留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C/SiC壁板的制备层间缺陷特点及性能分析

谭志勇 宁蕙 孙前杨 孙京阳 黄建栋 龚晓冬 张宏宇

谭志勇, 宁蕙, 孙前杨, 等. C/SiC壁板的制备层间缺陷特点及性能分析[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 谭志勇, 宁蕙, 孙前杨, 等. C/SiC壁板的制备层间缺陷特点及性能分析[J]. 复合材料学报, 2024, 42(0): 1-12.
TAN Zhiyong, NING Hui, SUN Qianyang, et al. Characteristics and Performance Analysis of Interlayer Defects in the Preparation of C/SiC Panel[J]. Acta Materiae Compositae Sinica.
Citation: TAN Zhiyong, NING Hui, SUN Qianyang, et al. Characteristics and Performance Analysis of Interlayer Defects in the Preparation of C/SiC Panel[J]. Acta Materiae Compositae Sinica.

C/SiC壁板的制备层间缺陷特点及性能分析

基金项目: 国家自然科学基金(U20B2002, 52005100);江苏省自然科学基金青年项目(BK20220861)
详细信息
    通讯作者:

    孙前杨,博士研究生,研究方向为固体力学和结构动力学 E-mail: 220210390@seu.edu.cn

  • 中图分类号: TB332;V414.8

Characteristics and Performance Analysis of Interlayer Defects in the Preparation of C/SiC Panel

Funds: National Natural Science Foundation of China (U20B2002, 52005100); Natural Science Foundation of Jiangsu Province (BK20220861)
  • 摘要: 针对C/SiC复合材料壁板制备环节常见的分层开裂情况,选择树脂转移浸渍裂解(RTIP)成型/致密化工艺的产品为对象进行了特征和性能分析。对分层形貌进行观测认为,制备前期和复合后期的层间缺陷分别具有碳纤维束之间分层和碳纤维束内部开裂的两种不同特征。切割制备出C/SiC的无缺陷试验件、以及不同特征下具有不同层间缺陷尺度的试验件,开展强度性能测试。Ⅰ型、Ⅱ型层间断裂韧性试验均未产生层间裂纹尖端扩展的现象和数据特征,推断这种层间缺陷的裂纹尖端扩展阻力要明显大于标准试验采用的机加制备开缝情况。进一步进行了面内拉伸、面内压缩性能测试,分析了材料性能衰减的机制并由试验数据拟合得出与层间缺陷尺度之间的规律。为了在体现试验件整体损伤形貌的同时表征到层间缺陷区域的材料细节特征,采用了在缺陷近场细观形貌构造、远场宏观等效并在两者之间区域逐级过渡连接的宏/细观一体化多尺度数值建模和分析方法。计算的应力场特点进一步验证了试验判断的合理性。

     

  • 图  1  C/SiC壁板的层间缺陷情况

    Figure  1.  Interlayer defects of C/SiC panel

    图  2  C/SiC壁板的树脂转移浸渍裂解(RTIP)制备工艺流程

    Figure  2.  Resintransfer infiltration pyrolysis (RTIP) preparation process of C/SiC panel

    图  3  C/SiC壁板在碳纤维束内开裂的截面细观形貌

    Figure  3.  Cross-sectional micro-morphology of C/SiC panel cracked in carbon fiber bundles

    图  4  C/SiC壁板的纤维束(碳布)间分层缺陷细观形貌

    Figure  4.  Micro-morphology of delamination defects between carbon fiber bundles (fiber cloth)of C/SiC panel

    图  5  由C/SiC壁板切割制备的部分试验件及试验现场Fig.5 Partial test pieces prepared by cutting of C/SiC panel and testing ground

    图  6  C/SiC不同状态下试验件的拉伸强度数据及拟合Fig.6 Tensile strength data and fitting of C/SiC specimens under different states

    图  7  C/SiC拉伸试样的位移-应变曲线Fig.7 Displacement-strain curve of C/SiC tensile specimen

    图  8  C/SiC不同状态下试验件的压缩强度数据及拟合

    Figure  8.  Compressive strength data and fitting of C/SiC specimens under different states

    图  9  压缩试样的位移-应变曲线

    Figure  9.  Displacement-strain curve of compressive specimen

    图  10  测试的Ⅰ型层间断裂韧性载荷-位移曲线及试验件局部破坏形貌Fig.10 Load-displacement curve and failure morphology of modeⅠinterlaminar fracture toughness of C/SiC sample

    图  11  测试的Ⅱ型层间断裂韧性载荷-位移曲线及试验件局部破坏形貌

    Figure  11.  Load-displacement curve and failure morphology of modeⅡinterlaminar fracture toughness of C/SiC sample

    图  12  C/SiC无缺陷拉伸试样的破坏断口形貌

    Figure  12.  Fracture morphology of C/SiC tensile sample without defect

    图  13  C/SiC分层拉伸试样的破坏形貌及断口特征Fig.13 Failure morphology and fracture characteristics of C/SiC tensile specimen with interlayer defect

    图  14  C/SiC完整压缩试样的破坏形貌和断口特征

    Figure  14.  Failure morphology and fracture characteristics of C/SiC compressive specimen without defect

    图  15  C/SiC分层压缩试样的不同破坏形貌和断口特征

    Figure  15.  Different failure morphology and fracture characteristics of C/SiC compressive specimen with interlayer defect

    图  16  C/SiC含分层缺陷的宏/细观一体化多尺度数值模型

    Figure  16.  Macro/meso integrated multi-scale numerical model of C/SiC specimen with interlayer defects

    图  17  含分层缺陷宏细观一体化数值模型的应力云图

    Figure  17.  Stress contour for macro/meso integrated numerical model with interlayer defect

    表  1  宏/细观数值模型的材料参数

    Table  1.   Material parameters of macro/meso numerical model

    Property Value
    Meso
    model
    Elastic modulus E1f of carbon fiber bundles /GPa 200.15
    Elastic modulusE2fE3f of carbon fiber bundles /GPa 45.86
    Shear modulus G12fG13f of carbon fiber bundles /GPa 25.96
    Shear modulus G23f of carbon fiber bundles /GPa 16.87
    Poisson's ratioν12fν13f of carbon fiber bundles 0.23
    Poisson's ratioν23f of carbon fiber bundles 0.36
    Elastic modulusEm ofSiC matrix/GPa 81.00
    Poisson's ratioνm ofSiC matrix 0.15
    Macro model Elastic modulusE1E2/GPa 118.36
    Elastic modulusE3/GPa 59.18
    Shear modulus G12/GPa 35.87
    Shear modulus G13G23/GPa 19.37
    Poisson's ratioν12 0.25
    Poisson's ratioν13ν23 0.35
    下载: 导出CSV
  • [1] 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 4187-4195.

    FENG Zhihai, LI Junning, TIAN Yuelong, et al. Research progress of advanced composite materials for aerospace applications[J]. Acta MateriaeCompositae Sinica, 2022, 39(9): 4187-4195(in Chinese).
    [2] 韩国凯, 解维华, 孟松鹤, 等. 防隔热一体化复合材料整体性能优化设计方法[J]. 复合材料学报, 2019, 36(2): 450-460.

    HANGuokai, XIEWeihua, MENGSonghe, et al. Optimization design method of integrated thermal protection/insulation composite material[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 450-460.
    [3] 马雪寒, 王守财, 陈旭, 等. 陶瓷基复合材料紧固件制造技术及其连接性能研究进展[J]. 复合材料学报, 2023, 40(6): 3075-3089.

    MA Xuehan, WANG Shoucai, CHEN Xu, et al. Review of preparation processes and joining performance of ceramic matrix compositefasteners[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3075-3089(in Chinese).
    [4] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1): 522509.

    ZHAO Libin, GONG Yu, ZHANG Jianyu. A Survey on Delamination Growth Behavior in Fiber Reinforced Composite Laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522509(in Chinese).
    [5] MEI H, CHENG L F, ZHANG L T, et al. Behavior of two-dimensional C/SiC composites subjected tothermal cycling in controlled environments[J]. Carbon, 2006, 44: 121-127. doi: 10.1016/j.carbon.2005.07.003
    [6] ASTM International. Standard test method for mixed mode Ⅰ-mode Ⅱ interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites: ASTM D6671/D6671M-13el[S]. West Conshohocken, PA: ASTM International, 2013.
    [7] 童瑶, 刘磊, 朱书华. 含分层复合材料层板压缩剩余强度分析[J]. 航空计算技术, 2022, 52(1): 110-114. doi: 10.3969/j.issn.1671-654X.2022.01.025

    TONG Yao, LIU Lei, ZHU Shuhua. Analysis of Compressive Residual Strength of Composite Laminates with Delamination[J]. Aeronautical Computing Technique, 2022, 52(1): 110-114(in Chinese). doi: 10.3969/j.issn.1671-654X.2022.01.025
    [8] 肖梦丽, 张勇波, 王治华, 等. 分层损伤对含孔复合材料层合板拉伸剩余强度影响[J]. 航空动力学报, 2016, 31(5): 1081-1086.

    XIAO Mengli, ZHANG Yongbo, WANG Zhihua. Effect analysis of delamination damage on the residual strength of notched composite laminates[J]. Journal of Aerospace Power, 2016, 31(5): 1081-1086(in Chinese).
    [9] Mei H, Tan Y F, Zhang D, et al. A novel delamination defects designed for understanding mechanical degradation in a laminated C/SiC composites[J]. Journal of Alloys and Compounds, 2019, 770: 1138-1146. doi: 10.1016/j.jallcom.2018.08.104
    [10] WANG X, ZHANG Z, XIE F, et al. Correlated Rules between Complex Structure of Composite Components and Manufacturing Defects in Autoclave Molding Technology[J]. Journal of Reinforced Plastics and Composites, 2009, 28(22): 2791-2803. doi: 10.1177/0731684408093876
    [11] 王雪明, 谢富原. 复合材料层合板分层缺陷及其实验模拟方法研究[J]. 纤维复合材料, 2020, 37(4): 30-34.

    WANG Xueming, XIE Fuyuan, Study on Experimental Simulation Method of Delamination Defects in Composite Laminates[J]. Fiber Composites, 2020, 37(4): 30-34(in Chinese).
    [12] LIU Y, ZHANG C, XIANG Y. A critical plane-based fracture criterion for mixed-mode delamination in composite materials[J]. Composites Part B: Engineering, 2015, 82: 212-220. doi: 10.1016/j.compositesb.2015.08.017
    [13] FROSSARD G, CUGNONI J, GMUR T, et al. An efficient method for fiber bridging traction identification based on the R-Curve: Formulation and experimental validation[J]. Composite Structures, 2017, 175: 135-144 doi: 10.1016/j.compstruct.2017.04.032
    [14] 黄勇, 宁志华. 纤维桥联效应下复合材料层合板的屈曲及分层扩展模拟[J]. 复合材料学报, 2022, 39(5): 2504-2514.

    HUANG Yong, NING Zhihua. Simulation of buckling and delamination propagation of composite laminates with fiber bridging[J]. ActaMateriae Compositae Sinica, 2022, 39(5): 2504-2514(in Chinese).
    [15] SHOKRICH M M, SALAMAT-TALAB M. HEIDARIRARANI M. Effect of initial crack length on the measured bridging law of unidirectional E-glass/ epoxy double cantilever beam specimens[J]. Materials & Design, 2014, 55: 605-611.
    [16] 李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法研究现状[J]. 复合材料学报, 2021, 38(4): 1076-1086.

    LI Xining, WANG Yueshun, ZHOU Xinfang. Status of numerical simulation methods for delamination damage of composite laminates[J]. ActaMateriae Compositae Sinica, 2021, 38(4): 1076-1086(in Chinese).
    [17] WU H, XIAO J, XING S, et al. Numerical and experimental investigation into failure of T700/ bismaleimide composite T-joints under tensile loading[J]. Composite Structures, 2015, 130: 63-74. doi: 10.1016/j.compstruct.2015.04.019
    [18] 籍永青, 徐颖, 游彦宇. 含分层复合材料层合板拉伸剩余强度研究[J]. 机械制造与自动化, 2021, 2: 51-54.

    JI Yongqing, XU Ying, YOU Yanyu. Research on Residual Tensile Strength of Composite Laminates with Initial Delamination[J]. Machine Building & Automation, 2021, 2: 51-54(in Chinese).
    [19] 陈刘定, 童小燕, 程起有, 等. 平纹编织C/SiC复合材料层间断裂行为试验研究[J]. 机械强度, 2012, 34(1): 097-101.

    CHENLiuding, TONGXiaoYan, CHENQiyou, et al. Experimental investigation on interlaminar fracture behavior of plain weave C/SiC composites[J]. Journal of Mechanical Strength, 2012, 34(1): 097-101(in Chinese).
    [20] 刘斌, 高一迪, 谭志勇, 等. 二维叠层C/SiC复合材料低能量冲击损伤实验[J]. 航空学报, 2021, 42(2): 224202.

    LIU Bin, GAO Yidi, TAN Zhiyong. Low energy level impact damage on 2D C/SiC composites: Experimental study[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224202(in Chinese).
    [21] ASTM International. Standard test method for modeⅠ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-13[S]. West Conshohochen, PA: ASTM International, 2013.
    [22] ASTM International. Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905/D7905M-14[S]. West Conshohochen, PA: ASTM International, 2014.
    [23] 杨强, 解维华, 孟松鹤, 等. 复合材料多尺度分析方法与典型元件拉伸损伤模拟[J]. 复合材料学报, 2015, 32(3): 617-624.

    YANG Qiang, XIEWeihua, MENGSonghe, et al. Multi-scale analysis method of composites and damage simulation of typical component under tensile load[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 617-624.
    [24] LI Y H, MA Y, GUAN T H, et al. A meso-scale stochastic model for tensile behavior of 2D woven ceramic composites considering void defects and stacking mode[J]. Composites Part A, 2024, 176: 107838. doi: 10.1016/j.compositesa.2023.107838
    [25] YAN W D, REN Z Y, FAN X Y, et al. Multi-scale pore model construction and damage behavior analysis of SiCf/ SiC composite tubes[J]. Materials Characterization, 2024, 214: 114083. doi: 10.1016/j.matchar.2024.114083
    [26] 谭志勇, 阎君, 宁蕙, 等. 宏/细观一体化多尺度数值分析的进展与应用[J]. 强度与环境, 2023, 50(5): 1-10.

    TANZhiyong, YANJun, NINGHui, et al. Developments and Application of Macro-Meso Integration Multi-Scale Numerical Analysis Method[J]. Structure & Environment Engineering, 2023, 50(5): 1-10(in Chinese).
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-21
  • 修回日期:  2024-09-20
  • 录用日期:  2024-09-26
  • 网络出版日期:  2024-10-12

目录

    /

    返回文章
    返回