留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉煤灰-壳聚糖复合物增强水性膨胀型防火涂料耐火性能

孙朝 金义杰 严晗 段海涛 詹胜鹏 余华龙 陈奡 贾丹

孙朝, 金义杰, 严晗, 等. 粉煤灰-壳聚糖复合物增强水性膨胀型防火涂料耐火性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 孙朝, 金义杰, 严晗, 等. 粉煤灰-壳聚糖复合物增强水性膨胀型防火涂料耐火性能[J]. 复合材料学报, 2024, 42(0): 1-10.
SUN Zhao, JIN Yiji, YAN Han, et al. Fire resistance of waterborne intumescent fire-retardant coatings reinforced by fly ash-chitosan composites[J]. Acta Materiae Compositae Sinica.
Citation: SUN Zhao, JIN Yiji, YAN Han, et al. Fire resistance of waterborne intumescent fire-retardant coatings reinforced by fly ash-chitosan composites[J]. Acta Materiae Compositae Sinica.

粉煤灰-壳聚糖复合物增强水性膨胀型防火涂料耐火性能

基金项目: 国家自然科学基金(52205213);湖北省重大攻关项目(JD) (2023BAA003)。
详细信息
    通讯作者:

    贾丹,博士,正高级工程师,表面工程防护技术及寿命预测,jiadan0510@163.com

  • 中图分类号: TQ328.3; TB332

Fire resistance of waterborne intumescent fire-retardant coatings reinforced by fly ash-chitosan composites

Funds: This work was financially supported by the National Natural Science Foundation of China (52205213), Major Program(JD) of Hubei Province (2023BAA003)
  • 摘要: 以粉煤灰(FA)和壳聚糖(CS)等废弃物为原料,制备了FA-CS复合阻燃填料,并将其引入水性膨胀型防火涂料体系中,以强化涂层的耐火极限和隔热性能,采用FT-IR、XRD、SEM等技术对复合阻燃填料进行观察分析。再通过大板实验、背温曲线和微观组织结构等考察了涂层的耐火性能和隔热能力,从而揭示其防火阻燃机制。大板实验显示在外焰温度维持在1000±50 ℃,燃烧时间为60 min的前提下,相比水性膨胀体系(WIS)、FA/WIS、CS/WIS涂层,FA-CS/WIS涂层具有较高的膨胀倍率(10.2倍)和更低的背面温度(279 ℃),表现出优异的阻隔热量传递和抗火焰冲刷的能力。此外,采用SEM技术对涂层膨胀层表面形貌进行分析,结果显示相比其他涂层,FA-CS/WIS涂层具有更致密光滑的表面。FA-CS/WIS涂层表现出优异的阻燃耐火性能,主要归因于:(a)涂层材料中膨胀阻燃体系的酸化、气化等反应,逐渐形成膨胀层;(b)CS参与了膨胀层的成炭反应,促进了膨胀倍率的提升;(c)具有优异耐热性能的FA在燃烧后的残炭中作为耐温材料填补在膨胀层的孔隙中,增加了膨胀层的热稳定性和阻隔能力。

     

  • 图  1  粉煤灰(FA)-壳聚糖(CS)复合阻燃填料的制备示意图

    Figure  1.  Schematic diagram of the preparation of fly ash (FA)- chitosan (CS) composite flame-retardant fillers

    图  2  FA、CS、FA-CS复合阻燃填料的FT-IR光谱

    Figure  2.  FT-IR spectras of FA, CS, FA-CS composite flame-retardant fillers

    图  3  FA、CS、FA-CS复合阻燃填料的XRD谱图

    Figure  3.  XRD spectras of FA, CS, FA-CS composite flame-retardant fillers

    图  4  (a-c) FA的SEM图、其放大图和mapping图;(d-f) CS的SEM图;其放大图和EDS图(g-i) FA-CS复合阻燃填料的SEM图、其放大图和EDS图

    Figure  4.  (a-c) SEM images of FA, its magnification and mapping; (d-f) SEM images of CS, its magnification and EDS (g-i) SEM images of FA-CS composite flame-retardant filler, its magnification and EDS

    图  5  涂层的燃烧前SEM照片及其放大图:(a,b) WIS,(c,d) FA/WIS,(e,f) CS/WIS,(g,h) FA-CS/WIS

    Figure  5.  SEM photographs of the coatings before combustion and their magnifications: (a, b) WIS, (c, d) FA/WIS, (e, f) CS/WIS, (g, h) FA-CS/WIS

    图  6  各涂层的燃烧前后的截面和表面照片:(a) WIS,(b) FA/WIS,(c) WIS/C,(d) FA-CS/WIS

    Figure  6.  Cross-sectional and surface photographs before and after combustion of each coating: (a) WIS, (b) FA/WIS, (c) CS/WIS, (d) FA-CS/WIS

    图  7  不同涂层钢板的背面温度随时间的变化曲线

    Figure  7.  Curves of backside temperature with time for different coated steels

    图  8  涂层的燃烧后SEM照片及其放大图:(a,b) WIS,(c,d) FA/WIS,(e,f) CS/WIS,(g,h) FA-CS/WIS

    Figure  8.  SEM photographs of the coatings after combustion and their magnifications: (a, b) WIS, (c, d) FA/WIS, (e, f) CS/WIS, (g, h) FA-CS/WIS

    图  9  FA-CS/WIS涂层的防火隔热机制

    Figure  9.  Mechanism of fire protection and thermal insulation of FA-CS/WIS coatings

    表  1  水性膨胀型防火涂层的组成比例(wt %)

    Table  1.   Composition ratio of water-based intumescent flame-retardant coatings (wt %)

    CoatingsWAAPPPERMELFACSFA-CSH2O
    WIS45261313///3
    FA/WIS402613135//3
    CS/WIS40261313/5/3
    FA-CS/WIS40261313//53
    Notes: WA, Waterborne emulsions; APP, Ammonium polyphosphate; PER, pentaerythritol; MEL melamine; FA Fly ash; CS Chitosan; FA-CS, Fly ash- Chitosan; WIS, Waterborne Intumescent System; FA/WIS, Fly ash/ Waterborne Intumescent System; CS/WIS, Chitosan/ Waterborne Intumescent System; FA-CS/WIS, Fly ash- Chitosan/Waterborne Intumescent System
    下载: 导出CSV
  • [1] ZHAO W, ZHAO H-B, CHENG J-B, et al. A green, durable and effective flame-retardant coating for expandable polystyrene foams[J]. Chem Eng J, 2022, 440: 135807. doi: 10.1016/j.cej.2022.135807
    [2] YANG Z, XIAO G, CHEN C, et al. Mussel inspired polydopamine@KH560-linked hexagonal boron nitride and CNTs nanoflame retardants improve fire performance of composite coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127717. doi: 10.1016/j.colsurfa.2021.127717
    [3] ZHONG F, CHEN C, YANG X, et al. Self-assembly of zinc hydroxystannate on polyethyleneimine supported boron nitride to improve the flame protection properties of waterborne epoxy coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129557. doi: 10.1016/j.colsurfa.2022.129557
    [4] HU X, ZHU X, SUN Z. Fireproof performance of the intumescent fire retardant coatings with layered double hydroxides additives[J]. Construction and Building Materials, 2020, 256: 119445. doi: 10.1016/j.conbuildmat.2020.119445
    [5] CHEN C, XIAO G, ZHONG F, et al. Dendritic-hydroxyzinc stannate loaded carbon nanotubes for enhancing flame retardancy of composite coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129329. doi: 10.1016/j.colsurfa.2022.129329
    [6] JIN S-A, SPONTAK R J. Fundamentals of and advances in nanocellulose and nanochitin systems[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(4): 356-381. doi: 10.1016/j.aiepr.2023.04.003
    [7] WANG M, YIN G-Z, YANG Y, et al. Bio-based flame retardants to polymers: A review[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(2): 132-155. doi: 10.1016/j.aiepr.2022.07.003
    [8] WANG M, XIAO G, CHEN C, et al. Combining layered double hydroxides and carbon nanotubes to synergistically enhance the flame retardant properties of composite coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638: 128315. doi: 10.1016/j.colsurfa.2022.128315
    [9] SAMIEE R, MONTAZERI S, RAMEZANZADEH B, et al. Ce-MOF nanorods/aluminum hydroxide (AlTH) synergism effect on the fire-retardancy/smoke-release and thermo-mechanical properties of a novel thermoplastic acrylic intumescent composite coating[J]. Chem Eng J, 2022, 428: 132533. doi: 10.1016/j.cej.2021.132533
    [10] HU X, ZHU X, SUN Z. Effect of CaAlCO3-LDHs on fire resistant properties of intumescent fireproof coatings for steel structure[J]. Appl Surf Sci, 2018, 457: 164-169. doi: 10.1016/j.apsusc.2018.06.165
    [11] KIM Y, HWANG S, CHOI J, et al. Valorization of fly ash as a harmless flame retardant via carbonation treatment for enhanced fire-proofing performance and mechanical properties of silicone composites[J]. J Hazard Mater, 2021, 404: 124202. doi: 10.1016/j.jhazmat.2020.124202
    [12] BATISTELLA M, ROUX J-C, LE SAOUT G, et al. Use of fly ash as synergistic and reactive component of flame retardant system in polylactide[J]. Polym Degrad Stab, 2023, 211.
    [13] ZHOU Y, WANG Y, YU K, et al. Synergistic flame retardancy of piperazine pyrophosphate/magnesium hydroxide/fly ash cenospheres-doped rigid polyurethane foams[J]. Construction and Building Materials, 2023, 408: 133670. doi: 10.1016/j.conbuildmat.2023.133670
    [14] YU K, WANG Y, QU C, et al. Multifunctional Si-C-P flame-retardant coatings blended by chitosan hydrochloride/melamine polyphosphate/ammonium phosphomolybdate in spodumene tailings geopolymer[J]. Construction and Building Materials, 2023, 405: 133340. doi: 10.1016/j.conbuildmat.2023.133340
    [15] 常娟, 程爱华. FeS/壳聚糖基碳气凝胶复合材料的制备及对Cr(VI)的吸附[J]. 化工进展: 2023, 42(11): 6042-6052.

    CHANG Juan, CHENG Aihua. Preparation and Cr(Ⅵ) adsorption properties of FeS/chitosan-based carbon aerogel composites[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6042-6052. (in Chinese)
    [16] 范佳璇, 赵奕, 柯勤飞, 等. 壳聚糖/植酸静电纺涂层阻燃疏水棉织物的制备及其性能[J]. 印染, 2023, 49(9): 1-6+18.

    FAN Jiaxuan, ZHAO Yi, KE Qinfei, et. al. Fabrication and properties of flame-retardant and hydrophobic cotton fabric based on electro-spuncoating of chitosan/phytic acid[J]. Printing and Dyeing, 2023, 49(9): 1-6+18(in Chinese).
    [17] 王娜, 王树伟, 滕海伟, 等. 壳聚糖基阻燃剂制备及其在防火涂层中应用[J]. 精细化工, 2018, 35(11): 1968-1973.

    WANG Na, WANG Shu-Wei, TENG Hai-Wei, et al. Preparation of a Chitosan-based Flame Retardant and Its Application in Fireproofing Coating[J]. Fine Chemicals, 2018, 35(11): 1968-1973(in Chinese).
    [18] WU J, WONG H S, ZHANG H, et al. Improvement of cemented rockfill by premixing low-alkalinity activator and fly ash for recycling gangue and partially replacing cement[J]. Cem Concr Compos, 2024, 145: 105345. doi: 10.1016/j.cemconcomp.2023.105345
    [19] HEIDARI F, JAFARI S M, ZIAIIFAR A M, et al. Surface modification of silica nanoparticles by chitosan for stabilization of water-in-oil Pickering emulsions[J]. Carbohydrate Polymer Technologies and Applications, 2023, 6: 100381. doi: 10.1016/j.carpta.2023.100381
    [20] UL HAQ E, KUNJALUKKAL PADMANABHAN S, LICCIULLI A. Synthesis and characteristics of fly ash and bottom ash based geopolymers–A comparative study[J]. Ceram Int, 2014, 40(2): 2965-2971. doi: 10.1016/j.ceramint.2013.10.012
    [21] 曾春芽, 单慧媚, 赵超然, 等. 纳米铁-氧化石墨烯/壳聚糖复合材料的制备及其力学性能[J]. 复合材料学报, 2022, 39(04): 1739-1747.

    ZENG Chunya , SHAN Huimei , ZHAO Chaoran, et al. Preparation and mechanical properties of nano-iron-graphene oxide/chitosan composites[J]. Acta Materiae Compositae Sinica, 2022, 39(04): 1739-1747. (in Chinese)
    [22] MOKHTAR A, DJELAD A, BENGUEDDACH A, et al. CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: Synthetic path and characterization[J]. Int J Biol Macromol, 2018, 118: 2149-2155. doi: 10.1016/j.ijbiomac.2018.07.058
    [23] LI Q, LI H, LIANG T. Effect of non-intumescent fireproof coating on the durability of concrete exposed to elevated temperature[J]. Construction and Building Materials, 2023, 404: 133211. doi: 10.1016/j.conbuildmat.2023.133211
    [24] TASI T-P, HSIEH C-T, YANG H-C, et al. Enhanced fireproof performance of construction coatings by adding hexagonal boron nitride nanosheets[J]. Ceram Int, 2022, 48(14): 20809-20816. doi: 10.1016/j.ceramint.2022.04.065
    [25] CAI Z, LIU F, YU J, et al. Development of ultra-high ductility engineered cementitious composites as a novel and resilient fireproof coating[J]. Construction and Building Materials, 2021, 288: 123090. doi: 10.1016/j.conbuildmat.2021.123090
    [26] HADAŁA B, ZYGMUNT-KOWALSKA B, KUŹNIA M, et al. Thermal insulation properties of rigid polyurethane foam modified with fly ash- a comparative study[J]. Thermochim Acta, 2024, 731: 179659. doi: 10.1016/j.tca.2023.179659
    [27] HU S, SONG L, PAN H, et al. Thermal properties and combustion behaviors of flame retarded epoxy acrylate with a chitosan based flame retardant containing phosphorus and acrylate structure[J]. J Anal Appl Pyrolysis, 2012, 97: 109-115. doi: 10.1016/j.jaap.2012.06.003
    [28] QI P, WANG S, WANG W, et al. Chitosan/sodium polyborate based micro-nano coating with high flame retardancy and superhydrophobicity for cotton fabric[J]. Int J Biol Macromol, 2022, 205: 261-273. doi: 10.1016/j.ijbiomac.2022.02.062
  • 加载中
计量
  • 文章访问数:  75
  • HTML全文浏览量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 修回日期:  2024-04-24
  • 录用日期:  2024-04-27
  • 网络出版日期:  2024-05-30

目录

    /

    返回文章
    返回