留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Archard磨损模型研究SiC/AZ91D复合材料干摩擦磨损特性

付豪 尧军平 梁超群 李步炜 陈国鑫

付豪, 尧军平, 梁超群, 等. 基于Archard磨损模型研究SiC/AZ91D复合材料干摩擦磨损特性[J]. 复合材料学报, 2024, 41(11): 6065-6073.
引用本文: 付豪, 尧军平, 梁超群, 等. 基于Archard磨损模型研究SiC/AZ91D复合材料干摩擦磨损特性[J]. 复合材料学报, 2024, 41(11): 6065-6073.
FU Hao, YAO Junping, LIANG Chaoqun, et al. Research on dry friction and wear characteristics of SiC/AZ91D composites based on Archard wear mode[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6065-6073.
Citation: FU Hao, YAO Junping, LIANG Chaoqun, et al. Research on dry friction and wear characteristics of SiC/AZ91D composites based on Archard wear mode[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6065-6073.

基于Archard磨损模型研究SiC/AZ91D复合材料干摩擦磨损特性

基金项目: 国家自然科学基金资助(52065046;51661024);江西省科技重点研发计划(20202BBEL53024);研究生创新专项资金项目(2030009101050)
详细信息
    通讯作者:

    尧军平,博士研究生,教授,研究方向为金属基复合材料 E-mail:yyyjpsz@126.com

  • 中图分类号: TB333

Research on dry friction and wear characteristics of SiC/AZ91D composites based on Archard wear mode

Funds: Supported by the National Natural Science Foundation of China (52065046; 51661024); Jiangxi key research and development plan (20202BBEL53024); Graduate student innovation special fund project (2030009101050)
  • 摘要: 颗粒增强镁基复合材料在活塞制造中具有重要意义,活塞使用寿命与其材料的摩擦磨损性能关系密切,为预测镁基复合材料活塞耐磨性。基于Archard磨损模型结合自适应网格技术,建立SiC/AZ91D镁基复合材料及其基体有限元模型,探究其在不同载荷下的磨损行为,考察其应力场分布、磨损深度,进行了试验验证,揭示磨损机理。结果表明:在不同载荷下,盘销的接触面均表现出距盘轴心最近与最远处应力值较大,其它径向区域较小。随着载荷增加,盘销接触区域各处均表现出应力值增大。在不同载荷下,盘销接触面均表现出距盘轴心最近处磨损深度较小,离盘轴心径向距离增加,磨损深度越来越大。随着载荷增加,盘销接触区域各处均表现出磨损深度数值增大。但复合材料的磨损深度小于基体,表现出较好的耐磨性能。磨粒磨损和剥层磨损为复合材料主要磨损机制,粘着磨损为基体合金的主要磨损机理,模拟结果与试验结果吻合较好。

     

  • 图  1  摩擦实验机(a)与试样图(b)

    Figure  1.  Friction testing machine and samples drawing

    图  2  SiC/AZ91D光学显微组织图

    Figure  2.  Optical microstructure of Sic/AZ91D

    图  3  模型边界条件及其网格划分

    Figure  3.  Model boundary conditions and mesh division

    图  4  不同载荷下SiC/AZ91D试样Von Mises应力分布:(a) 10 N;(b)6 N;(c)3 N

    Figure  4.  Von Mises stress distribution of SiC/AZ91D samples under different loads: (a) 10 N; (b)6 N; (c)3 N

    图  5  不同载荷下AZ91D试样Von Mises应力分布:(a) 10 N;(b) 6 N;(c) 3 N

    Figure  5.  Von Mises stress distribution of AZ91D samples under different loads: (a) 10 N; (b)6 N; (c)3 N

    图  6  不同载荷下SiC/AZ91D(a)与AZ91D(b)试样的磨损深度与径向距离关系

    Figure  6.  Relationship between wear depth and radial distance of SiC/AZ91D (a) and AZ91D (b) samples under different loads

    图  7  不同载荷下SiC/AZ91D(a)与AZ91D(b)试样的摩擦系数与磨损时间关系

    Figure  7.  Relationship between friction coefficient and wear time of SiC/AZ91D (a) andAZ91D (b) samples under different loads

    图  8  SiC/AZ91D复合材料与AZ91D基体平均摩擦系数与载荷关系

    Figure  8.  Average friction coefficient and load relationship between SiC/AZ91D composite material and AZ91D matrix

    图  9  10 N载荷下SiC/AZ91D复合材料(a)与AZ91D基体(b)摩擦磨损面SEM图像

    Figure  9.  SEM image of friction and wear surface between SiC/AZ91D composite and AZ91D matrix under 10 N load

    图  10  SiC/AZ91D复合材料与AZ91D基体磨损轮廓三维效果图

    Figure  10.  3 D rendering of wear profile between SiC/AZ91D composite and AZ91D matrix

    图  11  相同载荷下SiC/AZ91D复合材料与AZ91D基体磨损深度模拟与实验对比

    Figure  11.  Comparison of simulated and experimental wear depth between SiC/AZ91D composite and AZ91D matrix under the same load

    表  1  材料的基本参数

    Table  1.   Basic parameters of the materials

    Material $ \rho $/(kg·m−3) $ \sigma_{\mathrm{S}} $/MPa $ \mu $ E/MPa HB
    GCr15 7.18 518.5 0.3 20800 248
    SiC/AZ91D 1.84 204 0.35 62000 65
    AZ91D 1.82 160 0.3 44800 58
    Notes: $ \rho $ is the material density; E is the modulus of elasticity; $ \mu $ is Poisson's ratio; $ \sigma_{\mathrm{S}} $ is the yield strength; HB is Brinell hardness number.
    下载: 导出CSV

    表  2  实验条件

    Table  2.   Experiment condition

    No. Load/N Rtation speed/
    (rad·min−1)
    Time/min Material
    1 3 200 20 SiC/AZ91D
    2 6 200 20 SiC/AZ91D
    3 10 200 20 SiC/AZ91D
    4 3 200 20 AZ91D
    5 6 200 20 AZ91D
    6 10 200 20 AZ91D
    下载: 导出CSV
  • [1] 李紫阳, 薄文杰, 张清林, 等. 外场对SiCp/AZ91D 镁基复合材料组织和性能的影响[J]. 复合材料学报, 2022, 39(1): 275-284.

    LI Ziyang, BO Wenjie, ZHANG Qinglin, et al. Effect of compound field on microstructure and properties of SiCp/AZ91D magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 275-284(in Chinese).
    [2] 李怡然, 尧军平, 黄浩, 等. SiC/AZ91D镁基复合材料单轴拉伸过程中裂纹萌生扩展机制[J]. 塑性工程学报, 2023, 30(2): 185-196. doi: 10.3969/j.issn.1007-2012.2023.02.022

    LI Yiran, YAO Junping, HUANG Hao, et al. Crack initiation and propagation mechanism of SiC/ AZ91D magnesium matrix composites during uniaxial tension[J]. Journal of Plasticity Engineering, 2023, 30(2): 185-196(in Chinese). doi: 10.3969/j.issn.1007-2012.2023.02.022
    [3] YU, Xiaowen, JIANG, Bin, He, Junjie, et al. Oxidation resistance of Mg-Y alloys at elevated temperatures and the protection performance of the oxide films[J]. Journal of Alloys and Compound: 2018, 749: 1054-1062
    [4] 吕鑫, 邓坤坤, 王翠菊, 等. SiCp/尺寸对铸态AZ91 镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 136-142.

    Lv Xin, Deng Kunkun, Wang Cuiju, et al. Effect of SiCp size on microstructure and corrosion properties of as-cast AZ91 magnesium alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(1): 136-142(in Chinese).
    [5] 刘世英, 李文珍, 张琼元, 等. SiCp/AZ91D 纳米复合材料的摩擦磨损行为研究[J]. 稀有金属材料与工程, 2012, 41(1): 110-114.

    LI Shiying, LI Wenzhen, ZHANG Qingyuan, et al. Study on friction and wear behavior of SiCp/AZ91D nanocomposites[J]. Rare Metal Materials and Engineering, 2012, 41(1): 110-114(in Chinese).
    [6] Arjmandi, M. , Ramezani, M. , Giordano, M, et al. Finite Element Modelling of Sliding Wear in Three-Dimensional Woven Textiles[J]. Tribology Internationa, 2017, 115: 452-460.
    [7] Ajit Bastola a, David Stewart b, Daniele Dini. Three-dimensional finite element simulation and experimental validation of sliding wear[J]. Wear, 2022, 204402: 504-505.
    [8] Ashish Soni a, Pankaj Kumar Das, Tribological characterizations and numerical simulations of thermoplastic composites in pin-on-disc configuration[J], Materials Today, 2023, 79: 92–99.
    [9] R. Suresh. , M. Prasanna Kumar, S. Basavarajappa, et al. Numerical Simulation & Experimental study of wear depth and Contact pressure distribution Of Aluminum MMC Pin on Disc Tribometer[J]. Materials Today, 2017, 4: 11218–11228.
    [10] E. Falconnet, H. Makich, J. C. Monteil, Numerical and experimental analyses of punch wear in the blanking of copper alloy thin sheet[J]. Wear, 2012, 296: 598-606. doi: 10.1016/j.wear.2012.07.031
    [11] 吕景儒, 殷玉枫, 张锦, 等. 基于C17200与34CrNiMo6材料的摩擦磨损特性与数值模拟研究[J]. 表面技术, 2023, 52(04): 176-177.

    LYU Jing-ru, YIN Yu-feng, ZHANG Jin, et al. Frictional Wear Properties and Numerical Simulation of C17200 and 34CrNiMo6 Materials[J]. Surface Technology, 2023, 52(4): 172-183. (in Chinese)
    [12] Kunal Kumar Bose, Ramkumar Penchaliah. 3-D FEM Wear Prediction of Brass Sliding against Bearing Steel Using Constant Contact Pressure Approximation Technique[J]. Tribology Online, 2019, 14: 194-207. doi: 10.2474/trol.14.194
    [13] V. Hegadekattea, N. Huberb. Modeling and simulation of wear in a pin on disc tribometer[J]. Tribology Letters, 2006, 10(24): 1-10.
    [14] WANG Ye-qing, PASILIAO C L. Modeling Ablation of Laminated Composites: A Novel Manual Mesh Moving Finite Element Analysis Procedure with ABAQUS[J]. International Journal of Heat and Mass Transfer, 2018, 116: 306-313. doi: 10.1016/j.ijheatmasstransfer.2017.09.038
    [15] CAI Mingxin, ZHANG Po, XIONG Qiwen. Finite Element Analysis of Fretting Wear under Variable Coefficient of Friction and Different Contact Regimes[J]. Tribology International, 2023, 177: 107930. doi: 10.1016/j.triboint.2022.107930
    [16] MilošStankovi c, Aleksandar Marinkovi c, Aleksandar Grbovi c, Determination of Archard’s wear coefficient and wear simulation of sliding bearings[J]. Industrial Lubrication and Tribology, 2018, 71: 119-125
    [17] Arvin Taghizadeh Tabrizi a, Hossein Aghajani b, Hasan Saghafian c. Correction of Archard equation for wear behavior of modified pure titanium[J]. Tribology International, 2021, 115: 106772.
    [18] E. M. Bortoleto, A. C. Rovani, V. Seriacopi, Experimental and numerical analysis of dry contact in the pinon disc test[J]. Wea, 2013, 301: 19–26
    [19] ZHANG Wenchao, ZHANG Yu, GUO Haoliang. An investigation on the tribological properties of nano-tungsten carbide coating by ESD[J]. Journal of Engineering Research, 2023, 8: Available online
    [20] 李宏伟, 李增权. SiC颗粒增强镁基复合材料的制备与组织性能研究[J]. 精密成形工程, 2023, 15(5): 36-43

    LI Hongwei, LI Zengquan. Preparation and microstructure properties of SiC particle reinforced magnesium matrix composites[J]. Precision forming engineering, 2023, 15(5): 36-43(in Chinese).
    [21] Priit Po˜dra a, So¨ren Andersson b. Simulating sliding wear with finite element method[J]. Tribology International, 1999, 8: 71-81
    [22] Ashish Soni, Pankaj Kumar Das. Tribological characterizations and numerical simulations of thermoplastic composites in pin-on-dis configuration[J]. Materials Today, 2023, 79: 92-99
    [23] 肖博升, 王新宇. 基于修正Archard模型的聚醚醚酮磨损数值模拟[J]. 工程塑料应, 2017, 45(09): 91-92

    XIAO Bosheng, WANG Xinyu. Numerical simulation of polyether ether ketone wear based on modified Archard model[J]. Engineering plastics application, 2017, 45(09): 88-104. (in Chinese)
    [24] G. Straffelini, M. Pellizzari, A. Molinari, Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material[J]. Wear, 2004, 256: 7-8.
    [25] 卢楠楠, SiCp_AZ91D镁基复合材料的摩擦磨损行为研究[D]. 哈尔滨工业大学, 2015.

    Lv Nannan, Study on friction and wear behavior of SiCp AZ91D magnesium matrix composites[D]. HIT(Harbin Institute of Technology), 2015.
    [26] 张永振, 邱明, 上官宝, 等. 高速干摩擦条件下铝基复合材料的摩擦磨损行为研究[J]. 摩擦学学报, 2005, 25(4): 343-347.

    ZHANG Yongzhen, QIU Ming, SHANGGUAN Bao, et al. Study on friction and wear behavior of aluminum matrix composites under high speed dry friction[J]. Tribology, 2005, 25(4): 343-347(in Chinese).
    [27] 梁超群, 尧军平, 李怡然, 等. SiC/AZ91D 镁基复合材料单轴压缩过程中裂纹萌生扩展机制[J]. 复合材料学报, 2023, 40(7): 4282-4293.

    LIANG Chaoqun, YAO Junping, LI Yiran, et al. Crack initiation and propagation mechanism during uniaxial compression of SiC/AZ91Dmagnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4282-4293(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  118
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 修回日期:  2024-02-26
  • 录用日期:  2024-03-07
  • 网络出版日期:  2024-04-09
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回