Loading [MathJax]/jax/output/SVG/jax.js

基于Archard磨损模型研究SiC/AZ91D复合材料干摩擦磨损特性

付豪, 尧军平, 梁超群, 李步炜, 陈国鑫

付豪, 尧军平, 梁超群, 等. 基于Archard磨损模型研究SiC/AZ91D复合材料干摩擦磨损特性[J]. 复合材料学报, 2024, 41(11): 6206-6214. DOI: 10.13801/j.cnki.fhclxb.20240318.005
引用本文: 付豪, 尧军平, 梁超群, 等. 基于Archard磨损模型研究SiC/AZ91D复合材料干摩擦磨损特性[J]. 复合材料学报, 2024, 41(11): 6206-6214. DOI: 10.13801/j.cnki.fhclxb.20240318.005
FU Hao, YAO Junping, LIANG Chaoqun, et al. Research on dry friction and wear characteristics of SiC/AZ91D composites based on Archard wear mode[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6206-6214. DOI: 10.13801/j.cnki.fhclxb.20240318.005
Citation: FU Hao, YAO Junping, LIANG Chaoqun, et al. Research on dry friction and wear characteristics of SiC/AZ91D composites based on Archard wear mode[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6206-6214. DOI: 10.13801/j.cnki.fhclxb.20240318.005

基于Archard磨损模型研究SiC/AZ91D复合材料干摩擦磨损特性

基金项目: 国家自然科学基金(52065046;51661024);江西省科技重点研发计划(20202BBEL53024);研究生创新专项资金项目(2030009101050)
详细信息
    通讯作者:

    尧军平,博士,教授,研究方向为金属基复合材料 E-mail:yyyjpsz@126.com

  • 中图分类号: TB333

Research on dry friction and wear characteristics of SiC/AZ91D composites based on Archard wear mode

Funds: National Natural Science Foundation of China (52065046; 51661024); Jiangxi Key Research and Development Plan (20202BBEL53024); Graduate Student Innovation Special Fund Project (2030009101050)
  • 摘要:

    颗粒增强镁基复合材料在活塞制造中具有重要意义,活塞使用寿命与其材料的摩擦磨损性能关系密切,为预测镁基复合材料活塞耐磨性。基于Archard磨损模型结合自适应网格技术,建立SiC/AZ91D镁基复合材料及其基体有限元模型,探究其在不同载荷下的磨损行为,考察其应力场分布、磨损深度,进行了试验验证,揭示磨损机制。结果表明:在不同载荷下,盘销的接触面均表现出距盘轴心最近与最远处应力值较大,其他径向区域较小。随着载荷增加,盘销接触区域各处均表现出应力值增大。在不同载荷下,盘销接触面均表现出距盘轴心最近处磨损深度较小,离盘轴心径向距离增加,磨损深度越来越大。随着载荷增加,盘销接触区域各处均表现出磨损深度数值增大。但复合材料的磨损深度小于基体,表现出较好的耐磨性能。磨粒磨损和剥层磨损为复合材料主要磨损机制,粘着磨损为基体合金的主要磨损机制,模拟结果与试验结果吻合较好。

     

    Abstract:

    The particle reinforced magnesium matrix composite is of great significance in the manufacture of piston. The service life of piston is closely related to the friction and wear properties of the material, so it can predict the wear resistance of magnesium matrix composite piston. Based on Archard wear model and adaptive mesh technology, a finite element model of SiC/AZ91D magnesium matrix composite and its matrix was established to explore its wear behavior under different loads, investigate its stress field distribution and wear depth, and conduct experimental verification to reveal the wear mechanism. The results show that, under different loads, the stress values of the nearest and furthest distance from the disc axis are larger on the contact surface of the disc pin, while other radial regions are smaller. With the increase of load, the stress values in all parts of the disc and pin contact area increase. Under different loads, the wear depth of the contact surface of the disc pin is smaller at the closest point to the disc axis, and the wear depth is larger and larger with the increase of the radial distance from the disc axis. With the increase of load, the wear depth increases in all parts of the disc and pin contact area. However, the wear depth of the composite is less than that of the matrix, which shows better wear resistance. Abrasive wear and peeling wear are the main wear mechanisms of the composite, adhesive wear is the main wear mechanism of the matrix alloy, and the simulation results are in good agreement with the experimental results.

     

  • 图  1   摩擦实验机(a)与试样图(b)

    Figure  1.   Friction testing machine (a) and samples drawing (b)

    图  2   SiC/AZ91D光学显微组织图

    Figure  2.   Optical microstructure of SiC/AZ91D

    图  3   模型边界条件及其网格划分

    F—Force

    Figure  3.   Model boundary conditions and mesh division

    图  4   不同载荷下SiC/AZ91D试样Von Mises应力分布:(a) 10 N;(b) 6 N;(c) 3 N

    Figure  4.   Von Mises stress distribution of SiC/AZ91D samples under different loads: (a) 10 N; (b) 6 N; (c) 3 N

    图  5   不同载荷下AZ91D试样Von Mises应力分布:(a) 10 N;(b) 6 N;(c) 3 N

    Figure  5.   Von Mises stress distribution of AZ91D samples under different loads: (a) 10 N; (b) 6 N; (c) 3 N

    图  6   不同载荷下SiC/AZ91D (a)与AZ91D (b)试样的磨损深度与径向距离关系

    Figure  6.   Relationship between wear depth and radial distance of SiC/AZ91D (a) and AZ91D (b) samples under different loads

    图  7   不同载荷下SiC/AZ91D (a)与AZ91D (b)试样的摩擦系数与磨损时间关系

    Figure  7.   Relationship between friction coefficient and wear time of SiC/AZ91D (a) and AZ91D (b) samples under different loads

    图  8   SiC/AZ91D复合材料与AZ91D基体平均摩擦系数与载荷关系

    Figure  8.   Average friction coefficient and load relationship between SiC/AZ91D composite material and AZ91D matrix

    图  9   10 N载荷下SiC/AZ91D复合材料(a)与AZ91D基体(b)摩擦磨损面的SEM图像

    Figure  9.   SEM images of friction and wear surface between SiC/AZ91D composite (a) and AZ91D matrix (b) under 10 N load

    图  10   SiC/AZ91D复合材料与AZ91D基体磨损轮廓三维效果图

    Figure  10.   3D rendering of wear profile between SiC/AZ91D composite and AZ91D matrix

    图  11   相同载荷下SiC/AZ91D复合材料与AZ91D基体磨损深度模拟与实验对比

    Figure  11.   Comparison of simulated and experimental wear depth between SiC/AZ91D composite and AZ91D matrix under the same load

    表  1   材料的基本参数

    Table  1   Basic parameters of the materials

    Material ρ/(kg·m−3) σs/MPa μ E/MPa HB
    GCr15 7.18 518.5 0.3 20800 248
    SiC/AZ91D 1.84 204 0.35 62000 65
    AZ91D 1.82 160 0.3 44800 58
    Notes: ρ—Material density; E—Modulus of elasticity; μ—Poisson's ratio; σs—Yield strength; HB—Brinell hardness number.
    下载: 导出CSV

    表  2   实验条件

    Table  2   Experiment condition

    No. Load/N Rotation speed/
    (rad·min−1)
    Time/min Material
    1 3 200 20 SiC/AZ91D
    2 6 200 20 SiC/AZ91D
    3 10 200 20 SiC/AZ91D
    4 3 200 20 AZ91D
    5 6 200 20 AZ91D
    6 10 200 20 AZ91D
    下载: 导出CSV
  • [1] 李紫阳, 薄文杰, 张清林, 等. 外场对SiCp/AZ91D 镁基复合材料组织和性能的影响[J]. 复合材料学报, 2022, 39(1): 275-284.

    LI Ziyang, BO Wenjie, ZHANG Qinglin, et al. Effect of compound field on microstructure and properties of SiCp/AZ91D magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 275-284(in Chinese).

    [2] 李怡然, 尧军平, 黄浩, 等. SiC/AZ91D镁基复合材料单轴拉伸过程中裂纹萌生扩展机制[J]. 塑性工程学报, 2023, 30(2): 185-196. DOI: 10.3969/j.issn.1007-2012.2023.02.022

    LI Yiran, YAO Junping, HUANG Hao, et al. Crack initiation and propagation mechanism of SiC/AZ91D magnesium matrix composites during uniaxial tension[J]. Journal of Plasticity Engineering, 2023, 30(2): 185-196(in Chinese). DOI: 10.3969/j.issn.1007-2012.2023.02.022

    [3]

    YU X W, JIANG B, HE J J, et al. Oxidation resistance of Mg-Y alloys at elevated temperatures and the protection performance of the oxide films[J]. Journal of Alloys and Compound, 2018, 749: 1054-1062.

    [4] 吕鑫, 邓坤坤, 王翠菊, 等. SiCp/尺寸对铸态AZ91 镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 136-142.

    LYU Xin, DENG Kunkun, WANG Cuiju, et al. Effect of SiCp size on microstructure and corrosion properties of as-cast AZ91 magnesium alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(1): 136-142(in Chinese).

    [5] 刘世英, 李文珍, 张琼元, 等. SiCp/AZ91D 纳米复合材料的摩擦磨损行为研究[J]. 稀有金属材料与工程, 2012, 41(1): 110-114.

    LI Shiying, LI Wenzhen, ZHANG Qiongyuan, et al. Study on friction and wear behavior of SiCp/AZ91D nanocomposites[J]. Rare Metal Materials and Engineering, 2012, 41(1): 110-114(in Chinese).

    [6]

    ARJMANDI M, RAMEZANI M, GIORDANO M, et al. Finite element modelling of sliding wear in three-dimensional woven textiles[J]. Tribology Internationa, 2017, 115: 452-460.

    [7]

    AJIT B A, DAVID S B, DANIELE D. Three-dimensional finite element simulation and experimental validation of sliding wear[J]. Wear, 2022, 204402: 504-505.

    [8]

    ASHISH S A, PANKAJ K D. Tribological characterizations and numerical simulations of thermoplastic composites in pin-on-disc configuration[J]. Materials Today, 2023, 79: 92-99.

    [9]

    SURESH R, PRASANNA K M, BASAVARAJAPPA S, et al. Numerical simulation & experimental study of wear depth and contact pressure distribution of aluminum MMC pin on disc tribometer[J]. Materials Today, 2017, 4: 11218-11228.

    [10]

    FALCONNET E, MAKICH H, MONTEIL J C. Numerical and experimental analyses of punch wear in the blanking of copper alloy thin sheet[J]. Wear, 2012, 296: 598-606. DOI: 10.1016/j.wear.2012.07.031

    [11] 吕景儒, 殷玉枫, 张锦, 等. 基于C17200与34CrNiMo6材料的摩擦磨损特性与数值模拟研究[J]. 表面技术, 2023, 52(4): 176-177.

    LYU Jingru, YIN Yufeng, ZHANG Jin, et al. Frictional wear properties and numerical simulation of C17200 and 34CrNiMo6 materials[J]. Surface Technology, 2023, 52(4): 172-183(in Chinese).

    [12]

    KUNAL K B, RAMKUMAR P. 3D FEM wear prediction of brass sliding against bearing steel using constant contact pressure approximation technique[J]. Tribology Online, 2019, 14: 194-207. DOI: 10.2474/trol.14.194

    [13]

    HEGADEKATTEA V, HUBERB N. Modeling and simulation of wear in a pin on disc tribometer[J]. Tribology Letters, 2006, 10(24): 1-10.

    [14]

    WANG Y Q, PASILIAO C L. Modeling ablation of laminated composites: A novel manual mesh moving finite element analysis procedure with ABAQUS[J]. International Journal of Heat and Mass Transfer, 2018, 116: 306-313. DOI: 10.1016/j.ijheatmasstransfer.2017.09.038

    [15]

    CAI M X, ZHANG P, XIONG Q W. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes[J]. Tribology International, 2023, 177: 107930. DOI: 10.1016/j.triboint.2022.107930

    [16]

    MILOŠSTANKOVI C, ALEKSANDAR M C, ALEKSANDAR G C. Determination of Archard's wear coefficient and wear simulation of sliding bearings[J]. Industrial Lubrication and Tribology, 2018, 71: 119-125.

    [17]

    ARVIN T T A, HOSSEIN A B, HASAN S C. Correction of Archard equation for wear behavior of modified pure titanium[J]. Tribology International, 2021, 115: 106772.

    [18]

    BORTOLETO E M, ROVANI A C, SERIACOPI V. Experimental and numerical analysis of dry contact in the pinon disc test[J]. Wear, 2013, 301: 19-26

    [19]

    ZHANG W C, ZHANG Y, GUO H L. An investigation on the tribological properties of nano-tungsten carbide coating by ESD[J]. Journal of Engineering Research, 2024, 12(3): 551-561.

    [20] 李宏伟, 李增权. SiC颗粒增强镁基复合材料的制备与组织性能研究[J]. 精密成形工程, 2023, 15(5): 36-43.

    LI Hongwei, LI Zengquan. Preparation and microstructure properties of SiC particle reinforced magnesium matrix composites[J]. Precision Forming Engineering, 2023, 15(5): 36-43(in Chinese).

    [21]

    PRIIT POÕDRA A, SÖREN ANDERSSON B. Simulating sliding wear with finite element method[J]. Tribology International, 1999, 8: 71-81.

    [22]

    ASHISH S, PANKAJ K D. Tribological characterizations and numerical simulations of thermoplastic composites in pin-on-dis configuration[J]. Materials Today, 2023, 79: 92-99.

    [23] 肖博升, 王新宇. 基于修正Archard模型的聚醚醚酮磨损数值模拟[J]. 工程塑料应, 2017, 45(9): 88-92, 104.

    XIAO Bosheng, WANG Xinyu. Numerical simulation of polyether ether ketone wear based on modified Archard model[J]. Engineering Plastics Application, 2017, 45(9): 88-92, 104(in Chinese).

    [24]

    STRAFFELINI G, PELLIZZARI M, MOLINARI A. Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material[J]. Wear, 2004, 256: 7-8.

    [25] 卢楠楠. SiCp_AZ91D镁基复合材料的摩擦磨损行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    LU Nannan. Study on friction and wear behavior of SiCp_AZ91D magnesium matrix composites[D]. Harbin: Harbin Institute of Technology, 2015.

    [26] 张永振, 邱明, 上官宝, 等. 高速干摩擦条件下铝基复合材料的摩擦磨损行为研究[J]. 摩擦学学报, 2005, 25(4): 343-347.

    ZHANG Yongzhen, QIU Ming, SHANGGUAN Bao, et al. Study on friction and wear behavior of aluminum matrix composites under high speed dry friction[J]. Tribology, 2005, 25(4): 343-347(in Chinese).

    [27] 梁超群, 尧军平, 李怡然, 等. SiC/AZ91D 镁基复合材料单轴压缩过程中裂纹萌生扩展机制[J]. 复合材料学报, 2023, 40(7): 4282-4293.

    LIANG Chaoqun, YAO Junping, LI Yiran, et al. Crack initiation and propagation mechanism during uniaxial compression of SiC/AZ91D magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4282-4293(in Chinese).

  • 期刊类型引用(7)

    1. 赵乃君,华汶乐,陈列,黄宫淇. 激光诱导硅橡胶超疏水表面及其耐磨性研究. 材料保护. 2024(09): 45-53 . 百度学术
    2. 何强,王晓森,宁梦遥. 硅橡胶超疏水涂层的撒粉法制备. 中国表面工程. 2023(02): 146-154+179 . 百度学术
    3. 赵亚梅,霍梦丹,曹婷婷,丁思奇,陈丽. 提升超疏水材料力学耐久性的研究进展. 复合材料学报. 2023(04): 2004-2014 . 本站查看
    4. 胡娟,肖楠,谭亦可,李文强,曾向宏,张爱霞,陈莉,陈敏剑,周远建. 2022年国内有机硅进展. 有机硅材料. 2023(03): 68-89 . 百度学术
    5. 杨威,颜丙越,夏国巍,尹国华,段祺君,谢军. 纳米SiO_2改性玻璃纤维增强树脂的耐湿热老化性能. 绝缘材料. 2023(10): 50-58 . 百度学术
    6. 费楚然,胡纯,文艳辉,李戎,宁洪胜,张文晶,温得浩,李建喜. 苯基硅橡胶高剂量辐射老化性能研究. 合成材料老化与应用. 2023(05): 7-10 . 百度学术
    7. 郭乐扬,阮海妮,李文戈,高原,姜涛,刘彦伯,吴新锋,赵远涛. 船舶减阻表面工程技术研究进展. 表面技术. 2022(09): 53-64+73 . 百度学术

    其他类型引用(1)

  • 目的 

    SiC/AZ91D镁基复合材料广泛应用于航空制造,汽车生产,电子封装等领域,活塞使用寿命与其材料的摩擦磨损性能关系密切,为预测镁基复合材料活塞耐磨性。建立SiC/AZ91D镁基复合材料及其基体有限元模型,探究其在不同载荷下的磨损行为,考察其应力场分布、磨损深度。

    方法 

    使用Abaqus有限元分析软件1.建模:在Abaqus中建立销盘摩擦副的几何模型。包括定义模型几何尺寸、几何形状、材料属性以及接触边界条件等。2.网格划分:对销-盘摩擦副进行网格划分,将其划分为有限数量的单元,以便进行数值计算。网格划分的质量对于模拟结果的准确性至关重要。3.材料定义:定义销盘摩擦副中所使用的材料的力学性质,包括材料的弹性模量、泊松比、屈服强度等。材料的属性将影响模拟结果。此类数据采用实验方法取得。4.接触定义:对销盘摩擦副中的接触面进行定义。由于摩擦、接触和磨损问题通常涉及非线性行为,因此本文使用Abaqus的非线性求解器进行求解5.加载和约束:定义销盘摩擦副的加载和约束条件。6.求解:使用Abaqus的求解器对销盘摩擦副进行求解。求解过程将根据所定义的几何、材料、接触和加载条件进行数值计算,并得出相应的力学响应结果。7.后处理:计算磨损深度使用UMESHMOTION子程序,通过该程序完成网格单元的磨损节点的位移问题。同时,通过ALE(Arbitrary Lagrangian Eulerian)自适应网格技术实现模型网格的更新。在一个载荷增量步中,首先更新应力,然后再更新磨损量。

    结果 

    从有限元模拟得出的结果分析可得出不同载荷对复合材料与基体金属的应力场分布、磨损深度,可分为以下几点:①在相同载荷条件下,SiC/AZ91D复合材料和基体均表现出接触面距盘轴心最近与最远处应力值较大,而其他区域应力值较小的特性。这种现象主要由于接触面在边缘处突变,导致接触面两侧应力集中。对SiC/AZ91D复合材料而言,接触面应力值均大于AZ91D基体。由于高模量和高硬度SiC颗粒存在使得复合材料具有比基体更高的硬度和弹性模量 。因此在相同载荷作用下,复合材料比基体变形更小,应力值更大;②在实验所选载荷条件下,复合材料和基体的磨损深度与径向距离关系均表现出,随盘轴心径向距离增加,磨损深度增大。因为接触面距盘轴心最远处应力与相对运动速度的乘积大于最近处,通过UMESHMOTION子程序提取节点应力值,输入Archard磨损模型得出随盘轴心径向距离增加,磨损深度增大。但是复合材料的磨损深度均小于基体磨损深度,表现出更好的耐磨性能。

    结论 

    (1)盘销接触面应力值在径向区域分布不均匀,接触面均表现出距盘轴心最近与最远处应力值较大,其它径向区域较小。当载荷为10N时,复合材料距盘轴心最近与最远处应力值比基体金属分别高9.86%与10.1%;复合材料中心区域应力平均值比基体金属高39.5%。当载荷为6N时,复合材料距盘轴心最近与最远处应力值比基体金属分别高9.8%与3.7%;复合材料中心区域应力平均值比基体金属高23.1%;当载荷为3N时,复合材料距盘轴心最近与最远处应力值比基体金属分别高3.65%与1.18%;复合材料中心区域应力平均值比基体金属高16.7%。(2)在不同载荷下,盘销接触面均表现出距盘轴心最近处磨损深度较小,离盘轴心径向距离增加,磨损深度越来越大。基体合金的磨损深度明显大于复合材料。当载荷为10N时,复合材料距盘轴心最近与最远处磨损深度值比基体金属分别低51.7%与32.5%;复合材料中心区域磨损深度值比基体金属低41.5%。当载荷为6N时,复合材料距盘轴心最近与最远处磨损深度值比基体金属分别低65.2%与48.5%;复合材料中心区域磨损深度值比基体金属低54.7%;当载荷为3N时,复合材料距盘轴心最近与最远处磨损深度值比基体金属分别低62.9%与40.3%;复合材料中心区域磨损深度值比基体金属低59.1%。(3)磨粒磨损和剥层磨损为复合材料主要磨损机制,粘着磨损为基体合金的主要磨损机理。

  • 镁合金材料因其耐磨性能不佳,在需频繁参与摩擦的工业产品零部件(如低负荷轴承齿轮、离合器活塞等)方面很少被采用。为了改善其耐磨性能,在镁合金中添加高硬质SiC颗粒,能有效提升SiC颗粒增强镁基复合材料的摩擦磨损性能。研究摩擦磨损特性的方法主要有实验和数值模拟。采用Archard模型研究摩擦磨损行为对金属基复合材料研究较少。

    本文基于Archard磨损模型结合自适应网格技术,建立SiC/AZ91D镁基复合材料及其基体有限元模型,探究其在不同工况下的磨损行为,考察其应力场分布、磨损深度。从图中可以看出,在不同载荷下,盘销接触面应力值在径向区域分布不均匀,接触面均表现出距盘轴心最近与最远处应力值较大,其它径向区域较小。随着载荷增加,盘销接触面应力场差异明显。

    在不同工况下,复合材料和基体的磨损深度与径向距离关系均表现出,随盘轴心径向距离增加,磨损深度增大。因为接触面距盘轴心最远处应力与相对运动速度的乘积大于最近处,通过UMESHMOTION子程序提取节点应力值,输入Archard磨损模型得出随盘轴心径向距离增加,磨损深度增大。但复合材料的磨损深度均小于基体磨损深度,表现出更好的耐磨性能。

    图(1)、图(2)为不同载荷下SiC/AZ91D复合材料与基体的Von Mises应力分布 (a) 10N (b)6N (c)3N不同载荷下

    SiC/AZ91D试样的磨损深度与径向距离关系图

图(11)  /  表(2)
计量
  • 文章访问数:  621
  • HTML全文浏览量:  222
  • PDF下载量:  61
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-02-25
  • 录用日期:  2024-03-06
  • 网络出版日期:  2024-03-18
  • 发布日期:  2024-03-18
  • 刊出日期:  2024-11-14

目录

    /

    返回文章
    返回