留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene基材料在电催化领域的研究进展

王利萌 李亚如 任永鹏 潘昆明 赵帅凯 吕贝贝

王利萌, 李亚如, 任永鹏, 等. MXene基材料在电催化领域的研究进展[J]. 复合材料学报, 2023, 41(0): 1-15
引用本文: 王利萌, 李亚如, 任永鹏, 等. MXene基材料在电催化领域的研究进展[J]. 复合材料学报, 2023, 41(0): 1-15
Limeng WANG, Yaru LI, Yongpeng REN, Kunming PAN, Shuaikai ZHAO, Beibei LV. Research progress of MXene based materials in the field of electrocatalysis[J]. Acta Materiae Compositae Sinica.
Citation: Limeng WANG, Yaru LI, Yongpeng REN, Kunming PAN, Shuaikai ZHAO, Beibei LV. Research progress of MXene based materials in the field of electrocatalysis[J]. Acta Materiae Compositae Sinica.

MXene基材料在电催化领域的研究进展

基金项目: 国家自然科学基金(No. 51901069);河南省高校科技创新人才项目(22HASTIT1006);中原英才计划(ZYYCYU202012172);新加坡教育部(AcRF Tier 1, Grant No. RG70/20)
详细信息
    通讯作者:

    任永鹏,博士,讲师,硕士生导师,研究方向为材料冶金、功能材料 E-mail: Ren_YP123@163.com

  • 中图分类号: TB331

Research progress of MXene based materials in the field of electrocatalysis

Funds: National Natural Science Foundation of China (No. 51901069); The Program for Science & Technology Innovation Talents in the University of Henan Province (22HASTIT1006); The Program for Central Plains Talents (ZYYCYU202012172); The Ministry of Education, Singapore (AcRF Tier 1, Grant No. RG70/20);
  • 摘要:   目的  电催化是未来新能源存储与转化技术的关键,主要应用于电解水制氢和燃料电池等氢能产业。效果较好的催化剂是贵金属基材料(如Pt、Ir、Ru),然而贵金属具有高成本、低储量的特点,限制了生产中的大规模推广应用。而MXene材料具有高电导率、大比表面积、良好的电荷转移能力以及丰富可控的表面官能团的优势,作为电催化材料的活性物质或载体时均表现出良好的电催化性能。鉴于此,本文综述了近年来国内外MXenes基复合材料电催化剂在析氢反应(HER)、析氧反应(OER)、氧还原反应(ORR)等催化反应中的研究进展,最后总结并展望了MXenes基复合材料未来的发展前景。  方法  通过搜集整理并分析现有文献,从MXene的晶体结构和微观形貌出发,总结了MXenes基复合材料在电催化领域中具有亲水性、导电性和离子传输、层状结构富含大量的缺陷的优势,通过掺杂或负载金属、非金属、过渡金属化合物的方法,将MXenes与其他材料复合,或在MXenes表面引入缺陷、增加活性位点,有效提升电催化性能,证明了其在催化领域的发展潜力。  结果  重点综述了近年来MXene基材料在HER、OER、ORR、CORR、NRR、MOR等催化反应中的研究进展,对比了MXenes基复合材料和其他材料的催化性能,并展望其在催化领域的研究方向与应用前景。  结论  探索MXenes基复合材料催化剂依然存在挑战,未来研究可从以下几方面进行深入研究:(1)代替HF刻蚀MAX的方法有LiF与HCl混合、电化学刻蚀、水热法碱刻蚀等新的无氟刻蚀方法,但进一步探索无氟环保刻蚀剂及制备方法,是确保MXenes能持续发展的重要任务之一。(2)目前,已制备出60多种MXenes材料,但Ti基过渡金属碳化物占绝大部分,其他新型MXenes材料的物理化学性能和机制有待进一步探索。(3) MXenes材料表面官能团丰富,可通过选择路易斯酸的种类控制终端基的类型,但并不能确定所有类型终端基的性质,故对官能团的具体调控机制和方法还需进一步研究。

     

  • 图  1  MXene的晶体结构[24]

    Figure  1.  Crystal structure of MXene[24]

    图  2  MAX (a)、MXene(b)和d-MXene(c)的SEM图像;(d)MAX、MXene、d-MXene的XRD图谱[26]

    Figure  2.  SEM images of MAX (a)、 MXene(b) and d-MXene (c); (d)XRD patterns of MAX, MXene and d-MXene[26]

    d-MXene—MXene solution with few peeled layers

    图  3  MXene在电催化中的潜在应用[50]

    Figure  3.  Potential application of MXene in electrocatalysis[50]

    CO2RR—Carbon dioxide reduction); NRR—Nitrogen reduction; MOR—Methanol oxidation; hydrogen evolution reaction (HER); OER—Oxygen evolution reaction: ORR—oxygen reduction reaction

    图  4  (a)Mo2C/Ti3C2Tx@NC的合成示意图[63];(b)p-N-C—吡啶氮掺杂石墨烯、g-N-C—石墨氮掺杂的石墨烯、Mo2C、Ti3C2Tx及其异质结构的ΔGH值[63];(c) CoxMo2−xC/MXene/NC合成示意图[65];(d)在10 mV/s的扫描速率下,在1.0 mol/L KOH中Co0.31Mo1.69C/MXene/NC、Mo2C/MXene/NC、Co0.35Mo1.65C/NC、Co/MXene/NC、MXene/NC和20%Pt/C的HER极化曲线[65];(e)在pH值为0.3–13.8的情况下,在ηj=20时,Co0.31Mo1.69C/MXene/NC和20%Pt/C之间的比较[65]

    Figure  4.  (a)Synthetic schematic diagram of Mo2C/Ti3C2Tx@NC[63]; (b) The ΔGH of p-N-C—pyridinic N doped graphene、g-N-C—graphitic N doped graphene、Mo2C、Ti3C2Txand their heterostructures[63]; (c) Schematic diagram of CoxMo2−xC/MXene/NC[65]; (d) At a scanning rate of 10 mV/s, the HER polarization curves ofCo0.31Mo1.69C/MXene/NC、Mo2C/MXene/NC、Co0.35Mo1.65C/NC、Co/MXene/NC、MXene/NCand 20% Pt/C in 1.0 mol/L KOH[65]; (e) At pH 0.3-13.8 and ηj=20, the comparison between Co0.31Mo1.69C/MXene/NC and 20% Pt/C[65]

    图  5  (a)Co-CNT/Ti3C2的合成示意图[69];(b)Co-CNT/Ti3C2、Pt/C、ZIF-800和Ti3C2的LSV曲线[69];(c)Co-CNT Ti3C2-60和Pt/C的计时电流曲线[69];(d)NiCoS/Ti3C2Tx合成示意图[75];在ηj=10时,NiCoS/Ti3C2Tx、NiCoS、NiCo-LDH/Ti3C2Tx、NiCo-LDH和RuO2的(e)LSV曲线和(f)Tafel图[75];(g)η=350和400 mV时的TOF值[75]

    Figure  5.  (a)Synthesis diagram of Co-CNT/Ti3C2[69]; (b) LSV curves of Co-CNT/Ti3C2、Pt/C、ZIF-800 and Ti3C2[69]; (c) Timing current curve of Co-CNT Ti3C2-60 and Pt/C[69]; (d) Schematic diagram of NiCoS/Ti3C2Tx synthesis[75]; (e) LSV curve and (f) Tafel diagram of NiCoS/Ti3C2Tx、NiCoS、NiCo-LDH/Ti3C2Tx、NiCo-LDH and RuO2 when ηj=10[75]; (g) TOF value at η=350 and 400 mV[75]

    图  6  (a)CeO2/MXene复合材料的合成示意图[81];(b)无氟Ti3C2Tx纳米片(50-100 nm)的合成示意图[85];(c)NaOH–Ti3C2Tx/CC在不同电位下NH3产率和法拉第效率[85];(d)NaOH-Ti3C2Tx/CC在重复NRR过程中的稳定性试验中的NH3产率和法拉第效率[85];(e)50 mV/s的扫描速率下,在0.5 mol/L H2SO4+0.5 mol/L CH3OH溶液中Pt/Ti3C2 MXene和商用Pt/C的MOR的CV曲线[92];(f)在0.5 mol/L H2SO4+0.5 mol/L CH3OH溶液中,0.6 V条件下进行的Pt/Ti3C2-MXene的EIS光谱[92];(g)Pt/Ti3C2 MXene和商业Pt/C在0.5 mol/L H2SO4溶液中的线性扫描伏安曲线[92]

    Figure  6.  (a)Schematic diagram of the synthesis of CeO2/MXene composite[76]; (b) Schematic diagram of the synthesis of fluorine-free Ti3C2Tx nanosheet (50-100 nm)[85]; (c) The NH3 yield and Faraday efficiency of NaOH–Ti3C2Tx/CC at different potentials[85]; (d) NH3 yield and Faraday efficiency in the stability test of NaOH–Ti3C2Tx/CC in the repeated NRR process[85]; (e) CV curve of MOR of Pt/Ti3C2 MXene and commercial Pt/C in 0.5 mol/L H2SO4+0.5 mol/L CH3OH solution at a scanning rate of 50 mV/s[92]; (f) EIS spectrum of Pt/Ti3C2-MXene in 0.5 mol/L H2SO4+0.5 mol/L CH3OH solution at 0.6 V[92]; (g) Linear sweep voltammetric curves of Pt/Ti3C2 MXene and commercial Pt/C in 0.5 mol/L H2SO4 solution[92]

    表  1  酸性和碱性电解质中的HER反应机制

    Table  1.   HER reaction mechanism in acidic and alkaline electrolytes

    Acidic electrolyteAlkaline electrolyte
    Volmer reactionH3O++e→Hads+H2OH2O+e→OH+Hads
    Heyrovsky reactionHads+H++e→H2Hads+H2O+e→OH+H2
    Tafel reactionHads+Hads→H2Hads+Hads→H2
    Catalytic mechanism
    Notes:Hads are the adsorbed hydrogen atoms.
    下载: 导出CSV

    表  2  酸性和碱性电解质中的ORR反应机制

    Table  2.   ORR reaction mechanism in acidic and alkaline electrolytes

    Reaction pathwayAcidic electrolyteAlkaline electrolyte
    Four electrons reactionO2+4 H++4 e→2 H2OO2+2 H2O+4 e→4 OH
    Two electrons reactionO2+2 H++2 e→H2O2H2O2→1/2 O2+H2OO2+2 H2O+2 e→HO2+OHHO2→1/2 O2+OH
    下载: 导出CSV

    表  3  酸性和碱性电解质中的OER反应机制

    Table  3.   HER reaction mechanism in acidic and alkaline electrolytes

    Acidic electrolyteAlkaline electrolyte
    Reaction pathwayH2O→OHads+H++eOHads→Oads+H++eOads+H2O→OOHads+H++eOOHads→O2+H++e2 Oads→O2OH→OHads+eOHads+OH→Oads+H2O+eOads+OH→OOads+eOOads+OH→O2+H2O+e2 Oads→O2
    Catalytic mechanism
    Notes: Oads, OHads, and OOHads are three different oxygen-containing intermediatesHads is the adsorbed hydrogen atom. Oads are oxygen groups; OHads are hydroxide groups; OOHads are hydroperoxide groups
    下载: 导出CSV

    表  4  MXene基复合材料和其他常见催化剂的催化性能对比

    Table  4.   Comparison of catalytic performance between MXene based composite materials and other common catalysts

    ClassificationElectrocatalystElectrolyteApplicationOverpotentiala/mVTafel slope/mV·dec−1Ref.
    MXene based composite materialsPt-Ti3C2Tx0.5 mol/L H2SO4HER5565[54]
    Pt3.21Ni@Ti3C20.5 mol/L H2SO4HER18.5513.37[56]
    Ni0.9Co0.1@NTMl .0 mol/L KOHHER43.4116[58]
    MoS2⊥Ti3C2Tx0.5 mol/L H2SO4HER9540[59]
    Co-MoS2 /Mo2CTx1.0 mol/L KOHHER11285.7[60]
    1 T/2 H MoSe2-Ti3C2Tx1.0 mol/L KOHHEROER953409190[61]
    Mo2TiC2Tx-PtSA0.5 mol/L H2SO4HER3030[62]
    Mo2C/Ti3C2Tx@NC0.5 mol/L H2SO4HER5340[63]
    Co-CNT/Ti3C20.1 mol/L KOHORR63[69]
    TCCN0.1 mol/L KOHORR74.6[73]
    CoNi-LDH/Ti3C2Tx1.0 mol/L KOHOER257.4b68[74]
    NiCoS/Ti3C2Tx1.0 mol/L KOHOER36558.2[75]
    BP QDs/MXene1.0 mol/L KOHHEROER1903608364.3[76]
    Other materialsTi3C2@mNiCoP NS1.0 mol/L KOHHEROER127237103104[77]
    Al-Ni3S2/NF1.0 mol/L KOHHEROER862237537[93]
    Ni-Fe-W-LDHs/NF1.0 mol/L KOHOER247b55[94]
    NiO/NiCoP1.0 mol/L KOHHER11256[95]
    Mo2C/CNT-GR0.5 mol/L H2SO4HER13058[96]
    W2C/MWNT0.5 mol/L H2SO4HER12345[97]
    FeCoNiCuPtIr1.0 mol/L KOHHEROER2125554.561.7[98]
    Notes:NTM—Nb-doped Ti3C2Tx MXene nanohybrids; PtSA—A single Pt atom is fixed at a molybdenum vacancy; NC—Nitrogen doped carbon layer packaging; CNT—Carbon nanotube; TCCN—Overlapped g-C3N4 and Ti3C2 nanosheets; LDH—Layer double hydroxides; BP QDs—Black phosphorus quantum dots; NS—Nanosheets; NF—Nickel foam; GR—Graphene; MWNT—Multi-walled carbon nanotubes; a The overpotential and cell voltage are obtained at the current density of 10 mA·cm-2; b The overpotential and cell voltage are obtained at the current density of 100 mA·cm-2.
    下载: 导出CSV
  • [1] DAI J, CHEN B, SCIUBBA E. Ecological accounting based on extended exergy: a sustai-nability perspective[J]. Environmental science technology,2014,48(16):9826-33. doi: 10.1021/es404191v
    [2] 王家佩, 江松, 丛野, 等. 基于MXenes材料的电催化析氢研究进展[J]. 硅酸盐通报, 2020, 39(12):4022-4033. doi: 10.16552/j.cnki.issn1001-1625.2020.12.040

    WANG Jiapei, JIANG Song, CONG Ye, et al. Research progress in electrocatalytic hydrogen evolution based on MXenes materials[J]. Silicate Bulletin of the Chinese ceramic Society,2020,39(12):4022-4033(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2020.12.040
    [3] 王佳佳, 喻兰兰, 胡霞, 等. 二维纳米材料MXenes及其复合物在电催化领域中的应用研究进展[J]. 材料工程, 2022, 50(1):43-5.

    WANG Jiajia, YU Lanlan, HU Xia, et al. Rese-arch progress in the application of two-dimensional nano-materials MXenes and their composites in t-he field of electrocatalysis[J]. Journal of Materials Engineering,2022,50(1):43-5(in Chinese).
    [4] 刘艳明. 硼氮掺杂纳米金刚石和多孔碳的制备及其电催化还原性能[D]. 大连: 大连理工大学, 2016.

    LIU Yanning. Preparation of boron-nitrogen d-oped nano-diamond and porous carbon and th-eir electro-catalytic reduction performance [D]. Dalian: Dalian University of Technology, 2016(in Chinese).
    [5] SAISHUAI B, MEIQING Y, JIZHOU J, et al. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction [J]. npj 2 D Materials and Applications, 2021, 5(1).
    [6] 李小丽, 薛文明, 莫容, 等. 微量铱掺杂CoxNi1-xO纳米线阵列的制备及其电催化性能[J]. 中国催化杂志, 2019, 40(10):1576-1584. doi: 10.1016/S1872-2067(19)63414-5

    LI Xiaoli, XUE Wenming, MO Rong, et al. Preparation and Electrocatalytic Properties of CoxNi1-xO Nanowire Arrays Doped with Trace Ir-idium[J]. Chinese Journal of Catalysis,2019,40(10):1576-1584(in Chinese). doi: 10.1016/S1872-2067(19)63414-5
    [7] 于博, 李研, 刘辉, 等. NiCoP合金纳米棒阵列制备及电催化析氢性能研究[J]. 人工晶体学报, 2020, 49(02): 270-5.

    YU Bo, LI Yan, LIU Hui, et al. Preparation of NiCoP alloy nanorod array and study on its electrocatalytic hydrogen evolution performance [J] Journal of artificial lens, 2020, 49(02): 270-5(in Chinese).
    [8] ZHU J, HU L, ZHAO P, et al. Recent advan-ces in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical reviews,2019,120(2):851-918.
    [9] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-Dimensional Nanocrystals: Two Dimen-sional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [10] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591
    [11] X, XIE Y, YILMAZ D E, et al. In situ atomistic insight into the growth mechanisms of single layer 2 D transition metal carbides[J]. Nature Communications,2018,9(1):1-9. doi: 10.1038/s41467-017-02088-w
    [12] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [13] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society,2013,135(43):15966-15969. doi: 10.1021/ja405735d
    [14] KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science,2020,369(6506):979-983. doi: 10.1126/science.aba8311
    [15] CHEN X, LI M, HOU J, et al. Molten salt method synthesis of multivalent cobalt and oxygen vacancy modified Nitrogen-doped MXene as highly efficient hydrogen and oxygen Evolution reaction electrocatalysts[J]. Journal of Colloid and Interface Science,2022,615:831-839. doi: 10.1016/j.jcis.2022.02.010
    [16] 姚峰, 卞琳艳, 范燕平, 等. 二维MXenes的制备及催化产氢性能研究进展 [J]. 河南化工, 2021, 38(09): 1-6.

    YAO Feng, BIAN Linyan, FAN Yanping, et al, Progress in the preparation of two-dimensional MXenes and their catalytic performance for hydrogen production [J]. Henan Chemical Industry, 2021, 38 (09): 1-6(in Chinese).
    [17] PETRUHINS A, LU J, HULTMAN L, et al. Synthesis of atomically layered and chemically ordered rareearth (RE) i-MAX phases;(Mo2/3RE1/3)2GaC with RE= Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu[J]. Materials Research Letters,2019,7(11):446-452. doi: 10.1080/21663831.2019.1644684
    [18] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases [J]. Trends in Chemistry, 2019, 1(2).
    [19] THADATHIL A, KAVIL J, KOVUMMAL G R, et al. Facile Synthesis of Polyindole/Ni1–xZnxFe2O4 (x= 0, 0.5, 1) Nanocomposites and Their Enhanced Microwave Absorption and Shielding Properties[J]. ACS omega,2022,7(13):11473-11490. doi: 10.1021/acsomega.2c00824
    [20] HAN M, YANG J, JIANG J, et al. Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction[J]. Journal of Colloid and Interface Science,2021,582:1099-1106. doi: 10.1016/j.jcis.2020.09.001
    [21] LING C, SHI L, OUYANG Y, et al. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor[J]. Chemistry of Materials,2016,28(24):9026-9032. doi: 10.1021/acs.chemmater.6b03972
    [22] YOON Y, TIWARI A P, CHOI M, et al. Precious-Metal-Free Electrocatalysts for Activation of Hydrogen Evolution with Nonmetallic Electron Donor: Chemical Composition Controllable Phosphorous Doped Vanadium Carbide MXene[J]. Advanced Functional Materials,2019,29(30):1903443. doi: 10.1002/adfm.201903443
    [23] Li Y, Li L, HUANG R, et al. Computational screening of pristine and functionalized ordered TiVC MXenes as highly efficient anode materials for lithium-ion batteries[J]. Nanoscale,2021,13(5):2995-3001. doi: 10.1039/D0NR08271F
    [24] PENG J, CHEN X, ONG W J, et al. Surface and heterointerface engineering of 2 D MXenes and their nanocomposites: Insights into electro-and photocatalysis[J]. Chem,2019,5(1):18-50. doi: 10.1016/j.chempr.2018.08.037
    [25] XU B, HOU S, DUAN H, et al. Ultramicroporous carbon as electrode material for supercapacitors[J]. Journal of power sources,2013,228:193-197. doi: 10.1016/j.jpowsour.2012.11.122
    [26] 李雪梅. MXene/NF载体上三维花状NiCo-LDH的制备及其电催化性能研究[D]. 桂林: 桂林理工大学, 2021.

    LI Xuemei. Preparation and electrocatalytic properties of three-dimensional flower-shaped NiCo-LDH on MXene/NF supports [D]. Guilin: Guilin University of Technology, 2021(in Chinese).
    [27] VOROBYEVA E, FAKO E, CHEN D Z, et al. Atom-by-Atom Resolution of Structure Function Relations over Low-Nuclearity Metal Catalysts[J]. Angewandte Chemie,2019,131(26):8816-8821. doi: 10.1002/ange.201902136
    [28] DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition,2017,56(7):1825-1829. doi: 10.1002/anie.201609306
    [29] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [30] LUKATSKAYA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy,2017,2(8):1-6.
    [31] ZHANG X, ZHAO X, WU D, et al. High and anisotropic carrier mobility in experimentally possible Ti2CO2(MXene) monolayers and nanoribbons[J]. Nanoscale,2015,7(38):16020-16025. doi: 10.1039/C5NR04717J
    [32] SHAHZAD F, IQBAL A, KIM H, et al. 2 D transition metal carbides (MXenes): applications as an electrically conducting material[J]. Advanced Materials,2020,32(51):2002159. doi: 10.1002/adma.202002159
    [33] LI Y, YIN Z, JI G, et al. 2 D/2 D/2 D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B:Environmental,2019,246:12-20. doi: 10.1016/j.apcatb.2019.01.051
    [34] DJIRE A, WANG X, XIAO C, et al. Basal plane hydrogen evolution activity from mixed metal nitride MXenes measured by scanning electrochemical microscopy[J]. Advanced Functional Materials,2020,30(47):2001136. doi: 10.1002/adfm.202001136
    [35] WU J, LIU J, CUI J, et al. Dual-phase MoS2 as a high-performance sodiumion battery anode[J]. Journal of Materials Chemistry A,2020,8(4):2114-2122. doi: 10.1039/C9TA11913B
    [36] ZHANG S, YING H, GUO R, et al. Vapor Deposition Red Phosphorus to Prepare Nitrogen-Doped Ti3C2Tx MXenes Composites for Lithium-Ion Batteries[J]. The Journal of Physical Chemistry Letters,2019,10(21):6446-6454. doi: 10.1021/acs.jpclett.9b02335
    [37] JIANG Y, SUN T, XIE X, et al. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution[J]. ChemSusChem,2019,12(7):1368-1373. doi: 10.1002/cssc.201803032
    [38] Chu K, Li X, Li Q, et al. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene[J]. Small,2021,17(40):2102363. doi: 10.1002/smll.202102363
    [39] WANG J, GUAN Y, ZHANG Q, et al. Well-dispersed ultrafine Pt nanoparticles anchored on oxygen-rich surface of V2CTx (MXene) for boosting hydrogen evolution reaction[J]. Applied Surface Science,2022,582:152481. doi: 10.1016/j.apsusc.2022.152481
    [40] SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface enhanced Raman scattering substrate[J]. ACS nano,2017,11(9):8892-8900. doi: 10.1021/acsnano.7b03129
    [41] DJIRE A, ZHANG H, LIU J, et al. Electr-ocatalytic and optoelectronic characteristics of the two-dimensional titanium nitride Ti4N3Tx MXene[J]. ACS applied materials & interfaces,2019,11(12):11812-11823.
    [42] SHERRYNA A, TAHIR M. Role of Ti3C2 MXene as prominent schottky barriers in driving hydrogen production through photoind-uced water splitting: a comprehensive review[J]. ACS Applied Energy Materials,2021,4(11):11982-12006. doi: 10.1021/acsaem.1c02241
    [43] WANG H, WU Y, YUAN X, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges[J]. Advanced Materials,2018,30(12):1704561. doi: 10.1002/adma.201704561
    [44] GAO G, O’MULLANE A P, DU A. 2 D MXenes: a new family of promising catalysts for the hydrogen evolution reaction[J]. Acs Catalysis,2017,7(1):494-500. doi: 10.1021/acscatal.6b02754
    [45] YU M, ZHOU S, WANG Z, et al. Boosting electrocatalytic oxygen evolution by synergisti-cally coupling layered double hydroxide with MXene[J]. Nano Energy,2018,44:181-190. doi: 10.1016/j.nanoen.2017.12.003
    [46] LIN H, CHEN L, LU X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China Materials,2019,62(5):662-670. doi: 10.1007/s40843-018-9378-3
    [47] LI N, CHEN X, ONG W-J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes)[J]. Acs Nano,2017,11(11):10825-10833. doi: 10.1021/acsnano.7b03738
    [48] LUO Y, CHEN G-F, DING L, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule,2019,3(1):279-289. doi: 10.1016/j.joule.2018.09.011
    [49] LIU A, LIANG X, REN X, et al. Recent Progress in MXene-Based Materials: Potential High-Performance Electrocatalysts[J]. Advanced Functional Materials,2020,30(38):2003437. doi: 10.1002/adfm.202003437
    [50] KUANG P, HE M, ZHU B, et al. 0 D/2 D NiS2/V-MXene composite for electrocatalytic H2 evolution[J]. Journal of catalysis,2019,375:8-20. doi: 10.1016/j.jcat.2019.05.019
    [51] 胡素敏. 钼基异金属硫/硒化物电极的构建与电催化析氢应用[D]. 哈尔滨: 哈尔滨理工大学, 2022.

    HU Sumin. Construction of Molybdenum based Heterometallic Sulfur/selenide Electrode and Application of Electrocatalytic Hydrogen Evol-ution [D]. Harbin: Harbin Institute of Technol-ogy, 2022(in Chinese).
    [52] 李筱霏, 赵恩德, 彭少波, 等. MOF衍生CoSe2基电催化剂的制备及其电解水性能研究进展[J]. 复合材料学报, 2023, 41(0):1-16.

    LI Xiaofei, ZHAO Ende, PENG Shaobo, et al. Research progress of synthesis of metal organic framework derived CoSe2-based electrocatalysts for overall water splitting[J]. Acta Materiae Compositae Sinica,2023,41(0):1-16(in Chinese).
    [53] WEI Y, SOOMRO R A, XIE X, et al. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2 D MXenes[J]. Journal of Energy Chemistry,2021,55:244-255. doi: 10.1016/j.jechem.2020.06.069
    [54] YUAN Y, LI H, WANG L, et al. Achieving Highly Efficient Catalysts for Hydrogen Evolution Reaction by Electronic State Modification of Platinum on Versatile Ti3C2Tx (MXene)[J]. ACS Sustainable Chemistry & Engineering,2019,7(4):4266-73.
    [55] LI Z, QI Z, WANG S, et al. In Situ Formed Pt3Ti Nanoparticles on a Two-Dimensional Transition Metal Carbide (MXene) Used as Efficient Catalysts for Hydrogen Evolution Reactions[J]. Nano Letters,2019,19(8):5102-5108. doi: 10.1021/acs.nanolett.9b01381
    [56] JIANG Y, WU X, YAN Y, et al. Coupling PtNi Ultrathin Nanowires with MXenes for Boosting Electrocatalytic Hydrogen Evolution in Both Acidic and Alkaline Solutions[J]. Small,2019,15(12):1805474. doi: 10.1002/smll.201805474
    [57] YAN Y, ZHANG R, YU Y, et al. Interfacial optimization of PtNi octahedrons@Ti3C2MXene with enhanced alkaline hydrogen evolution activity and stability[J]. Applied Catalysis B:Environmental,2021,291:120100. doi: 10.1016/j.apcatb.2021.120100
    [58] DU C F, SUN X, YU H, et al. Synergy of Nb Doping and Surface Alloy Enhanced on Water-Alkali Electrocatalytic Hydrogen Generation Performance in Ti-Based MXene[J]. Advanced Science,2019,6(11):1900116.
    [59] ATTANAYAKE N H, ABEYWEERA S C, THENUWARA A C, et al. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst[J]. Journal of Materials Chemistry A,2018,6(35):16882-16889. doi: 10.1039/C8TA05033C
    [60] LIANG J, DING C, LIU J, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media[J]. Nanoscale,2019,11(22):10992-11000. doi: 10.1039/C9NR02085C
    [61] LI N, ZHANG Y, JIA M, et al. 1 T/2 H MoSe2-on-MXene heterostructure as bifunctional ele-ctrocatalyst for efficient overall water splitting[J]. Electrochimica Acta,2019,326:134976. doi: 10.1016/j.electacta.2019.134976
    [62] ZHANG J, ZHAO Y, GUO X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis,2018,1(12):985-992. doi: 10.1038/s41929-018-0195-1
    [63] WANG H, LIN Y, LIU S, et al. Confined growth of pyridinic N–Mo2C sites on MXenes for hydrogen evolution[J]. Journal of materials chemistry A,2020,8(15):7109-7116. doi: 10.1039/D0TA01697G
    [64] KUZNETSOV D A, CHEN Z, KUMAR P V, et al. Single site cobalt substitution in 2 D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2019,141(44):17809-17816. doi: 10.1021/jacs.9b08897
    [65] WU X, ZHOU S, WANG Z, et al. Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater[J]. Advanced Energy Materials,2019,9(34):1901333. doi: 10.1002/aenm.201901333
    [66] KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews,2018,118(5):2302-2312. doi: 10.1021/acs.chemrev.7b00488
    [67] NøRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B,2004,108(46):17886-17892. doi: 10.1021/jp047349j
    [68] XUE Q, PEI Z, HUANG Y, et al. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries[J]. Journal of Materials Chemistry A,2017,5(39):20818-20823. doi: 10.1039/C7TA04532H
    [69] CHEN J, YUAN X, LYU F, et al. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction[J]. Journal of Materials Chemistry A,2019,7(3):1281-1286. doi: 10.1039/C8TA10574J
    [70] YANG X, JIA Q, DUAN F, et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution[J]. Applied Surface Science,2019,464:78-87. doi: 10.1016/j.apsusc.2018.09.069
    [71] ZUBAIR M, HASSAN M M U, MEHRAN M T, et al. 2 D MXenes and their heterostructures for HER, OER and overall water splitting: a review[J]. International Journal of Hydrogen Energy, 2021.
    [72] 张毓文. Co9S8基材料的合成及其电催化析氧性能研究[D]. 兰州: 兰州大学, 2022.

    ZHANG Yuwen. Synthesis of Co9S8 based materials and their electrocatalytic oxygen evolution performance [D]. Lanzhou: Lanzhou University, 2022(in Chinese).
    [73] MA T Y, CAO J L, JARONIEC M, et al. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution[J]. Angewandte Chemie International Edition,2016,55(3):1138-1142. doi: 10.1002/anie.201509758
    [74] Hu L, Li M, Wei X, et al. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis[J]. Chemical Engineering Journal,2020,398:125605. doi: 10.1016/j.cej.2020.125605
    [75] ZOU H, HE B, KUANG P, et al. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin Mxene nanosheets for electrocatalytic oxygen evolution[J]. ACS applied materials & interfaces,2018,10(26):22311-22319.
    [76] ZHU X-D, XIE Y, LIU Y-T. Exploring the synergy of 2 D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions[J]. Journal of Materials Chemistry A,2018,6(43):21255-21260. doi: 10.1039/C8TA08374F
    [77] YUE Q, SUN J, CHEN S, et al. Hierarchical mesoporous MXene–NiCoP electrocatalyst for water-splitting[J]. ACS applied materials & interfaces,2020,12(16):18570-18577.
    [78] KAN D, WANG D, ZHANG X, et al. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations[J]. Journal of Materials Chemistry A,2020,8(6):3097-3108. doi: 10.1039/C9TA12255A
    [79] WHIPPLE D T, KENIS P J. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction[J]. The Journal of Physical Chemistry Letters,2010,1(24):3451-3458. doi: 10.1021/jz1012627
    [80] LI X, BAI Y, SHI X, et al. Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2 D electronic charge transfer for efficient p-hotocatalytic CO2 reduction[J]. Applied Surf-ace Science,2021,546:149111. doi: 10.1016/j.apsusc.2021.149111
    [81] SHEN J, SHEN J, ZHANG W, et al. Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction[J]. Ceramics International,2019,45(18):24146-24153. doi: 10.1016/j.ceramint.2019.08.123
    [82] KANNAN K, SLIEM M H, ABDULLAH A M, et al. Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction[J]. Catalysts,2020,10(5):549. doi: 10.3390/catal10050549
    [83] KOZUCH S, SHAIK S. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration[J]. The Journal of Physical Chemistry A,2008,112(26):6032-6041. doi: 10.1021/jp8004772
    [84] GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature,2008,451(7176):293-296. doi: 10.1038/nature06592
    [85] LI T, YAN X, HUANG L, et al. Fluorine-free Ti3C2Tx (T= O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions[J]. Journal of Materials Chemistry A,2019,7(24):14462-14465. doi: 10.1039/C9TA03254A
    [86] CHENG Y, DAI J, SONG Y, et al. Single molybdenum atom anchored on 2 D Ti2NO2 MXene as a promising electrocatalyst for N2 fixation[J]. Nanoscale,2019,11(39):18132-18141. doi: 10.1039/C9NR05402B
    [87] PENG W, LUO M, XU X, et al. Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction[J]. Advanced Energy Materials,2020,10(25):2001364. doi: 10.1002/aenm.202001364
    [88] LIU A, GAO M, REN X, et al. A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction[J]. Nanoscale,2020,12(20):10933-10938. doi: 10.1039/D0NR00788A
    [89] KONG W, GONG F, ZHOU Q, et al. An MnO2-Ti3C2Tx MXene nanohybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions[J]. Journal of Materials Chemistry A,2019,7(32):18823-18827. doi: 10.1039/C9TA04902A
    [90] ZHANG J, QU X, HAN Y, et al. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance[J]. Applied Catalysis B:Environmental,2020,263:118345. doi: 10.1016/j.apcatb.2019.118345
    [91] CHANDRAN M, RAVEENDRAN A, VINOBA M, et al. Nickel-decorated MoS2/MXenenanosheets composites for electrocatalytic o-xidation of methanol[J]. Ceramics Internatio-nal,2021,47(19):26847-26855. doi: 10.1016/j.ceramint.2021.06.093
    [92] WANG Y, WANG J, HAN G, et al. Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction[J]. Ceramics International,2019,45(2):2411-2417. doi: 10.1016/j.ceramint.2018.10.160
    [93] HE Wenjun, WANG Fangqing, JIA Dongbo, et al. Al-doped nickel sulfide nanosheet arrays as highly efficient bifunctional electrocatalysts for overall water splitting[J]. Nanoscale,2020,12(47):24244-24250. doi: 10.1039/D0NR07134J
    [94] WU Libo, YU Luo, ZHANG Fanghao, , et al. Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(16).
    [95] GUO Manan, QU Yanhui, ZENG Fanyan, et al. Synthetic strategy and evaluation of hierarchical nanoporous NiO/NiCoP microspheres as efficient electrocatalysts for hydrogen evolution reaction[J]. Electrochimica Acta,2018,292:88-97. doi: 10.1016/j.electacta.2018.09.159
    [96] YOUN D H, HAN S, KIM J Y, et al. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube–graphene hybrid support[J]. ACS nano,2014,8(5):5164-5173. doi: 10.1021/nn5012144
    [97] GONG Qiufang, WANG Yu, HU Qi, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature communications,2016,7(1):13216. doi: 10.1038/ncomms13216
    [98] LU Yu, HUANG Kang, CAO Xun, et al. Atomically Dispersed Intrinsic Hollow Sites of M-M1-M (M1= Pt, Ir; M= Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr Nanocrystals Enabling Rapid Water Redox[J]. Advanced Functional Materials,2022,32(19):2110645. doi: 10.1002/adfm.202110645
  • 加载中
计量
  • 文章访问数:  87
  • HTML全文浏览量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 修回日期:  2023-04-06
  • 录用日期:  2023-04-08
  • 网络出版日期:  2023-04-24

目录

    /

    返回文章
    返回