Electrodissolution and passivation of silicon in aqueous alkaline media: a voltammetric and impedance investigation[J]. The Journal of Physical Chemistry B, 1999, 103(16): 3162-3169. doi: 10.1021/jp982462t
    [75] PARK E, PARK M S, LEE J, et al. A highly resilient mesoporous SiOx lithium storage material engineered by oil-water templating[J]. ChemSusChem, 2015, 8(4): 688-694. doi: 10.1002/cssc.201402907
    [76] ZHANG J Y, ZHANG C Q, LIU Z, et al. High-performance ball-milled SiOx anodes for lithium-ion batteries[J]. Journal of power sources, 2017, 339: 86-92. doi: 10.1016/j.jpowsour.2016.11.044
    [77] REN Y R, LI M Q. Facile synthesis of SiOx composite nanorods as anodes for lithium-ion batteries with excellent electrochemical performance[J]. Journal of power sources, 2016, 306: 459-466. doi: 10.1016/j.jpowsour.2015.12.064
    [78] 杜宁, 闫允涛, 王振, 刘聪, 张瑞, 杨德仁. 一种改性预锂化硅氧复合材料及其制备方 法和应用: CN202111163940.9[P]. 2022.01. 18.

    DU Ning, YAN Yuntao, WANG Zheng, LIU Cong, ZHANG Rui, YANG Deren. A modified prelithiation silicone composite material and its preparation method and application: CN2021111163940.9[P]. 2022.01. 18(in Chinese).
    [79] 李波, 马飞, 童磊. 预锂化硅氧复合材料、前驱体及其制备方法和应用: CN202110442399.9[P]. 2021.07. 30.

    LI Bo, MA Fei, TONG Lei. Prelithiation silicone oxygen composite material, front drive and preparation methods and applications: CN202110442399.9[P]. 2021.07. 30(in Chinese).
    [80] 张健, 李波, 马飞. 一种预锂化硅氧复合材料及其制备方法、负极极片、电池和应用: 202210761936.0[P]. 2022-08-30.

    ZHANG Jian, LI Bo, MA Fei. A prelithiation silicon oxygen composite material and its preparation methods, negative poles, batteries and applications: 202210761936.0[P]. 2022-08-30(in Chinese).
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-10
  • 修回日期:  2024-06-25
  • 录用日期:  2024-06-28
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回