Research on damage performance of steel tube reinforced by CFRP under three-point bending loads based on acoustic emission and bat algorithm
-
摘要: 研究了碳纤维增强树脂复合材料(Carbon fiber reinforced polymer, CFRP)加固Q345钢管在弯曲负荷下的损伤性能。通过三点弯曲试验,采用吸能特性分析方法评估不同加固方式下的抗弯强度和能量吸收性能。采用声发射(Acoustic emission, AE)技术,对比分析了不同CFRP铺层方式对钢管的加固效果,以及探究结构内部损伤和弯曲破坏的声学特征演化规律。最后提出了蝙蝠算法(Bat algorithm, BA)优化最小二乘支持向量机(Least squares support vector machine, LSSVM)的损伤分类预测模型。研究发现,增加CFRP缠绕层数可以显著提升钢管的抗弯强度和吸能能力,但增大缠绕角度会降低结构性能。通过对比分析不同加固方式下试件的声发射信号,证实了声发射技术在揭示碳纤维复合材料钢管弯曲过程中的损伤模式方面的有效性。能量概率密度的分析和最大似然评估显示,无论加固方式如何,复合管在不同能量级别上均遵循幂律分布,且能量分布指数随着CFRP缠绕层数增加而增大、随着缠绕角度增加而减小。所建立的BA-LSSVM损伤分类模型对试件损伤过程中的损伤程度分类准确性高达98%以上。Abstract: In this study, the damage performance of carbon fiber reinforced polymer (CFRP) strengthened Q345 steel tubes under bending loads was researched. Through three-point bending tests, the bending strength and energy absorption performance under different reinforcement methods were evaluated using energy characteristic analysis. Additionally, using acoustic emission (AE) techniques, the reinforcement effects of different CFRP layup methods on steel tubes were comparatively analyzed, as well as exploring the evolution of acoustic characteristics of internal damage and bending failure. Finally, a damage classification model optimized by the bat algorithm (BA) for the least squares support vector machine (LSSVM) was proposed. The study finds that CFRP winding layers increasing can significantly enhance the bending strength and energy absorption capacity of the steel tubes, but increasing the winding angle will reduce the structural performance. By comparing the acoustic emission signals of specimens under different reinforcement methods, the effectiveness of acoustic emission technology in revealing the damage modes of carbon fiber reinforced steel tubes during bending was confirmed. Analysis of energy probability density and maximum likelihood estimation shows that, the composite tubes acoustic emission energy follow a power-law distribution at different energy levels, with the energy distribution exponent increasing with the increase of CFRP winding layers and decreasing with the increase of winding angle. The BA-LSSVM model was established to classify the degree of damage during the specimens damage process, with an accuracy of over 98%.
-
表 1 钢管及碳纤维性能参数
Table 1. Performance parameters of steel pipe and carbon fiber
Steel tube Carbon fiber Tensile strength/
MPaYield strength /
MPaExtension rate Gram weight/
(g·m−2)Tensile strength/
MPaElastic modulus/
GPaElongation rate 670 409 16 300 3870 2.45 1.74 表 2 试件名称及参数
Table 2. Name and parameters
Test specimens CFRP winding layers CFRP winding angle/(°) Quality/g ST - - 1651 C2T0 2 0 1799 C4T0 4 0 1953 C2T30 2 30 1798 C2T60 2 60 1801 C2T90 2 90 1800 Note: ST—Steel tube. -
[1] 高小育, 段海, 杨正朴, 等. CFRP加固圆形钢管抗压承载力研究[J]. 建筑科学与工程学报, 2020, 37(06): 55-63.GAO Xiaoyu, DUAN Hai, YANG Zhengpu, et al. Research on the Compressive capacity of Circular steel pipe reinforced by CFRP[J]. Journal of Building Science and Engineering, 20, 37(06): 55-63. (in Chinese). [2] 阳涛, 胡乔, 陈小兵, 等. 碳纤维布加固带缺陷的三层聚乙烯防腐涂层钢管及聚乙烯管道的试验研究[J]. 工业建筑, 2018, 48(12): 169-173+180.YANG Tao, HU Qiao, CHEN Xiaobing et al. Experimental study on Carbon Fiber cloth Reinforced three-layer polyethylene anticorrosive coated steel pipe and polyethylene pipe with defects[J]. Industrial Architecture, 2018, 48(12): 169-173+180(in Chinese). [3] 代岩, 赵均海, 张常光. CFRP和角钢复合加固钢管混凝土叠合柱轴心受压承载力分析[J]. 建筑结构, 2018, 48(17): 96-103.DAI Yan, ZHAO Junhai, ZHANG Changguang. Analysis of axial compression Capacity of CFRP and Angle steel Composite Reinforced concrete filled steel tube composite column[J]. Architectural Structure, 2018, 48(17): 96-103(in Chinese). [4] 黄辉, 路四方, 张祥, 等. 碳纤维复材加固钢管的抗内爆性能[J]. 工业建筑, 2022, 52(1): 211-215.HUANG Hui, Lu Sifang, ZHANG Xiang et al. Implosion resistance of carbon fiber reinforced steel pipe[J]. Industrial Building, 2022, 52(1): 211-215(in Chinese). [5] 颜宇鸿, 卢亦焱, 李杉, 等. 碳纤维编织网增强ECC加固钢管混凝土短柱压弯承载力计算方法[J]. 建筑结构学报, 2023, 44(10): 178-187.YAN Yuhong, LU Yiyan, LI Shan et al. Calculation method of Compressive bending Capacity of ECC reinforced concrete filled steel Tube short column reinforced by carbon fiber braided mesh[J]. Journal of Building Structures, 2019, 44(10): 178-187. (in Chinese). [6] Zhibin L , Ying G , Yan W , et al. Failure mechanisms and acoustic emission pattern recognition of all-CFRP cylindrical honeycomb sandwich shell under three-point bending[J]. Composites Science and Technology, 2023, 237. [7] Daniel L , Antonio J B , L. J M B , et al. Theoretical and experimental study of the bending collapse of partially reinforced CFRP–Steel square tubes[J]. Thin-Walled Structures, 2022, 177. [8] 黄俊杰, 佘艳华, 李猛等. 不同碳纤维布加固方式的木构件损伤演化规律[J]. 东北林业大学学报, 2024, 52(01): 115-123.HUANG Junjie, SHE Yanhua, LI Meng et al. Damage evolution of wood parts with different reinforcement methods of carbon fiber sheet[J]. Journal of Northeast Forestry University, 2019, 52(01): 115-123. (in Chinese). [9] 邵家儒, 刘牛, 杨瑜等. CFRP复合材料构件胶接特性及失效规律研究[J]. 应用力学学报, 2023, 40(5): 1058-1067.SHAO Jiaru, LIU Niu, YANG Yu, et al. Study on Bonding characteristics and failure Rules of CFRP Composite Components[J]. Chinese Journal of Applied Mechanics, 2023, 40(5): 1058-1067(in Chinese). [10] 黄书峰, 陈晓周, 刘东等. 碳纤维增强复合材料力学性能退化及失效过程的研究进展[J]. 宇航材料工艺, 2022, 52(5): 14-20. doi: 10.12044/j.issn.1007-2330.2022.05.003HUANG Shufeng, CHEN Xiaozhou, LIU Dong et al. Research progress on mechanical degradation and failure processes of carbon fiber reinforced composites[J]. Aerospace Materials Technology, 2022, 52(5): 14-20(in Chinese). doi: 10.12044/j.issn.1007-2330.2022.05.003 [11] Ali Z A , Xiaoyong T , Tengfei L , et al. Mechanical and energy absorption behaviors of 3D printed continuous carbon/Kevlar hybrid thread reinforced PLA composites[J]. Composite Structures, 2023, 303. [12] Wang H , Pei Z , Cong W . A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge surface grinding of CFRP composites using rotary ultrasonic machining[J]. International Journal of Mechanical Sciences, 2020, 176(prepublish): 105551-105551. [13] Jin-Guang Y , Shi-Qi Z , Xiao-Tian F . Seismic behavior of CFRP-steel composite plate shear wall with edge reinforcement[J]. Journal of Constructional Steel Research, 2023, 203. [14] 陈卓异, 曾剑波, 彭岚, 等. 考虑缺陷位置和CFRP粘贴方式的钢板疲劳性能[J]. 中国公路学报, 2022, 35(2): 212-222. doi: 10.3969/j.issn.1001-7372.2022.02.019CHEN Zhuoyi, ZENG Jianbo, PENG Lan et al. Fatigue properties of steel plate considering defect Location and CFRP bonding[J]. China Journal of Highway and Transport, 2022, 35(2): 212-222(in Chinese). doi: 10.3969/j.issn.1001-7372.2022.02.019 [15] 余海燕, 吴航宇. 碳纤维复合材料/钢的胶铆连接失效机理和选材方法[J]. 上海交通大学学报, 2023, 57(2): 230-240.YU Haiyan, WU Hangyu. Failure mechanism and Material selection method of riveted joint of Carbon fiber composite/Steel[J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 230-240(in Chinese). [16] 王庆松, 张玉, 张洪雨, 等. 基于改进Elman神经网络的CFRP补强钢板界面脱粘预测研究[J]. 振动与冲击, 2024, 43(03): 120-127.WANG Qingsong, ZHANG Yu, ZHANG Hongyu et al. Prediction of interface desticking of CFRP reinforced steel plate based on improved Elman Neural Network[J]. Journal of Vibration and Shock, 2019, 43(03): 120-127. (in Chinese). [17] Yu Z , Zhuangzhuang L , Jianhang X , et al. The attenuation mechanism of CFRP repaired corroded marine pipelines based on experiments and FEM[J]. Thin-Walled Structures, 2021, 169. [18] 谢玉强, 佘艳华, 黄俊杰, 等. 碳纤维增强复合材料加固柏木轴压裂纹演化规律的研究[J]. 森林工程, 2024, 40(2): 102-116. doi: 10.3969/j.issn.1006-8023.2024.02.012XIE Yuqiang, SHE Yanhua, HUANG Junjie et al. Study on axial compression crack evolution of Cypress wood reinforced by carbon fiber reinforced composites[J]. Forest Engineering, 2024, 40(2): 102-116(in Chinese). doi: 10.3969/j.issn.1006-8023.2024.02.012 [19] 田宝柱, 徐文涛, 梁鹏, 等. 基于多传感器融合的埋地输水管道泄漏声发射定位方法[J]. 科学技术与工程, 2023, 23(24): 10307-10316. doi: 10.12404/j.issn.1671-1815.2023.23.24.10307TIAN Baozhu, XU Wentao, LIANG Peng et al. Acoustic emission location method for buried water pipeline leakage based on multi-sensor fusion[J]. Science Technology and Engineering, 2023, 23(24): 10307-10316(in Chinese). doi: 10.12404/j.issn.1671-1815.2023.23.24.10307 [20] 王青原, 许颖, 钱胜. 基于机器视觉和数字图像相关技术的混凝土损伤演化研究[J]. 湖南大学学报(自然科学版), 2023, 50(11): 169-180.WANG Qingyuan, XU Ying, QIAN Sheng. Research on concrete damage evolution based on machine vision and digital image correlation technology[J]. Journal of Hunan University (Natural Science Edition), 2023, 50(11): 169-180(in Chinese). [21] 许颖, 樊悦, 王青原, 等. 基于DIC的聚丙烯纤维增强混凝土断裂过程分析[J]. 华中科技大学学报(自然科学版), 2024, 52(2): 103-111.XU Ying, FAN Yue, WANG Qingyuan et al. Fracture process analysis of polypropylene fiber reinforced concrete based on DIC[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(2): 103-111(in Chinese). [22] 袁逸齐, 兰恒星, 刘世杰, 等. 砂岩石窟热诱导裂纹损伤时空特征与分析[J]. 岩石力学与工程学报, 2022, 41(12): 2530-2542.YUAN Yiqi, LAN Xingxing, LIU Shijie, et al. Spatiotemporal characteristics and analysis of heat-induced crack damage in sandstone grottoes[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(12): 2530-2542(in Chinese). [23] 许鑫浩, 徐福泉, 刘英利, 等. 红外热成像法检测预制混凝土构件外饰面内部缺陷试验研究[J]. 建筑科学, 2021, 37(07): 52-59.XU Xinhao, XU Fuquan, LIU Yingli et al. Experimental study on detection of Internal defects of precast concrete members by infrared thermal imaging[J]. Building Science, 21, 37(07): 52-59. (in Chinese). [24] Yuhang L , Li Z , Zhixing L , et al. Investigation on damage evolution of open-hole plain woven composites under tensile load by acoustic emission signal analysis[J]. Composite Structures, 2023, 305. [25] Ning P , Yanxun X. Torsional damage analysis for pre-delaminated carbon/glass fiber-reinforced hybrid laminates based on acoustic emission[J]. Applied Acoustics, 2023, 202. [26] Wenzheng Z , Ning P , Chunguang X. Experimental study of carbon/glass fiber-reinforced hybrid laminate composites with torsional loads by using acoustic emission and Micro-CT[J]. Composite Structures, 2022, 290 [27] Zhou J, Mathews J V, Adams O D. Acoustic emission–based impact location estimation on composite structures[J]. Structural Health Monitoring, 2019, 18(5-6): 1652-1668. [28] 林俊亭, 王帅. 基于DBN-MPA-LSSVM的无绝缘轨道电路故障诊断研究[J]. 电子测量与仪器学报, 2022, 36(09): 37-44.LIN Junting, WANG Shuai. Research on Uninsulated track Circuit Fault Diagnosis based on DBN-MPA-LSSVM[J]. Journal of Electronic Measurement and Instrumentation, 202, 36(09): 37-44. (in Chinese). [29] 杨兴武, 王江, 孟致丞, 等. 基于电容电流状态估计的MMC多管开路故障诊断方法[J]. 中国电机工程学报, 2023, 43(23): 9297-9310.YANG Xingwu, WANG Jiang, MENG Zhicheng et al. MMC multi-tube open-circuit Fault Diagnosis Method based on Capacitor current state Estimation[J]. Proceedings of the CSEE, 2023, 43(23): 9297-9310(in Chinese). [30] 李云淏, 咸日常, 张海强, 等. 基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法[J]. 电网技术, 2023, 47(4): 1470-1478.LI Yunhao, XIAN Richang, ZhANG Haiqiang, et al. Power transformer fault diagnosis Method based on improved Gray Wolf Algorithm coupled with least squares support vector Machine[J]. Power Grid Technology, 2023, 47(4): 1470-1478(in Chinese). [31] 杨海柱, 石剑, 江昭阳, 等. 基于CEEMD-SSA-LSSVM短期电力负荷预测模型[J]. 武汉大学学报(工学版), 2022, 55(6): 609-616.YANG Haizhu, SHI Jian, Jiang Zhaoyang et al. Short-term power load forecasting Model based on CEEMD-SSA-LSSVM[J]. Journal of Wuhan University (Engineering and Technology Edition), 2022, 55(6): 609-616(in Chinese). [32] Shuyue G , Darong H , Shenghui G , et al. An Improved Fault Diagnosis Approach Using LSSVM for Complex Industrial Systems[J]. Machines, 2022, 10(6): 443-443. [33] Meng Q , Chen X , Zhu Y , et al. Communication signal classification and recognition method based on GA-LSSVM classifier[J]. Journal of Physics: Conference Series, 2019, 1345(2): 022066-022066. [34] Ma Q , Dong B , Zha Y , et al. Multi-Objective Optimization for Energy Absorption of Carbon Fiber-Reinforced Plastic/Aluminum Hybrid Circular Tube under Both Transverse and Axial Loading[J]. Journal of Materials Engineering and Performance, 2020, 29(9): 1-16. [35] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 金属材料弯曲试验方法: GB/T 232-2010 [S]. 北京: 中国标准出版社, 2010.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China, Bending test method for Metal Materials: GB/T 232-2010 [S]. Beijing: Standards Press of China, 2010. (in Chinese). [36] Yisheng L , Xiaohan C , Zhenyu W , et al. Effect of axial yarn distribution on the progressive damage behavior of braided composite tube subjected to three-point bending[J]. Thin-Walled Structures, 2022, 181 [37] 任松, 赵云峰, 张军伟, 等. 煤样巴西劈裂试验声发射能量幂律分布规律[J]. 东北大学学报(自然科学版), 2017, 38(4): 581-585. doi: 10.3969/j.issn.1005-3026.2017.04.026Ren Song, Zhao Yunfeng, Zhang Junwei, et al. Power law distribution of acoustic emission energy in Brazil splitting test of coal sample[J]. Journal of Northeastern University (Natural Science Edition), 2017, 38(4): 581-585(in Chinese). doi: 10.3969/j.issn.1005-3026.2017.04.026 [38] Clauset A, Shalizi C R, Newman M E J. Power-law distributions in empirical data[J]. SIAM review, 2009, 51(4): 661-703. doi: 10.1137/070710111 [39] Hossein N , Pooya R . Development of a probability distribution model for the SCFs in tubular X-connections retrofitted with FRP[J]. Structures, 2022, 36: 233-247.
计量
- 文章访问数: 70
- HTML全文浏览量: 50
- 被引次数: 0