留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene基材料在电催化领域的研究进展

王利萌 李亚如 任永鹏 潘昆明 赵帅凯 吕贝贝

王利萌, 李亚如, 任永鹏, 等. MXene基材料在电催化领域的研究进展[J]. 复合材料学报, 2023, 40(9): 4917-4931. doi: 10.13801/j.cnki.fhclxb.20230418.002
引用本文: 王利萌, 李亚如, 任永鹏, 等. MXene基材料在电催化领域的研究进展[J]. 复合材料学报, 2023, 40(9): 4917-4931. doi: 10.13801/j.cnki.fhclxb.20230418.002
WANG Limeng, LI Yaru, REN Yongpeng, et al. Research progress of MXene based materials in the field of electrocatalysis[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4917-4931. doi: 10.13801/j.cnki.fhclxb.20230418.002
Citation: WANG Limeng, LI Yaru, REN Yongpeng, et al. Research progress of MXene based materials in the field of electrocatalysis[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4917-4931. doi: 10.13801/j.cnki.fhclxb.20230418.002

MXene基材料在电催化领域的研究进展

doi: 10.13801/j.cnki.fhclxb.20230418.002
基金项目: 国家自然科学基金(51901069);河南省高校科技创新人才项目(22HASTIT1006);中原英才计划(ZYYCYU202012172);新加坡教育部(AcRF Tier 1, Grant No. RG70/20)
详细信息
    通讯作者:

    任永鹏,博士,讲师,硕士生导师,研究方向为材料冶金、功能材料 E-mail: Ren_YP123@163.com

  • 中图分类号: TB331

Research progress of MXene based materials in the field of electrocatalysis

Funds: National Natural Science Foundation of China (51901069); The Program for Science & Technology Innovation Talents in the University of Henan Province (22HASTIT1006); The Program for Central Plains Talents (ZYYCYU202012172); The Ministry of Education, Singapore (AcRF Tier 1, Grant No. RG70/20)
  • 摘要: 电催化是未来新能源存储与转化技术的关键,主要应用于电解水制氢和燃料电池等氢能产业。MXene是二维层状过渡金属碳化物、氮化物和碳氮化合物的统称,具备高电导率、大比表面积、良好的电荷转移能力及丰富可控的表面官能团,近年来被广泛应用于电化学催化领域。本文首先阐述了二维MXene的多种结构,其次总结了MXene基电催化材料在亲水性、导电性、离子传输及表面缺陷等方面的优势,重点综述了近年来MXene基材料在析氢反应(Hydrogen evolution reaction,HER)、析氧反应(Oxygen evolution reaction,OER)、氧还原反应(Oxygen reduction reaction,ORR)等催化反应中的应用和进展,揭示了MXene结构与性能之间的关系,最后总结并展望了未来的发展前景。

     

  • 图  1  MXene的晶体结构[24]

    Figure  1.  Crystal structure of MXene[24]

    n—Number of C or N atoms

    图  2  MAX (a)、MXene (b) 和d-MXene (c) 的SEM图像;(d) MAX、MXene、d-MXene的XRD图谱[26]

    Figure  2.  SEM images of MAX (a)、 MXene (b) and d-MXene (c); (d) XRD patterns of MAX, MXene and d-MXene[26]

    d-MXene—MXene solution with few peeled layers

    图  3  MXene在电催化中的潜在应用[50]

    Figure  3.  Potential application of MXene in electrocatalysis[50]

    CO2RR—CO2 reduction; NRR—Nitrogen reduction; MOR—Methanol oxidation; HER—Hydrogen evolution reaction; OER—Oxygen evolution reaction: ORR—Oxygen reduction reaction

    图  4  (a) Mo2C/Ti3C2Tx@NC的合成示意图[63];(b) 吡啶氮掺杂石墨烯(p-N-C)、石墨氮掺杂的石墨烯(g-N-C)、Mo2C、Ti3C2Tx及其异质结构的吉布斯自由能ΔGH*[63];(c) CoxMo2−xC/MXene/NC合成示意图[65];(d) 在10 mV/s的扫描速率下,在1.0 mol/L KOH中Co0.31Mo1.69C/MXene/NC、Mo2C/MXene/NC、Co0.35Mo1.65C/NC、Co/MXene/NC、MXene/NC和20%Pt/C的HER极化曲线[65];(e) 在pH值为0.3~13.8的情况下,在电流密度j=20 mA·cm−2时,Co0.31Mo1.69C/MXene/NC和20%Pt/C之间的比较[65]

    Figure  4.  (a) Synthetic schematic diagram of Mo2C/Ti3C2Tx@NC[63]; (b) Gibbs free energy ΔGH* of p-N-C (pyridinic N doped graphene)、g-N-C (graphitic N doped graphene)、Mo2C、Ti3C2Tx and their heterostructures[63]; (c) Schematic diagram of CoxMo2−xC/MXene/NC[65]; (d) At a scanning rate of 10 mV/s, the HER polarization curves of Co0.31Mo1.69C/MXene/NC、Mo2C/MXene/NC、Co0.35Mo1.65C/NC、Co/MXene/NC、MXene/NC and 20%Pt/C in 1.0 mol/L KOH[65]; (e) At pH=0.3-13.8 and current density j=20 mA·cm−2, the comparison between Co0.31Mo1.69C/MXene/NC and 20% Pt/C[65]

    PDA—Polydopamine

    图  5  (a) Co-碳纳米管(CNT)/Ti3C2的合成示意图[69];(b) Co-CNT/Ti3C2、Pt/C、ZIF-800和Ti3C2的LSV曲线[69];(c) Co-CNT/Ti3C2-60和Pt/C的计时电流曲线[69];(d) NiCoS/Ti3C2Tx合成示意图[75];在j=10 mA·cm−2时,NiCoS/Ti3C2Tx、NiCoS、NiCo-层状双金属氢氧化物(LDH)/Ti3C2Tx、NiCo-LDH和RuO2的LSV曲线 (e) 和Tafel图 (f)[75];(g) 过电压η=350和400 mV时的翻转频率(TOF)值[75]

    Figure  5.  (a) Synthesis diagram of Co-carbon nanotube (CNT)/Ti3C2[69]; (b) LSV curves of Co-CNT/Ti3C2, Pt/C, ZIF-800 and Ti3C2[69]; (c) Timing current curves of Co-CNT Ti3C2-60 and Pt/C[69]; (d) Schematic diagram of NiCoS/Ti3C2Tx synthesis[75]; LSV curves (e) and Tafel diagram (f) of NiCoS/Ti3C2Tx, NiCoS, NiCo-layered double hydroxid(LDH)/Ti3C2Tx, NiCo-LDH and RuO2 when j=10 mA·cm−2[75]; (g) Turn-over frequency (TOF) value at overpotential η=350 and 400 mV[75]

    j/j0—Ratio of the current measured by chronoamperometry to the original current within 10 000 s

    图  6  (a) CeO2/MXene复合材料的合成示意图[81];(b) 无氟Ti3C2Tx纳米片(50~100 nm)的合成示意图[85];(c) NaOH-Ti3C2Tx/碳布(CC)在不同电位下NH3产率和法拉第效率[85];(d) NaOH-Ti3C2Tx/CC在重复氮气还原(NRR)过程中的稳定性试验中的NH3产率和法拉第效率[85];(e) 50 mV/s的扫描速率下,在0.5 mol/L H2SO4+0.5 mol/L CH3OH溶液中Pt/Ti3C2 MXene和商用Pt/C的甲醇氧化(MOR)的CV曲线[92];(f) 在0.5 mol/L H2SO4+0.5 mol/L CH3OH溶液中,0.6 V条件下进行的Pt/Ti3C2-MXene的EIS光谱[92];(g) Pt/Ti3C2 MXene和商业Pt/C在0.5 mol/L H2SO4溶液中的线性扫描伏安曲线[92]

    Figure  6.  (a) Schematic diagram of the synthesis of CeO2/MXene composite[81]; (b) Schematic diagram of the synthesis of fluorine-free Ti3C2Tx nanosheet (50-100 nm)[85]; (c) NH3 yield and Faraday efficiency of NaOH-Ti3C2Tx/carbon cloth (CC) at different potentials[85]; (d) NH3 yield and Faraday efficiency in the stability test of NaOH-Ti3C2Tx/CC in the repeated nitrogen reduction (NRR) process[85]; (e) CV curves of methanol oxidation (MOR) of Pt/Ti3C2 MXene and commercial Pt/C in 0.5 mol/L H2SO4+0.5 mol/L CH3OH solution at a scanning rate of 50 mV/s[92]; (f) EIS spectra of Pt/Ti3C2-MXene in 0.5 mol/L H2SO4+0.5 mol/L CH3OH solution at 0.6 V[92]; (g) Linear sweep voltammetric curves of Pt/Ti3C2 MXene and commercial Pt/C in 0.5 mol/L H2SO4 solution[92]

    TMAOH—Tetramethylammonium hydroxide; Zmax—Real part of impedance; −Zmin—Imaginary part of impedance

    表  1  酸性和碱性电解质中的HER反应机制

    Table  1.   HER reaction mechanism in acidic and alkaline electrolytes

    Acidic electrolyteAlkaline electrolyte
    Volmer reactionH3O++e→Hads+H2OH2O+e→OH+Hads
    Heyrovsky reactionHads+H++e→H2Hads+H2O+e→OH+H2
    Tafel reactionHads+Hads→H2Hads+Hads→H2
    Catalytic mechanism
    Note: Hads—Adsorbed hydrogen atoms.
    下载: 导出CSV

    表  2  酸性和碱性电解质中的ORR反应机制

    Table  2.   ORR reaction mechanism in acidic and alkaline electrolytes

    Reaction pathwayAcidic electrolyteAlkaline electrolyte
    Four electrons reactionO2+4H++4e→2H2OO2+2H2O+4e→4OH
    Two electrons reactionO2+2H++2e→H2O2,
    H2O2→1/2O2+H2O
    O2+2H2O+2e→HO2+OH
    HO2→1/2O2+OH
    下载: 导出CSV

    表  3  酸性和碱性电解质中的OER反应机制

    Table  3.   HER reaction mechanism in acidic and alkaline electrolytes

    Acidic electrolyteAlkaline electrolyte
    Reaction pathwayH2O→OHads+H++e,
    OHads→Oads+H++e,
    Oads+H2O→OOHads+H++e,
    OOHads→O2+H++e,
    2Oads→O2
    OH→OHads+e,
    OHads+OH→Oads+H2O+e,
    Oads+OH→OOads+e,
    OOads+OH→O2+H2O+e,
    2Oads→O2
    Catalytic mechanism
    Notes: Oads, OHads, and OOHads—Three different oxygen-containing intermediates; Hads—Adsorbed hydrogen atom; Oads—Oxygen groups; OHads—Hydroxide groups; OOHads—Hydroperoxide groups.
    下载: 导出CSV

    表  4  MXene基复合材料和其他常见催化剂的催化性能对比

    Table  4.   Comparison of catalytic performance between MXene based composite materials and other common catalysts

    ClassificationElectrocatalystElectrolyteApplicationOverpotentiala/mVTafel slope/(mV·dec−1)Ref.
    MXene based composite materialsPt-Ti3C2Tx0.5 mol/L H2SO4HER5565[54]
    Pt3.21Ni@Ti3C20.5 mol/L H2SO4HER18.5513.37[56]
    Ni0.9Co0.1@NTMl .0 mol/L KOHHER43.4116[58]
    MoS2⊥Ti3C2Tx0.5 mol/L H2SO4HER9540[59]
    Co-MoS2/Mo2CTx1.0 mol/L KOHHER11285.7[60]
    1T/2H MoSe2-Ti3C2Tx1.0 mol/L KOHHER
    OER
    95
    340
    91
    90
    [61]
    Mo2TiC2Tx-PtSA0.5 mol/L H2SO4HER3030[62]
    Mo2C/Ti3C2Tx@NC0.5 mol/L H2SO4HER5340[63]
    Co-CNT/Ti3C20.1 mol/L KOHORR63[69]
    TCCN0.1 mol/L KOHORR74.6[73]
    CoNi-LDH/Ti3C2Tx1.0 mol/L KOHOER257.4b68[74]
    NiCoS/Ti3C2Tx1.0 mol/L KOHOER36558.2[75]
    BP QDs/MXene1.0 mol/L KOHHER
    OER
    190
    360
    83
    64.3
    [76]
    Other materialsTi3C2@mNiCoP NS1.0 mol/L KOHHER
    OER
    127
    237
    103
    104
    [77]
    Al-Ni3S2/NF1.0 mol/L KOHHER
    OER
    86
    223
    75
    37
    [93]
    Ni-Fe-W-LDHs/NF1.0 mol/L KOHOER247b55[94]
    NiO/NiCoP1.0 mol/L KOHHER11256[95]
    Mo2C/CNT-GR0.5 mol/L H2SO4HER13058[96]
    W2C/MWNT0.5 mol/L H2SO4HER12345[97]
    FeCoNiCuPtIr1.0 mol/L KOHHER
    OER
    21
    255
    54.5
    61.7
    [98]
    Notes: NTM—Nb-doped Ti3C2Tx MXene nanohybrids; PtSA—A single Pt atom is fixed at a molybdenum vacancy; NC—Nitrogen doped carbon layer packaging; CNT—Carbon nanotube; TCCN—Overlapped g-C3N4 and Ti3C2 nanosheets; LDH—Layer double hydroxides; BP QDs—Black phosphorus quantum dots; NS—Nanosheets; NF—Nickel foam; GR—Graphene; MWNT—Multi-walled carbon nanotubes; a—Overpotential and cell voltage are obtained at the current density of 10 mA·cm−2; b—Overpotential and cell voltage are obtained at the current density of 100 mA·cm−2.
    下载: 导出CSV
  • [1] DAI J, CHEN B, SCIUBBA E. Ecological accounting based on extended exergy: A sustai-nability perspective[J]. Environmental Science Technology,2014,48(16):9826-9833. doi: 10.1021/es404191v
    [2] 王家佩, 江松, 丛野, 等. 基于MXenes材料的电催化析氢研究进展[J]. 硅酸盐通报, 2020, 39(12):4022-4033. doi: 10.16552/j.cnki.issn1001-1625.2020.12.040

    WANG Jiapei, JIANG Song, CONG Ye, et al. Research progress in electrocatalytic hydrogen evolution based on MXenes materials[J]. Silicate Bulletin of the Chinese Ceramic Society,2020,39(12):4022-4033(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2020.12.040
    [3] 王佳佳, 喻兰兰, 胡霞, 等. 二维纳米材料MXenes及其复合物在电催化领域中的应用研究进展[J]. 材料工程, 2022, 50(1):43-45.

    WANG Jiajia, YU Lanlan, HU Xia, et al. Research progress in the application of two-dimensional nano-materials MXenes and their composites in the field of electrocatalysis[J]. Journal of Materials Engineering,2022,50(1):43-45(in Chinese).
    [4] 刘艳明. 硼氮掺杂纳米金刚石和多孔碳的制备及其电催化还原性能[D]. 大连: 大连理工大学, 2016.

    LIU Yanming. Preparation of boron-nitrogen doped nano-diamond and porous carbon and their electro-catalytic reduction performance[D]. Dalian: Dalian University of Technology, 2016(in Chinese).
    [5] BAI S S, YANG M Q, JIANG J Z, et al. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction[J]. npj 2D Materials and Applications, 2021, 5(1): 1-15.
    [6] 李小丽, 薛文明, 莫容, 等. 微量铱掺杂CoxNi1−xO纳米线阵列的制备及其电催化性能[J]. 中国催化杂志, 2019, 40(10):1576-1584. doi: 10.1016/S1872-2067(19)63414-5

    LI Xiaoli, XUE Wenming, MO Rong, et al. In situ growth of minimal Ir-incorporated CoxNi1−xO nanowire arrays on Ni foam with improved electrocatalytic activity for overall water splitting[J]. Chinese Journal of Catalysis,2019,40(10):1576-1584(in Chinese). doi: 10.1016/S1872-2067(19)63414-5
    [7] 于博, 李研, 刘辉, 等. NiCoP合金纳米棒阵列制备及电催化析氢性能研究[J]. 人工晶体学报, 2020, 49(2): 270-275.

    YU Bo, LI Yan, LIU Hui, et al. Preparation of NiCoP alloy nanorod array and study on its electrocatalytic hydrogen evolution performance[J]. Journal of Artificial Lens, 2020, 49(2): 270-275(in Chinese).
    [8] ZHU J, HU L, ZHAO P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews,2019,120(2):851-918.
    [9] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals: Two dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [10] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS Nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591
    [11] SANG X, XIE Y, SUN W, et al. In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides[J]. Nature Communications,2018,9(1):1-9. doi: 10.1038/s41467-017-02088-w
    [12] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [13] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society,2013,135(43):15966-15969. doi: 10.1021/ja405735d
    [14] KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science,2020,369(6506):979-983. doi: 10.1126/science.aba8311
    [15] CHEN X, LI M, HOU J, et al. Molten salt method synthesis of multivalent cobalt and oxygen vacancy modified nitrogen-doped MXene as highly efficient hydrogen and oxygen evolution reaction electrocatalysts[J]. Journal of Colloid and Interface Science,2022,615:831-839. doi: 10.1016/j.jcis.2022.02.010
    [16] 姚峰, 卞琳艳, 范燕平, 等. 二维MXenes的制备及催化产氢性能研究进展[J]. 河南化工, 2021, 38(9): 1-6.

    YAO Feng, BIAN Linyan, FAN Yanping, et al, Progress in the preparation of two-dimensional MXenes and their catalytic performance for hydrogen production[J]. Henan Chemical Industry, 2021, 38(9): 1-6(in Chinese).
    [17] PETRUHINS A, LU J, HULTMAN L, et al. Synthesis of atomically layered and chemically ordered rare earth (RE) i-MAX phases; (Mo2/3RE1/3)2GaC with RE= Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu[J]. Materials Research Letters,2019,7(11):446-452. doi: 10.1080/21663831.2019.1644684
    [18] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases[J]. Trends in Chemistry, 2019, 1(2): 210-223.
    [19] THADATHIL A, KAVIL J, KOVUMMAL G R, et al. Facile synthesis of polyindole/Ni1–xZnxFe2O4 (x=0, 0.5, 1) nanocomposites and their enhanced microwave absorption and shielding properties[J]. ACS Omega,2022,7(13):11473-11490. doi: 10.1021/acsomega.2c00824
    [20] HAN M, YANG J, JIANG J, et al. Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction[J]. Journal of Colloid and Interface Science,2021,582:1099-1106. doi: 10.1016/j.jcis.2020.09.001
    [21] LING C, SHI L, OUYANG Y, et al. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor[J]. Chemistry of Materials,2016,28(24):9026-9032. doi: 10.1021/acs.chemmater.6b03972
    [22] YOON Y, TIWARI A P, CHOI M, et al. Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: Chemical composition controllable phosphorous doped vanadium carbide MXene[J]. Advanced Functional Materials,2019,29(30):1903443. doi: 10.1002/adfm.201903443
    [23] LI Y, LI L, HUANG R, et al. Computational screening of pristine and functionalized ordered TiVC MXenes as highly efficient anode materials for lithium-ion batteries[J]. Nanoscale,2021,13(5):2995-3001. doi: 10.1039/D0NR08271F
    [24] PENG J, CHEN X, ONG W J, et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis[J]. Chem,2019,5(1):18-50. doi: 10.1016/j.chempr.2018.08.037
    [25] XU B, HOU S, DUAN H, et al. Ultramicroporous carbon as electrode material for supercapacitors[J]. Journal of Power Sources,2013,228:193-197. doi: 10.1016/j.jpowsour.2012.11.122
    [26] 李雪梅. MXene/NF载体上三维花状NiCo-LDH的制备及其电催化性能研究[D]. 桂林: 桂林理工大学, 2021.

    LI Xuemei. Preparation and electrocatalytic properties of three-dimensional flower-shaped NiCo-LDH on MXene/NF supports[D]. Guilin: Guilin University of Technology, 2021(in Chinese).
    [27] VOROBYEVA E, FAKO E, CHEN D Z, et al. Atom-by-atom resolution of structure function relations over low-nuclearity metal catalysts[J]. Angewandte Chemie,2019,131(26):8816-8821. doi: 10.1002/ange.201902136
    [28] DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition,2017,56(7):1825-1829. doi: 10.1002/anie.201609306
    [29] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [30] LUKATSKAYA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy,2017,2(8):1-6.
    [31] ZHANG X, ZHAO X, WU D, et al. High and anisotropic carrier mobility in experimentally possible Ti2CO2(MXene) monolayers and nanoribbons[J]. Nanoscale,2015,7(38):16020-16025. doi: 10.1039/C5NR04717J
    [32] SHAHZAD F, IQBAL A, KIM H, et al. 2D transition metal carbides (MXenes): Applications as an electrically conducting material[J]. Advanced Materials,2020,32(51):2002159. doi: 10.1002/adma.202002159
    [33] LI Y, YIN Z, JI G, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B: Environmental,2019,246:12-20. doi: 10.1016/j.apcatb.2019.01.051
    [34] DJIRE A, WANG X, XIAO C, et al. Basal plane hydrogen evolution activity from mixed metal nitride MXenes measured by scanning electrochemical microscopy[J]. Advanced Functional Materials,2020,30(47):2001136. doi: 10.1002/adfm.202001136
    [35] WU J, LIU J, CUI J, et al. Dual-phase MoS2 as a high-performance sodiumion battery anode[J]. Journal of Materials Chemistry A,2020,8(4):2114-2122. doi: 10.1039/C9TA11913B
    [36] ZHANG S, YING H, GUO R, et al. Vapor deposition red phosphorus to prepare nitrogen-doped Ti3C2Tx MXenes composites for lithium-ion batteries[J]. The Journal of Physical Chemistry Letters,2019,10(21):6446-6454. doi: 10.1021/acs.jpclett.9b02335
    [37] JIANG Y, SUN T, XIE X, et al. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution[J]. ChemSusChem,2019,12(7):1368-1373. doi: 10.1002/cssc.201803032
    [38] CHU K, LI X, LI Q, et al. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene[J]. Small,2021,17(40):2102363. doi: 10.1002/smll.202102363
    [39] WANG J, GUAN Y, ZHANG Q, et al. Well-dispersed ultrafine Pt nanoparticles anchored on oxygen-rich surface of V2CTx (MXene) for boosting hydrogen evolution reaction[J]. Applied Surface Science,2022,582:152481. doi: 10.1016/j.apsusc.2022.152481
    [40] SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface enhanced Raman scattering substrate[J]. ACS Nano,2017,11(9):8892-8900. doi: 10.1021/acsnano.7b03129
    [41] DJIRE A, ZHANG H, LIU J, et al. Electrocatalytic and optoelectronic characteristics of the two-dimensional titanium nitride Ti4N3Tx MXene[J]. ACS Applied Materials& Interfaces,2019,11(12):11812-11823.
    [42] SHERRYNA A, TAHIR M. Role of Ti3C2 MXene as prominent schottky barriers in driving hydrogen production through photoind-uced water splitting: A comprehensive review[J]. ACS Applied Energy Materials,2021,4(11):11982-12006. doi: 10.1021/acsaem.1c02241
    [43] WANG H, WU Y, YUAN X, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges[J]. Advanced Materials,2018,30(12):1704561. doi: 10.1002/adma.201704561
    [44] GAO G, O’MULLANE A P, DU A. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction[J]. ACS Catalysis,2017,7(1):494-500. doi: 10.1021/acscatal.6b02754
    [45] YU M, ZHOU S, WANG Z, et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy,2018,44:181-190. doi: 10.1016/j.nanoen.2017.12.003
    [46] LIN H, CHEN L, LU X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China Materials,2019,62(5):662-670. doi: 10.1007/s40843-018-9378-3
    [47] LI N, CHEN X, ONG W J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes)[J]. ACS Nano,2017,11(11):10825-10833. doi: 10.1021/acsnano.7b03738
    [48] LUO Y, CHEN G F, DING L, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule,2019,3(1):279-289. doi: 10.1016/j.joule.2018.09.011
    [49] LIU A, LIANG X, REN X, et al. Recent progress in MXene-based materials: Potential high-performance electrocatalysts[J]. Advanced Functional Materials,2020,30(38):2003437. doi: 10.1002/adfm.202003437
    [50] KUANG P, HE M, ZHU B, et al. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution[J]. Journal of Catalysis,2019,375:8-20. doi: 10.1016/j.jcat.2019.05.019
    [51] 胡素敏. 钼基异金属硫/硒化物电极的构建与电催化析氢应用[D]. 哈尔滨: 哈尔滨理工大学, 2022.

    HU Sumin. Construction of molybdenum based heterometallic sulfur/selenide electrode and application of electrocatalytic hydrogen evolution[D]. Harbin: Harbin Institute of Technology, 2022(in Chinese).
    [52] 李筱霏, 赵恩德, 彭少波, 等. MOF衍生CoSe2基电催化剂的制备及其电解水性能研究进展[J]. 复合材料学报, 2023, 40(8):4374-4389.

    LI Xiaofei, ZHAO Ende, PENG Shaobo, et al. Research progress of synthesis of metal organic framework derived CoSe2-based electrocatalysts for overall water splitting[J]. Acta Materiae Compositae Sinica,2023,40(8):4374-4389(in Chinese).
    [53] WEI Y, SOOMRO R A, XIE X, et al. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes[J]. Journal of Energy Chemistry,2021,55:244-255. doi: 10.1016/j.jechem.2020.06.069
    [54] YUAN Y, LI H, WANG L, et al. Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2Tx (MXene)[J]. ACS Sustainable Chemistry & Engineering,2019,7(4):4266-4273.
    [55] LI Z, QI Z, WANG S, et al. In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions[J]. Nano Letters,2019,19(8):5102-5108. doi: 10.1021/acs.nanolett.9b01381
    [56] JIANG Y, WU X, YAN Y, et al. Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions[J]. Small,2019,15(12):1805474. doi: 10.1002/smll.201805474
    [57] YAN Y, ZHANG R, YU Y, et al. Interfacial optimization of PtNi octahedrons@Ti3C2 MXene with enhanced alkaline hydrogen evolution activity and stability[J]. Applied Catalysis B: Environmental,2021,291:120100. doi: 10.1016/j.apcatb.2021.120100
    [58] DU C F, SUN X, YU H, et al. Synergy of Nb doping and surface alloy enhanced on water-alkali electrocatalytic hydrogen generation performance in Ti-based mxene[J]. Advanced Science,2019,6(11):1900116.
    [59] ATTANAYAKE N H, ABEYWEERA S C, THENUWARA A C, et al. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst[J]. Journal of Materials Chemistry A,2018,6(35):16882-16889. doi: 10.1039/C8TA05033C
    [60] LIANG J, DING C, LIU J, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media[J]. Nanoscale,2019,11(22):10992-11000. doi: 10.1039/C9NR02085C
    [61] LI N, ZHANG Y, JIA M, et al. 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting[J]. Electrochimica Acta,2019,326:134976. doi: 10.1016/j.electacta.2019.134976
    [62] ZHANG J, ZHAO Y, GUO X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis,2018,1(12):985-992. doi: 10.1038/s41929-018-0195-1
    [63] WANG H, LIN Y, LIU S, et al. Confined growth of pyridinic N–Mo2C sites on MXenes for hydrogen evolution[J]. Journal of materials chemistry A,2020,8(15):7109-7116. doi: 10.1039/D0TA01697G
    [64] KUZNETSOV D A, CHEN Z, KUMAR P V, et al. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2019,141(44):17809-17816. doi: 10.1021/jacs.9b08897
    [65] WU X, ZHOU S, WANG Z, et al. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater[J]. Advanced Energy Materials,2019,9(34):1901333. doi: 10.1002/aenm.201901333
    [66] KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews,2018,118(5):2302-2312. doi: 10.1021/acs.chemrev.7b00488
    [67] NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B,2004,108(46):17886-17892. doi: 10.1021/jp047349j
    [68] XUE Q, PEI Z, HUANG Y, et al. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries[J]. Journal of Materials Chemistry A,2017,5(39):20818-20823. doi: 10.1039/C7TA04532H
    [69] CHEN J, YUAN X, LYU F, et al. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction[J]. Journal of Materials Chemistry A,2019,7(3):1281-1286. doi: 10.1039/C8TA10574J
    [70] YANG X, JIA Q, DUAN F, et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution[J]. Applied Surface Science,2019,464:78-87. doi: 10.1016/j.apsusc.2018.09.069
    [71] ZUBAIR M, HASSAN M M U, MEHRAN M T, et al. 2D MXenes and their heterostructures for HER, OER and overall water splitting: A review[J]. International Journal of Hydrogen Energy, 2022, 47(5): 2794-2818.
    [72] 张毓文. Co9S8基材料的合成及其电催化析氧性能研究[D]. 兰州: 兰州大学, 2022.

    ZHANG Yuwen. Synthesis of Co9S8 based materials and their electrocatalytic oxygen evolution performance[D]. Lanzhou: Lanzhou University, 2022(in Chinese).
    [73] MA T Y, CAO J L, JARONIEC M, et al. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution[J]. Angewandte Chemie International Edition,2016,55(3):1138-1142. doi: 10.1002/anie.201509758
    [74] HU L, LI M, WEI X, et al. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis[J]. Chemical Engineering Journal,2020,398:125605. doi: 10.1016/j.cej.2020.125605
    [75] ZOU H, HE B, KUANG P, et al. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin Mxene nanosheets for electrocatalytic oxygen evolution[J]. ACS Applied Materials & Interfaces,2018,10(26):22311-22319.
    [76] ZHU X D, XIE Y, LIU Y T. Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions[J]. Journal of Materials Chemistry A,2018,6(43):21255-21260. doi: 10.1039/C8TA08374F
    [77] YUE Q, SUN J, CHEN S, et al. Hierarchical mesoporous MXene–NiCoP electrocatalyst for water-splitting[J]. ACS Applied Materials & Interfaces,2020,12(16):18570-18577.
    [78] KAN D, WANG D, ZHANG X, et al. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations[J]. Journal of Materials Chemistry A,2020,8(6):3097-3108. doi: 10.1039/C9TA12255A
    [79] WHIPPLE D T, KENIS P J. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction[J]. The Journal of Physical Chemistry Letters,2010,1(24):3451-3458. doi: 10.1021/jz1012627
    [80] LI X, BAI Y, SHI X, et al. Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2D electronic charge transfer for efficient p-hotocatalytic CO2 reduction[J]. Applied Surface Science,2021,546:149111. doi: 10.1016/j.apsusc.2021.149111
    [81] SHEN J, SHEN J, ZHANG W, et al. Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction[J]. Ceramics International,2019,45(18):24146-24153. doi: 10.1016/j.ceramint.2019.08.123
    [82] KANNAN K, SLIEM M H, ABDULLAH A M, et al. Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction[J]. Catalysts,2020,10(5):549. doi: 10.3390/catal10050549
    [83] KOZUCH S, SHAIK S. Kinetic-quantum chemical model for catalytic cycles: The Haber-Bosch process and the effect of reagent concentration[J]. The Journal of Physical Chemistry A,2008,112(26):6032-6041. doi: 10.1021/jp8004772
    [84] GRUBER N, GALLOWAY J N. An earth-system perspective of the global nitrogen cycle[J]. Nature,2008,451(7176):293-296. doi: 10.1038/nature06592
    [85] LI T, YAN X, HUANG L, et al. Fluorine-free Ti3C2Tx (T=O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions[J]. Journal of Materials Chemistry A,2019,7(24):14462-14465. doi: 10.1039/C9TA03254A
    [86] CHENG Y, DAI J, SONG Y, et al. Single molybdenum atom anchored on 2D Ti2NO2 MXene as a promising electrocatalyst for N2 fixation[J]. Nanoscale,2019,11(39):18132-18141. doi: 10.1039/C9NR05402B
    [87] PENG W, LUO M, XU X, et al. Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction[J]. Advanced Energy Materials,2020,10(25):2001364. doi: 10.1002/aenm.202001364
    [88] LIU A, GAO M, REN X, et al. A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction[J]. Nanoscale,2020,12(20):10933-10938. doi: 10.1039/D0NR00788A
    [89] KONG W, GONG F, ZHOU Q, et al. An MnO2-Ti3C2Tx MXene nanohybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions[J]. Journal of Materials Chemistry A,2019,7(32):18823-18827. doi: 10.1039/C9TA04902A
    [90] ZHANG J, QU X, HAN Y, et al. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance[J]. Applied Catalysis B: Environmental,2020,263:118345. doi: 10.1016/j.apcatb.2019.118345
    [91] CHANDRAN M, RAVEENDRAN A, VINOBA M, et al. Nickel-decorated MoS2/MXenenanosheets composites for electrocatalytic oxidation of methanol[J]. Ceramics International,2021,47(19):26847-26855. doi: 10.1016/j.ceramint.2021.06.093
    [92] WANG Y, WANG J, HAN G, et al. Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction[J]. Ceramics International,2019,45(2):2411-2417. doi: 10.1016/j.ceramint.2018.10.160
    [93] HE W, WANG F, JIA D, et al. Al-doped nickel sulfide nanosheet arrays as highly efficient bifunctional electrocatalysts for overall water splitting[J]. Nanoscale,2020,12(47):24244-24250. doi: 10.1039/D0NR07134J
    [94] WU L, YU L, ZHANG F, et al. Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(16): 8091-8103.
    [95] GUO M, QU Y, ZENG F, et al. Synthetic strategy and evaluation of hierarchical nanoporous NiO/NiCoP microspheres as efficient electrocatalysts for hydrogen evolution reaction[J]. Electrochimica Acta,2018,292:88-97. doi: 10.1016/j.electacta.2018.09.159
    [96] YOUN D H, HAN S, KIM J Y, et al. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support[J]. ACS Nano,2014,8(5):5164-5173. doi: 10.1021/nn5012144
    [97] GONG Q, WANG Y, HU Q, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature Communications,2016,7(1):13216. doi: 10.1038/ncomms13216
    [98] LU Y, HUANG K, CAO X, et al. Atomically dispersed intrinsic hollow sites of M-M1-M (M1= Pt, Ir; M= Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr nanocrystals enabling rapid water redox[J]. Advanced Functional Materials,2022,32(19):2110645. doi: 10.1002/adfm.202110645
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  848
  • HTML全文浏览量:  336
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 修回日期:  2023-04-06
  • 录用日期:  2023-04-08
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回