Research progress of MXene based materials in the field of electrocatalysis
-
摘要:
目的 电催化是未来新能源存储与转化技术的关键,主要应用于电解水制氢和燃料电池等氢能产业。效果较好的催化剂是贵金属基材料(如Pt、Ir、Ru),然而贵金属具有高成本、低储量的特点,限制了生产中的大规模推广应用。而MXene材料具有高电导率、大比表面积、良好的电荷转移能力以及丰富可控的表面官能团的优势,作为电催化材料的活性物质或载体时均表现出良好的电催化性能。鉴于此,本文综述了近年来国内外MXenes基复合材料电催化剂在析氢反应(HER)、析氧反应(OER)、氧还原反应(ORR)等催化反应中的研究进展,最后总结并展望了MXenes基复合材料未来的发展前景。 方法 通过搜集整理并分析现有文献,从MXene的晶体结构和微观形貌出发,总结了MXenes基复合材料在电催化领域中具有亲水性、导电性和离子传输、层状结构富含大量的缺陷的优势,通过掺杂或负载金属、非金属、过渡金属化合物的方法,将MXenes与其他材料复合,或在MXenes表面引入缺陷、增加活性位点,有效提升电催化性能,证明了其在催化领域的发展潜力。 结果 重点综述了近年来MXene基材料在HER、OER、ORR、CORR、NRR、MOR等催化反应中的研究进展,对比了MXenes基复合材料和其他材料的催化性能,并展望其在催化领域的研究方向与应用前景。 结论 探索MXenes基复合材料催化剂依然存在挑战,未来研究可从以下几方面进行深入研究:(1)代替HF刻蚀MAX的方法有LiF与HCl混合、电化学刻蚀、水热法碱刻蚀等新的无氟刻蚀方法,但进一步探索无氟环保刻蚀剂及制备方法,是确保MXenes能持续发展的重要任务之一。(2)目前,已制备出60多种MXenes材料,但Ti基过渡金属碳化物占绝大部分,其他新型MXenes材料的物理化学性能和机制有待进一步探索。(3) MXenes材料表面官能团丰富,可通过选择路易斯酸的种类控制终端基的类型,但并不能确定所有类型终端基的性质,故对官能团的具体调控机制和方法还需进一步研究。 Abstract: Electrocatalysis is the key technology of new energy storage and conversion in the future, which is mainly used in hydrogen energy industries such as hydrogen production by water electrolysis and fuel cells. MXene is a general term for two-dimensional layered transition metal carbides, nitrides and carbonitrides. It has high conductivity, large specific surface area, good charge transfer ability as well as rich and controllable surface functional groups, which has been widely used in the field of electrochemical catalysis in recent years. In this paper, the multiple structures of two-dimensional MXene are described firstly, and then the advantages of MXene based electrocatalytic materials in hydrophilicity, conductivity, ion transport and surface defects are summarized, with emphasis on the application and progress of MXene based materials in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and other catalytic reactions in recent years, The relationship between MXene structure and performance is revealed. Finally, the future development prospect is summarized and prospected.-
Key words:
- MXene /
- two dimensional materials /
- compound material /
- layered structure /
- electrocatalysis
-
图 4 (a)Mo2C/Ti3C2Tx@NC的合成示意图[63];(b)p-N-C—吡啶氮掺杂石墨烯、g-N-C—石墨氮掺杂的石墨烯、Mo2C、Ti3C2Tx及其异质结构的ΔGH值[63];(c) CoxMo2−xC/MXene/NC合成示意图[65];(d)在10 mV/s的扫描速率下,在1.0 mol/L KOH中Co0.31Mo1.69C/MXene/NC、Mo2C/MXene/NC、Co0.35Mo1.65C/NC、Co/MXene/NC、MXene/NC和20%Pt/C的HER极化曲线[65];(e)在pH值为0.3–13.8的情况下,在ηj=20时,Co0.31Mo1.69C/MXene/NC和20%Pt/C之间的比较[65]
Figure 4. (a)Synthetic schematic diagram of Mo2C/Ti3C2Tx@NC[63]; (b) The ΔGH of p-N-C—pyridinic N doped graphene、g-N-C—graphitic N doped graphene、Mo2C、Ti3C2Txand their heterostructures[63]; (c) Schematic diagram of CoxMo2−xC/MXene/NC[65]; (d) At a scanning rate of 10 mV/s, the HER polarization curves ofCo0.31Mo1.69C/MXene/NC、Mo2C/MXene/NC、Co0.35Mo1.65C/NC、Co/MXene/NC、MXene/NCand 20% Pt/C in 1.0 mol/L KOH[65]; (e) At pH 0.3-13.8 and ηj=20, the comparison between Co0.31Mo1.69C/MXene/NC and 20% Pt/C[65]
图 5 (a)Co-CNT/Ti3C2的合成示意图[69];(b)Co-CNT/Ti3C2、Pt/C、ZIF-800和Ti3C2的LSV曲线[69];(c)Co-CNT Ti3C2-60和Pt/C的计时电流曲线[69];(d)NiCoS/Ti3C2Tx合成示意图[75];在ηj=10时,NiCoS/Ti3C2Tx、NiCoS、NiCo-LDH/Ti3C2Tx、NiCo-LDH和RuO2的(e)LSV曲线和(f)Tafel图[75];(g)η=350和400 mV时的TOF值[75]
Figure 5. (a)Synthesis diagram of Co-CNT/Ti3C2[69]; (b) LSV curves of Co-CNT/Ti3C2、Pt/C、ZIF-800 and Ti3C2[69]; (c) Timing current curve of Co-CNT Ti3C2-60 and Pt/C[69]; (d) Schematic diagram of NiCoS/Ti3C2Tx synthesis[75]; (e) LSV curve and (f) Tafel diagram of NiCoS/Ti3C2Tx、NiCoS、NiCo-LDH/Ti3C2Tx、NiCo-LDH and RuO2 when ηj=10[75]; (g) TOF value at η=350 and 400 mV[75]
图 6 (a)CeO2/MXene复合材料的合成示意图[81];(b)无氟Ti3C2Tx纳米片(50-100 nm)的合成示意图[85];(c)NaOH–Ti3C2Tx/CC在不同电位下NH3产率和法拉第效率[85];(d)NaOH-Ti3C2Tx/CC在重复NRR过程中的稳定性试验中的NH3产率和法拉第效率[85];(e)50 mV/s的扫描速率下,在0.5 mol/L H2SO4+0.5 mol/L CH3OH溶液中Pt/Ti3C2 MXene和商用Pt/C的MOR的CV曲线[92];(f)在0.5 mol/L H2SO4+0.5 mol/L CH3OH溶液中,0.6 V条件下进行的Pt/Ti3C2-MXene的EIS光谱[92];(g)Pt/Ti3C2 MXene和商业Pt/C在0.5 mol/L H2SO4溶液中的线性扫描伏安曲线[92]
Figure 6. (a)Schematic diagram of the synthesis of CeO2/MXene composite[76]; (b) Schematic diagram of the synthesis of fluorine-free Ti3C2Tx nanosheet (50-100 nm)[85]; (c) The NH3 yield and Faraday efficiency of NaOH–Ti3C2Tx/CC at different potentials[85]; (d) NH3 yield and Faraday efficiency in the stability test of NaOH–Ti3C2Tx/CC in the repeated NRR process[85]; (e) CV curve of MOR of Pt/Ti3C2 MXene and commercial Pt/C in 0.5 mol/L H2SO4+0.5 mol/L CH3OH solution at a scanning rate of 50 mV/s[92]; (f) EIS spectrum of Pt/Ti3C2-MXene in 0.5 mol/L H2SO4+0.5 mol/L CH3OH solution at 0.6 V[92]; (g) Linear sweep voltammetric curves of Pt/Ti3C2 MXene and commercial Pt/C in 0.5 mol/L H2SO4 solution[92]
表 1 酸性和碱性电解质中的HER反应机制
Table 1. HER reaction mechanism in acidic and alkaline electrolytes
Acidic electrolyte Alkaline electrolyte Volmer reaction H3O++e−→Hads+H2O H2O+e−→OH−+Hads Heyrovsky reaction Hads+H++e−→H2 Hads+H2O+e−→OH−+H2 Tafel reaction Hads+Hads→H2 Hads+Hads→H2 Catalytic mechanism Notes:Hads are the adsorbed hydrogen atoms. 表 2 酸性和碱性电解质中的ORR反应机制
Table 2. ORR reaction mechanism in acidic and alkaline electrolytes
Reaction pathway Acidic electrolyte Alkaline electrolyte Four electrons reaction O2+4 H++4 e−→2 H2O O2+2 H2O+4 e−→4 OH− Two electrons reaction O2+2 H++2 e−→H2O2H2O2→1/2 O2+H2O O2+2 H2O+2 e−→HO2−+OH−HO2−→1/2 O2+OH− 表 3 酸性和碱性电解质中的OER反应机制
Table 3. HER reaction mechanism in acidic and alkaline electrolytes
Acidic electrolyte Alkaline electrolyte Reaction pathway H2O→OHads+H++e−OHads→Oads+H++e−Oads+H2O→OOHads+H++e−OOHads→O2+H++e−2 Oads→O2 OH−→OHads+e−OHads+OH−→Oads+H2O+e−Oads+OH−→OOads+e−OOads+OH−→O2+H2O+e−2 Oads→O2 Catalytic mechanism Notes: Oads, OHads, and OOHads are three different oxygen-containing intermediatesHads is the adsorbed hydrogen atom. Oads are oxygen groups; OHads are hydroxide groups; OOHads are hydroperoxide groups 表 4 MXene基复合材料和其他常见催化剂的催化性能对比
Table 4. Comparison of catalytic performance between MXene based composite materials and other common catalysts
Classification Electrocatalyst Electrolyte Application Overpotentiala/mV Tafel slope/mV·dec−1 Ref. MXene based composite materials Pt-Ti3C2Tx 0.5 mol/L H2SO4 HER 55 65 [54] Pt3.21Ni@Ti3C2 0.5 mol/L H2SO4 HER 18.55 13.37 [56] Ni0.9Co0.1@NTM l .0 mol/L KOH HER 43.4 116 [58] MoS2⊥Ti3C2Tx 0.5 mol/L H2SO4 HER 95 40 [59] Co-MoS2 /Mo2CTx 1.0 mol/L KOH HER 112 85.7 [60] 1 T/2 H MoSe2-Ti3C2Tx 1.0 mol/L KOH HEROER 95340 9190 [61] Mo2TiC2Tx-PtSA 0.5 mol/L H2SO4 HER 30 30 [62] Mo2C/Ti3C2Tx@NC 0.5 mol/L H2SO4 HER 53 40 [63] Co-CNT/Ti3C2 0.1 mol/L KOH ORR — 63 [69] TCCN 0.1 mol/L KOH ORR — 74.6 [73] CoNi-LDH/Ti3C2Tx 1.0 mol/L KOH OER 257.4b 68 [74] NiCoS/Ti3C2Tx 1.0 mol/L KOH OER 365 58.2 [75] BP QDs/MXene 1.0 mol/L KOH HEROER 190360 8364.3 [76] Other materials Ti3C2@mNiCoP NS 1.0 mol/L KOH HEROER 127237 103104 [77] Al-Ni3S2/NF 1.0 mol/L KOH HEROER 86223 7537 [93] Ni-Fe-W-LDHs/NF 1.0 mol/L KOH OER 247b 55 [94] NiO/NiCoP 1.0 mol/L KOH HER 112 56 [95] Mo2C/CNT-GR 0.5 mol/L H2SO4 HER 130 58 [96] W2C/MWNT 0.5 mol/L H2SO4 HER 123 45 [97] FeCoNiCuPtIr 1.0 mol/L KOH HEROER 21255 54.561.7 [98] Notes:NTM—Nb-doped Ti3C2Tx MXene nanohybrids; PtSA—A single Pt atom is fixed at a molybdenum vacancy; NC—Nitrogen doped carbon layer packaging; CNT—Carbon nanotube; TCCN—Overlapped g-C3N4 and Ti3C2 nanosheets; LDH—Layer double hydroxides; BP QDs—Black phosphorus quantum dots; NS—Nanosheets; NF—Nickel foam; GR—Graphene; MWNT—Multi-walled carbon nanotubes; a The overpotential and cell voltage are obtained at the current density of 10 mA·cm-2; b The overpotential and cell voltage are obtained at the current density of 100 mA·cm-2. -
[1] DAI J, CHEN B, SCIUBBA E. Ecological accounting based on extended exergy: a sustai-nability perspective[J]. Environmental science technology,2014,48(16):9826-33. doi: 10.1021/es404191v [2] 王家佩, 江松, 丛野, 等. 基于MXenes材料的电催化析氢研究进展[J]. 硅酸盐通报, 2020, 39(12):4022-4033. doi: 10.16552/j.cnki.issn1001-1625.2020.12.040WANG Jiapei, JIANG Song, CONG Ye, et al. Research progress in electrocatalytic hydrogen evolution based on MXenes materials[J]. Silicate Bulletin of the Chinese ceramic Society,2020,39(12):4022-4033(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2020.12.040 [3] 王佳佳, 喻兰兰, 胡霞, 等. 二维纳米材料MXenes及其复合物在电催化领域中的应用研究进展[J]. 材料工程, 2022, 50(1):43-5.WANG Jiajia, YU Lanlan, HU Xia, et al. Rese-arch progress in the application of two-dimensional nano-materials MXenes and their composites in t-he field of electrocatalysis[J]. Journal of Materials Engineering,2022,50(1):43-5(in Chinese). [4] 刘艳明. 硼氮掺杂纳米金刚石和多孔碳的制备及其电催化还原性能[D]. 大连: 大连理工大学, 2016.LIU Yanning. Preparation of boron-nitrogen d-oped nano-diamond and porous carbon and th-eir electro-catalytic reduction performance [D]. Dalian: Dalian University of Technology, 2016(in Chinese). [5] SAISHUAI B, MEIQING Y, JIZHOU J, et al. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction [J]. npj 2 D Materials and Applications, 2021, 5(1). [6] 李小丽, 薛文明, 莫容, 等. 微量铱掺杂CoxNi1-xO纳米线阵列的制备及其电催化性能[J]. 中国催化杂志, 2019, 40(10):1576-1584. doi: 10.1016/S1872-2067(19)63414-5LI Xiaoli, XUE Wenming, MO Rong, et al. Preparation and Electrocatalytic Properties of CoxNi1-xO Nanowire Arrays Doped with Trace Ir-idium[J]. Chinese Journal of Catalysis,2019,40(10):1576-1584(in Chinese). doi: 10.1016/S1872-2067(19)63414-5 [7] 于博, 李研, 刘辉, 等. NiCoP合金纳米棒阵列制备及电催化析氢性能研究[J]. 人工晶体学报, 2020, 49(02): 270-5.YU Bo, LI Yan, LIU Hui, et al. Preparation of NiCoP alloy nanorod array and study on its electrocatalytic hydrogen evolution performance [J] Journal of artificial lens, 2020, 49(02): 270-5(in Chinese). [8] ZHU J, HU L, ZHAO P, et al. Recent advan-ces in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical reviews,2019,120(2):851-918. [9] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-Dimensional Nanocrystals: Two Dimen-sional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306 [10] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591 [11] X, XIE Y, YILMAZ D E, et al. In situ atomistic insight into the growth mechanisms of single layer 2 D transition metal carbides[J]. Nature Communications,2018,9(1):1-9. doi: 10.1038/s41467-017-02088-w [12] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h [13] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society,2013,135(43):15966-15969. doi: 10.1021/ja405735d [14] KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science,2020,369(6506):979-983. doi: 10.1126/science.aba8311 [15] CHEN X, LI M, HOU J, et al. Molten salt method synthesis of multivalent cobalt and oxygen vacancy modified Nitrogen-doped MXene as highly efficient hydrogen and oxygen Evolution reaction electrocatalysts[J]. Journal of Colloid and Interface Science,2022,615:831-839. doi: 10.1016/j.jcis.2022.02.010 [16] 姚峰, 卞琳艳, 范燕平, 等. 二维MXenes的制备及催化产氢性能研究进展 [J]. 河南化工, 2021, 38(09): 1-6.YAO Feng, BIAN Linyan, FAN Yanping, et al, Progress in the preparation of two-dimensional MXenes and their catalytic performance for hydrogen production [J]. Henan Chemical Industry, 2021, 38 (09): 1-6(in Chinese). [17] PETRUHINS A, LU J, HULTMAN L, et al. Synthesis of atomically layered and chemically ordered rareearth (RE) i-MAX phases;(Mo2/3RE1/3)2GaC with RE= Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu[J]. Materials Research Letters,2019,7(11):446-452. doi: 10.1080/21663831.2019.1644684 [18] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases [J]. Trends in Chemistry, 2019, 1(2). [19] THADATHIL A, KAVIL J, KOVUMMAL G R, et al. Facile Synthesis of Polyindole/Ni1–xZnxFe2O4 (x= 0, 0.5, 1) Nanocomposites and Their Enhanced Microwave Absorption and Shielding Properties[J]. ACS omega,2022,7(13):11473-11490. doi: 10.1021/acsomega.2c00824 [20] HAN M, YANG J, JIANG J, et al. Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction[J]. Journal of Colloid and Interface Science,2021,582:1099-1106. doi: 10.1016/j.jcis.2020.09.001 [21] LING C, SHI L, OUYANG Y, et al. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor[J]. Chemistry of Materials,2016,28(24):9026-9032. doi: 10.1021/acs.chemmater.6b03972 [22] YOON Y, TIWARI A P, CHOI M, et al. Precious-Metal-Free Electrocatalysts for Activation of Hydrogen Evolution with Nonmetallic Electron Donor: Chemical Composition Controllable Phosphorous Doped Vanadium Carbide MXene[J]. Advanced Functional Materials,2019,29(30):1903443. doi: 10.1002/adfm.201903443 [23] Li Y, Li L, HUANG R, et al. Computational screening of pristine and functionalized ordered TiVC MXenes as highly efficient anode materials for lithium-ion batteries[J]. Nanoscale,2021,13(5):2995-3001. doi: 10.1039/D0NR08271F [24] PENG J, CHEN X, ONG W J, et al. Surface and heterointerface engineering of 2 D MXenes and their nanocomposites: Insights into electro-and photocatalysis[J]. Chem,2019,5(1):18-50. doi: 10.1016/j.chempr.2018.08.037 [25] XU B, HOU S, DUAN H, et al. Ultramicroporous carbon as electrode material for supercapacitors[J]. Journal of power sources,2013,228:193-197. doi: 10.1016/j.jpowsour.2012.11.122 [26] 李雪梅. MXene/NF载体上三维花状NiCo-LDH的制备及其电催化性能研究[D]. 桂林: 桂林理工大学, 2021.LI Xuemei. Preparation and electrocatalytic properties of three-dimensional flower-shaped NiCo-LDH on MXene/NF supports [D]. Guilin: Guilin University of Technology, 2021(in Chinese). [27] VOROBYEVA E, FAKO E, CHEN D Z, et al. Atom-by-Atom Resolution of Structure Function Relations over Low-Nuclearity Metal Catalysts[J]. Angewandte Chemie,2019,131(26):8816-8821. doi: 10.1002/ange.201902136 [28] DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition,2017,56(7):1825-1829. doi: 10.1002/anie.201609306 [29] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970 [30] LUKATSKAYA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy,2017,2(8):1-6. [31] ZHANG X, ZHAO X, WU D, et al. High and anisotropic carrier mobility in experimentally possible Ti2CO2(MXene) monolayers and nanoribbons[J]. Nanoscale,2015,7(38):16020-16025. doi: 10.1039/C5NR04717J [32] SHAHZAD F, IQBAL A, KIM H, et al. 2 D transition metal carbides (MXenes): applications as an electrically conducting material[J]. Advanced Materials,2020,32(51):2002159. doi: 10.1002/adma.202002159 [33] LI Y, YIN Z, JI G, et al. 2 D/2 D/2 D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B:Environmental,2019,246:12-20. doi: 10.1016/j.apcatb.2019.01.051 [34] DJIRE A, WANG X, XIAO C, et al. Basal plane hydrogen evolution activity from mixed metal nitride MXenes measured by scanning electrochemical microscopy[J]. Advanced Functional Materials,2020,30(47):2001136. doi: 10.1002/adfm.202001136 [35] WU J, LIU J, CUI J, et al. Dual-phase MoS2 as a high-performance sodiumion battery anode[J]. Journal of Materials Chemistry A,2020,8(4):2114-2122. doi: 10.1039/C9TA11913B [36] ZHANG S, YING H, GUO R, et al. Vapor Deposition Red Phosphorus to Prepare Nitrogen-Doped Ti3C2Tx MXenes Composites for Lithium-Ion Batteries[J]. The Journal of Physical Chemistry Letters,2019,10(21):6446-6454. doi: 10.1021/acs.jpclett.9b02335 [37] JIANG Y, SUN T, XIE X, et al. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution[J]. ChemSusChem,2019,12(7):1368-1373. doi: 10.1002/cssc.201803032 [38] Chu K, Li X, Li Q, et al. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene[J]. Small,2021,17(40):2102363. doi: 10.1002/smll.202102363 [39] WANG J, GUAN Y, ZHANG Q, et al. Well-dispersed ultrafine Pt nanoparticles anchored on oxygen-rich surface of V2CTx (MXene) for boosting hydrogen evolution reaction[J]. Applied Surface Science,2022,582:152481. doi: 10.1016/j.apsusc.2022.152481 [40] SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface enhanced Raman scattering substrate[J]. ACS nano,2017,11(9):8892-8900. doi: 10.1021/acsnano.7b03129 [41] DJIRE A, ZHANG H, LIU J, et al. Electr-ocatalytic and optoelectronic characteristics of the two-dimensional titanium nitride Ti4N3Tx MXene[J]. ACS applied materials & interfaces,2019,11(12):11812-11823. [42] SHERRYNA A, TAHIR M. Role of Ti3C2 MXene as prominent schottky barriers in driving hydrogen production through photoind-uced water splitting: a comprehensive review[J]. ACS Applied Energy Materials,2021,4(11):11982-12006. doi: 10.1021/acsaem.1c02241 [43] WANG H, WU Y, YUAN X, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges[J]. Advanced Materials,2018,30(12):1704561. doi: 10.1002/adma.201704561 [44] GAO G, O’MULLANE A P, DU A. 2 D MXenes: a new family of promising catalysts for the hydrogen evolution reaction[J]. Acs Catalysis,2017,7(1):494-500. doi: 10.1021/acscatal.6b02754 [45] YU M, ZHOU S, WANG Z, et al. Boosting electrocatalytic oxygen evolution by synergisti-cally coupling layered double hydroxide with MXene[J]. Nano Energy,2018,44:181-190. doi: 10.1016/j.nanoen.2017.12.003 [46] LIN H, CHEN L, LU X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China Materials,2019,62(5):662-670. doi: 10.1007/s40843-018-9378-3 [47] LI N, CHEN X, ONG W-J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes)[J]. Acs Nano,2017,11(11):10825-10833. doi: 10.1021/acsnano.7b03738 [48] LUO Y, CHEN G-F, DING L, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule,2019,3(1):279-289. doi: 10.1016/j.joule.2018.09.011 [49] LIU A, LIANG X, REN X, et al. Recent Progress in MXene-Based Materials: Potential High-Performance Electrocatalysts[J]. Advanced Functional Materials,2020,30(38):2003437. doi: 10.1002/adfm.202003437 [50] KUANG P, HE M, ZHU B, et al. 0 D/2 D NiS2/V-MXene composite for electrocatalytic H2 evolution[J]. Journal of catalysis,2019,375:8-20. doi: 10.1016/j.jcat.2019.05.019 [51] 胡素敏. 钼基异金属硫/硒化物电极的构建与电催化析氢应用[D]. 哈尔滨: 哈尔滨理工大学, 2022.HU Sumin. Construction of Molybdenum based Heterometallic Sulfur/selenide Electrode and Application of Electrocatalytic Hydrogen Evol-ution [D]. Harbin: Harbin Institute of Technol-ogy, 2022(in Chinese). [52] 李筱霏, 赵恩德, 彭少波, 等. MOF衍生CoSe2基电催化剂的制备及其电解水性能研究进展[J]. 复合材料学报, 2023, 41(0):1-16.LI Xiaofei, ZHAO Ende, PENG Shaobo, et al. Research progress of synthesis of metal organic framework derived CoSe2-based electrocatalysts for overall water splitting[J]. Acta Materiae Compositae Sinica,2023,41(0):1-16(in Chinese). [53] WEI Y, SOOMRO R A, XIE X, et al. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2 D MXenes[J]. Journal of Energy Chemistry,2021,55:244-255. doi: 10.1016/j.jechem.2020.06.069 [54] YUAN Y, LI H, WANG L, et al. Achieving Highly Efficient Catalysts for Hydrogen Evolution Reaction by Electronic State Modification of Platinum on Versatile Ti3C2Tx (MXene)[J]. ACS Sustainable Chemistry & Engineering,2019,7(4):4266-73. [55] LI Z, QI Z, WANG S, et al. In Situ Formed Pt3Ti Nanoparticles on a Two-Dimensional Transition Metal Carbide (MXene) Used as Efficient Catalysts for Hydrogen Evolution Reactions[J]. Nano Letters,2019,19(8):5102-5108. doi: 10.1021/acs.nanolett.9b01381 [56] JIANG Y, WU X, YAN Y, et al. Coupling PtNi Ultrathin Nanowires with MXenes for Boosting Electrocatalytic Hydrogen Evolution in Both Acidic and Alkaline Solutions[J]. Small,2019,15(12):1805474. doi: 10.1002/smll.201805474 [57] YAN Y, ZHANG R, YU Y, et al. Interfacial optimization of PtNi octahedrons@Ti3C2MXene with enhanced alkaline hydrogen evolution activity and stability[J]. Applied Catalysis B:Environmental,2021,291:120100. doi: 10.1016/j.apcatb.2021.120100 [58] DU C F, SUN X, YU H, et al. Synergy of Nb Doping and Surface Alloy Enhanced on Water-Alkali Electrocatalytic Hydrogen Generation Performance in Ti-Based MXene[J]. Advanced Science,2019,6(11):1900116. [59] ATTANAYAKE N H, ABEYWEERA S C, THENUWARA A C, et al. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst[J]. Journal of Materials Chemistry A,2018,6(35):16882-16889. doi: 10.1039/C8TA05033C [60] LIANG J, DING C, LIU J, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media[J]. Nanoscale,2019,11(22):10992-11000. doi: 10.1039/C9NR02085C [61] LI N, ZHANG Y, JIA M, et al. 1 T/2 H MoSe2-on-MXene heterostructure as bifunctional ele-ctrocatalyst for efficient overall water splitting[J]. Electrochimica Acta,2019,326:134976. doi: 10.1016/j.electacta.2019.134976 [62] ZHANG J, ZHAO Y, GUO X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis,2018,1(12):985-992. doi: 10.1038/s41929-018-0195-1 [63] WANG H, LIN Y, LIU S, et al. Confined growth of pyridinic N–Mo2C sites on MXenes for hydrogen evolution[J]. Journal of materials chemistry A,2020,8(15):7109-7116. doi: 10.1039/D0TA01697G [64] KUZNETSOV D A, CHEN Z, KUMAR P V, et al. Single site cobalt substitution in 2 D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2019,141(44):17809-17816. doi: 10.1021/jacs.9b08897 [65] WU X, ZHOU S, WANG Z, et al. Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater[J]. Advanced Energy Materials,2019,9(34):1901333. doi: 10.1002/aenm.201901333 [66] KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews,2018,118(5):2302-2312. doi: 10.1021/acs.chemrev.7b00488 [67] NøRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B,2004,108(46):17886-17892. doi: 10.1021/jp047349j [68] XUE Q, PEI Z, HUANG Y, et al. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries[J]. Journal of Materials Chemistry A,2017,5(39):20818-20823. doi: 10.1039/C7TA04532H [69] CHEN J, YUAN X, LYU F, et al. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction[J]. Journal of Materials Chemistry A,2019,7(3):1281-1286. doi: 10.1039/C8TA10574J [70] YANG X, JIA Q, DUAN F, et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution[J]. Applied Surface Science,2019,464:78-87. doi: 10.1016/j.apsusc.2018.09.069 [71] ZUBAIR M, HASSAN M M U, MEHRAN M T, et al. 2 D MXenes and their heterostructures for HER, OER and overall water splitting: a review[J]. International Journal of Hydrogen Energy, 2021. [72] 张毓文. Co9S8基材料的合成及其电催化析氧性能研究[D]. 兰州: 兰州大学, 2022.ZHANG Yuwen. Synthesis of Co9S8 based materials and their electrocatalytic oxygen evolution performance [D]. Lanzhou: Lanzhou University, 2022(in Chinese). [73] MA T Y, CAO J L, JARONIEC M, et al. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution[J]. Angewandte Chemie International Edition,2016,55(3):1138-1142. doi: 10.1002/anie.201509758 [74] Hu L, Li M, Wei X, et al. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis[J]. Chemical Engineering Journal,2020,398:125605. doi: 10.1016/j.cej.2020.125605 [75] ZOU H, HE B, KUANG P, et al. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin Mxene nanosheets for electrocatalytic oxygen evolution[J]. ACS applied materials & interfaces,2018,10(26):22311-22319. [76] ZHU X-D, XIE Y, LIU Y-T. Exploring the synergy of 2 D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions[J]. Journal of Materials Chemistry A,2018,6(43):21255-21260. doi: 10.1039/C8TA08374F [77] YUE Q, SUN J, CHEN S, et al. Hierarchical mesoporous MXene–NiCoP electrocatalyst for water-splitting[J]. ACS applied materials & interfaces,2020,12(16):18570-18577. [78] KAN D, WANG D, ZHANG X, et al. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations[J]. Journal of Materials Chemistry A,2020,8(6):3097-3108. doi: 10.1039/C9TA12255A [79] WHIPPLE D T, KENIS P J. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction[J]. The Journal of Physical Chemistry Letters,2010,1(24):3451-3458. doi: 10.1021/jz1012627 [80] LI X, BAI Y, SHI X, et al. Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2 D electronic charge transfer for efficient p-hotocatalytic CO2 reduction[J]. Applied Surf-ace Science,2021,546:149111. doi: 10.1016/j.apsusc.2021.149111 [81] SHEN J, SHEN J, ZHANG W, et al. Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction[J]. Ceramics International,2019,45(18):24146-24153. doi: 10.1016/j.ceramint.2019.08.123 [82] KANNAN K, SLIEM M H, ABDULLAH A M, et al. Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction[J]. Catalysts,2020,10(5):549. doi: 10.3390/catal10050549 [83] KOZUCH S, SHAIK S. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration[J]. The Journal of Physical Chemistry A,2008,112(26):6032-6041. doi: 10.1021/jp8004772 [84] GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature,2008,451(7176):293-296. doi: 10.1038/nature06592 [85] LI T, YAN X, HUANG L, et al. Fluorine-free Ti3C2Tx (T= O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions[J]. Journal of Materials Chemistry A,2019,7(24):14462-14465. doi: 10.1039/C9TA03254A [86] CHENG Y, DAI J, SONG Y, et al. Single molybdenum atom anchored on 2 D Ti2NO2 MXene as a promising electrocatalyst for N2 fixation[J]. Nanoscale,2019,11(39):18132-18141. doi: 10.1039/C9NR05402B [87] PENG W, LUO M, XU X, et al. Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction[J]. Advanced Energy Materials,2020,10(25):2001364. doi: 10.1002/aenm.202001364 [88] LIU A, GAO M, REN X, et al. A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction[J]. Nanoscale,2020,12(20):10933-10938. doi: 10.1039/D0NR00788A [89] KONG W, GONG F, ZHOU Q, et al. An MnO2-Ti3C2Tx MXene nanohybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions[J]. Journal of Materials Chemistry A,2019,7(32):18823-18827. doi: 10.1039/C9TA04902A [90] ZHANG J, QU X, HAN Y, et al. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance[J]. Applied Catalysis B:Environmental,2020,263:118345. doi: 10.1016/j.apcatb.2019.118345 [91] CHANDRAN M, RAVEENDRAN A, VINOBA M, et al. Nickel-decorated MoS2/MXenenanosheets composites for electrocatalytic o-xidation of methanol[J]. Ceramics Internatio-nal,2021,47(19):26847-26855. doi: 10.1016/j.ceramint.2021.06.093 [92] WANG Y, WANG J, HAN G, et al. Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction[J]. Ceramics International,2019,45(2):2411-2417. doi: 10.1016/j.ceramint.2018.10.160 [93] HE Wenjun, WANG Fangqing, JIA Dongbo, et al. Al-doped nickel sulfide nanosheet arrays as highly efficient bifunctional electrocatalysts for overall water splitting[J]. Nanoscale,2020,12(47):24244-24250. doi: 10.1039/D0NR07134J [94] WU Libo, YU Luo, ZHANG Fanghao, , et al. Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(16). [95] GUO Manan, QU Yanhui, ZENG Fanyan, et al. Synthetic strategy and evaluation of hierarchical nanoporous NiO/NiCoP microspheres as efficient electrocatalysts for hydrogen evolution reaction[J]. Electrochimica Acta,2018,292:88-97. doi: 10.1016/j.electacta.2018.09.159 [96] YOUN D H, HAN S, KIM J Y, et al. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube–graphene hybrid support[J]. ACS nano,2014,8(5):5164-5173. doi: 10.1021/nn5012144 [97] GONG Qiufang, WANG Yu, HU Qi, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature communications,2016,7(1):13216. doi: 10.1038/ncomms13216 [98] LU Yu, HUANG Kang, CAO Xun, et al. Atomically Dispersed Intrinsic Hollow Sites of M-M1-M (M1= Pt, Ir; M= Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr Nanocrystals Enabling Rapid Water Redox[J]. Advanced Functional Materials,2022,32(19):2110645. doi: 10.1002/adfm.202110645 -

计量
- 文章访问数: 87
- HTML全文浏览量: 45
- 被引次数: 0