留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

防覆/除冰功能复合材料的制备和应用研究进展

邓朝辉 金汝诗 戚栋明 刘国金 翟世民

邓朝辉, 金汝诗, 戚栋明, 等. 防覆/除冰功能复合材料的制备和应用研究进展[J]. 复合材料学报, 2023, 40(10): 5554-5566. doi: 10.13801/j.cnki.fhclxb.20230302.001
引用本文: 邓朝辉, 金汝诗, 戚栋明, 等. 防覆/除冰功能复合材料的制备和应用研究进展[J]. 复合材料学报, 2023, 40(10): 5554-5566. doi: 10.13801/j.cnki.fhclxb.20230302.001
DENG Chaohui, JIN Rushi, QI Dongming, et al. Preparation of anti-icing/deicing functional composite materials and its research progress[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5554-5566. doi: 10.13801/j.cnki.fhclxb.20230302.001
Citation: DENG Chaohui, JIN Rushi, QI Dongming, et al. Preparation of anti-icing/deicing functional composite materials and its research progress[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5554-5566. doi: 10.13801/j.cnki.fhclxb.20230302.001

防覆/除冰功能复合材料的制备和应用研究进展

doi: 10.13801/j.cnki.fhclxb.20230302.001
基金项目: 浙江理工大学科研启动项目(22202008-Y);浙江理工大学优博专项(11150131721905);浙江省现代纺织技术创新中心定向项目(CXZX2022011HD)
详细信息
    通讯作者:

    翟世民,博士,特聘副教授,硕士生导师,研究方向为功能性材料制备 E-mail: zsm021616@163.com

  • 中图分类号: TQ325;TB333

Preparation of anti-icing/deicing functional composite materials and its research progress

Funds: Zhejiang Sci-Tech University Research Start-up Project (22202008-Y); Zhejiang Sci-Tech University Excellent Doctoral Program (11150131721905); Zhejiang Modern Textile Technology Innovation Center Orientation Project (CXZX2022011HD)
  • 摘要: 为了解防覆/除冰涂层的制备过程,提升现有纺织复合材料的防覆/除冰性能,本文以防覆/除冰机制为切入点,系统介绍了超疏水、超润滑和复合型涂层整理等的结构、性能和影响因素,并从纺织复合材料涂层整理的技术特点出发,总结了纺织复合材料在防覆/除冰功能整理方面的最新研究进展。最后,针对现有防覆/除冰材料作用机制单一、耐候性欠佳、形状可塑性差和不易拆卸的特点,提出了耦合不同涂层整理的技术优势,开发柔性、复合协同型防覆/除冰功能纺织材料的设想,以期为防覆/除冰功能纺织复合材料的研究和发展提供借鉴。

     

  • 图  1  超疏水表面及水在表面的弹离[21]

    Figure  1.  Superhydrophobic surface and water ejection on the surface[21]

    图  2  液滴在超疏水表面滚动[30]

    Figure  2.  Droplet rolling on superhydrophobic surface[30]

    图  3  滚转角与倾角滞后关系示意图[33]

    Figure  3.  Relation between roll angle and dip angle lag[33]

    α—Rolling angle; θa—Forward contact angle; θr—Receding contact angle

    图  4  液滴在超疏水表面示意图[34]

    Figure  4.  Schematic diagram of droplet on superhydrophobic surface[34]

    图  5  超疏水表面的防覆/除冰机制[32]

    Figure  5.  Anti-coating/deicing mechanism of superhydrophobic surface[32]

    图  6  超润滑表面除冰示意图[33]

    Figure  6.  Schematic diagram of de-icing of super-lubricated surface[33]

    图  7  碳基材料光热转换的基本原理[58]

    Figure  7.  Basic principle of photothermal conversion of carbon-based materials[58]

  • [1] 彭慧璇, 兰金鑫, 杨海涛, 等. 基于光热效应的主动抗冰涂层的制备及其性能研究[J]. 中国涂料, 2022, 37(4):31-36, 48. doi: 10.13531/j.cnki.china.coatings.2022.04.005

    PENG Huixuan, LAN Jinxin, YANG Haitao, et al. Preparation and properties of active anti-ice coatings based on photothermal effect[J]. China Coatings,2022,37(4):31-36, 48(in Chinese). doi: 10.13531/j.cnki.china.coatings.2022.04.005
    [2] 霍治国, 李春晖, 孔瑞, 等. 中国电线积冰灾害研究进展[J]. 应用气象学报, 2021, 32(5):513-529.

    HUO Zhiguo, LI Chunhui, KONG Rui, et al. Review on disaster of wire icing in China[J]. Journal of Applied Meteorology,2021,32(5):513-529(in Chinese).
    [3] 陈梁. 可光热除冰的微纳超疏水防冰表面的制备及其性能研究[D]. 广州: 华南理工大学, 2019.

    CHEN Liang. Preparation and properties of micro-nano superhydrophobic and anti-ice surface capable of photothermal deicing[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
    [4] 韩佳, 勾昱君, 李怡达, 等. 具有光热效应的超疏水表面防覆冰研究[J]. 制冷, 2022, 41(1):13-18.

    HAN Jia, GOU Yujun, LI Yida, et al. Anti-icing of superhydrophobic surface with photothermal effect[J]. Journal of Refrigeration,2022,41(1):13-18(in Chinese).
    [5] 席乃园. 耐候钢表面超疏水涂层制备技术及其防覆冰性能研究[D]. 成都: 西南交通大学, 2019.

    XI Naiyuan. Study on preparation technology and anti-icing properties of superhydrophobic coatings on weathering steel[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese).
    [6] LI X, HU K, HUANG Y Z, et al. Upcycling biomass waste into Fe single atom catalysts for pollutant control[J]. Journal of Energy Chemistry,2022,69:282-291. doi: 10.1016/j.jechem.2022.01.044
    [7] 马维, 李洋, 姚舒怀, 等. 光热防冰防霜防雾表面近期研究进展[J]. 物理学报, 2022, 71(8):347-357.

    MA Wei, LI Yang, YAO Shuhuai, et al. Recent advance in solar-thermal surfaces for anti-icing/anti-frosting/anti-fogging[J]. Acta Physica Sinica,2022,71(8):347-357(in Chinese).
    [8] 李回归. 光热超疏水涂层的制备及性能研究[D]. 西安: 陕西科技大学, 2021.

    LI Huigui. Fabrication and properties of superhydrophobic photothermal coating[D]. Xi'an: Shaanxi University of Science and Technology, 2021(in Chinese).
    [9] 梁镇宇, 张世忠, 张宏强, 等. 聚吡咯光热超疏水多功能防冰涂层的制备与性能研究[J]. 涂料工业, 2022, 52(4):18-23. doi: 10.12020/j.issn.0253-4312.2022.4.6

    LIANG Zhenyu, ZHANG Shizhong, ZHONG Hongqiang, et al. Preparation and research of polypyrrole photothermal superhydrophobic multi-function anti-icing coatings[J]. Coating Industry,2022,52(4):18-23(in Chinese). doi: 10.12020/j.issn.0253-4312.2022.4.6
    [10] 唐超, 谢文俊, 袁培毓, 等. 翼面前缘共形电热除冰功能结构开发与验证[J]. 航空学报, 2023, 44(12):331-341.

    TANG Chao, XIE Wenjun, YUAN Peiyu. Development and verification of functional structure of wing front edge conformal electrothermal deicing[J]. Acta Aeronautica et Astronautica Sinica,2023,44(12):331-341(in Chinese).
    [11] 王志航, 白二雷, 严平, 等. 磁铁矿骨料混凝土的微波除冰特性及耐久性[J]. 复合材料学报, 2023, 40(7): 4095-4106.

    WANG Zhihang, BAI Erlei, YAN Ping, et al. Microwave deicing characteristics and durability of magnetite aggregate concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4095-4106(in Chinese).
    [12] 叶高呈, 邹德华, 邝江华, 等. 基于移动机载平台的输电线绝缘子激光除冰机构设计[J]. 武汉纺织大学学报, 2022, 35(4):33-37.

    YE Gaocheng, ZOU Dehua, KUANG Jianghua, et al. Design of laser deicing mechanism for transmission line insulators based on mobile airborne platform[J]. Journal of Wuhan Textile University,2022,35(4):33-37(in Chinese).
    [13] 卿汶松. 除冰液作用下机场道面混凝土冻融破坏行为研究[D]. 绵阳: 西南科技大学, 2022.

    QIN Wensong. Research on freeze-thaw failure behavior of air-port pavement concrete under the action of deicing fluid[D]. Mianyang: Southwest University of Science and Technology, 2022(in Chinese).
    [14] ZHANG L, GAO C L, ZHONG L S, et al. Robust photothermal superhydrophobic coatings with dual-size micro/nano structure enhance anti-/de-icing and chemical resistance properties[J]. Chemical Engineering Journal,2022,446:137461. doi: 10.1016/j.cej.2022.137461
    [15] LIU Z Y, HU J H, JIANG G. Superhydrophobic and photothermal deicing composite coating with self-healing and anti-corrosion for anti-icing applications[J]. Surface and Coatings Technology,2022,444:128668. doi: 10.1016/j.surfcoat.2022.128668
    [16] 朱军, 黄汉雄. 注压成型聚丙烯/碳纳米管材料表面的纳米结构和光热除冰/除霜[J]. 高分子学报, 2021, 52(11):1506-1513. doi: 10.11777/j.issn1000-3304.2021.21093

    ZHU Jun, HUANG Hanxiong. Nanohairs and photothermal deicing/defrosting on surface of injection-compression molded PP/MWCNTs composite[J]. Acta Polymerica Sinica,2021,52(11):1506-1513(in Chinese). doi: 10.11777/j.issn1000-3304.2021.21093
    [17] 沈一洲, 谢欣瑜, 陶杰, 等. 超疏水防冰材料的理论基础与应用研究进展[J]. 中国材料进展, 2022, 41(5):388-397.

    SHEN Yizhou, XIE Xinyu, TAO Jie, et al. Review on theoretical foundations and applications of superhydrophobic anti-icing materials[J]. Materials Progress in China,2022,41(5):388-397(in Chinese).
    [18] GOLOVIN K, DHYANI A, THOULESS M D, et al. Low-interfacial toughness materials for effective large-scale deicing[J]. Science,2019,364(6438):371-375. doi: 10.1126/science.aav1266
    [19] 徐玉坤, 朱宝, 孙林峰, 等. 超疏水和超润滑防冰表面的制备技术概述[J]. 航空制造技术, 2017(14):44-48. doi: 10.16080/j.issn1671-833x.2017.14.044

    XU Yukun, ZHU Bao, SUN Linfeng, et al. Preparation of superhydrophobic and SLIPS anti-icing surfaces[J]. Aeronautical Manufacturing Technology,2017(14):44-48(in Chinese). doi: 10.16080/j.issn1671-833x.2017.14.044
    [20] WU S W, DU Y J, ALSAID Y, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot[J]. Proceedings of the National Academy of Sciences,2020,117(21):11240-11246. doi: 10.1073/pnas.2001972117
    [21] LI Y, LI H, WU J, et al. One-pot synthesis of superhydrophobic photothermal materials with self-healing for efficient ice removal[J]. Applied Surface Science,2022,600:154177.
    [22] 张志. 纺织基柔性可穿戴纳米发电机的制备及性能研究[D]. 上海: 东华大学, 2020.

    ZHANG Zhi. Preparation and performance analysis of flexible and wearable textile based nanogenerator[D]. Shanghai: Donghua University, 2020(in Chinese).
    [23] 郑奇凯, 孙阔腾, 黄松强, 等. 防冰涂层材料及电力材料防覆冰应用的研究进展[J]. 表面技术, 2021, 50(12):282-293. doi: 10.16490/j.cnki.issn.1001-3660.2021.12.027

    ZHENG Qikai, SUN Kuoteng, HHANG Songqiang, et al. Research progress of anti-icing coating materials and its applications in the protection of power materials[J]. Surface Technology,2021,50(12):282-293(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2021.12.027
    [24] 韩伦. 织物拒冰性能研究[D]. 天津: 天津工业大学, 2020.

    HAN Lun. Research on ice repellent properties of fabric[D]. Tianjin: Tianjin Polytechnic University, 2020(in Chinese).
    [25] NGUYEN H H, TIEU A K, WAN S, et al. Surface characteristics and wettability of superhydrophobic silanized inorganic glass coating surfaces textured with a picosecond laser[J]. Applied Surface Science,2021,537:147808. doi: 10.1016/j.apsusc.2020.147808
    [26] CHOWDHURY I U, MAHAPATRA P S, SEN A K. Shape evolution of drops on surfaces of different wettability gradients[J]. Chemical Engineering Science,2021,229:116136. doi: 10.1016/j.ces.2020.116136
    [27] LIU M J, WANG S T, LEI J. Nature-inspired superwettability systems[J]. Nature Reviews Materials,2017,2:17036.
    [28] LEE H J. Design and development of anti-icing textile surfaces[J]. Journal of Materials Science,2012,47(13):5114-5120. doi: 10.1007/s10853-012-6386-2
    [29] 廖晨晨. 生物基超疏水型高性能纺织物的构筑及性能研究[D]. 长春: 长春工业大学, 2022.

    LIAO Chenchen. Fabrication and investigation of bio-based and superhydrophobic textiles with high performance[D]. Changchun: Changchun University of Technology, 2022(in Chinese).
    [30] ELZAABALAWY A, MEGUID S A. Advances in the development of superhydrophobic and icephobic surfaces[J]. International Journal of Mechanics and Materials in Design,2022,18(3):509-547. doi: 10.1007/s10999-022-09593-x
    [31] MA Y Q, ZHANG J X, ZHU G N, et al. Robust photothermal self-healing superhydrophobic coating based on carbon nanosphere/carbon nanotube composite[J]. Materials & Design,2022,221:110897.
    [32] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1):102-118. doi: 10.7536/PC161015

    ZHENG Haikun, CHANG Shinan, ZHAO Yuanyuan. Anti-icing & icephobic mechanism and applications of superhydrophobic/ultra slippery surface[J]. Progress in Chemistry,2017,29(1):102-118(in Chinese). doi: 10.7536/PC161015
    [33] 黎玉山, 李杰. PDMS耐久性超疏水表面的研究进展[J]. 中国塑料, 2022, 36(3):167-176.

    LI Yushan, LI Jie. Research progress in durable super-hydrophobic surface based on PDMS[J]. China Plastics,2022,36(3):167-176(in Chinese).
    [34] 孙文, 褚福强, 李淑昕, 等. 光热超疏水材料防除冰机理及应用研究进展[J]. 表面技术, 2022, 51(12):39-51. doi: 10.16490/j.cnki.issn.1001-3660.2022.12.003

    SUN Wen, CHU Fuqiang, LI Shuxin, et al. Research progress on anti-icing mechanisms and applications of photothermal superhydrophobic materials[J]. Surface Technology,2022,51(12):39-51(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2022.12.003
    [35] XUE C H, LI H G, GUO X J, et al. Superhydrophobic anti-icing coatings with self-deicing property using melanin nanoparticles from cuttlefish juice[J]. Chemical Engineering Journal,2021,424:130553. doi: 10.1016/j.cej.2021.130553
    [36] MORIYA T, MANABE K, TENJIMBAYASHI M, et al. A superrepellent coating with dynamic fluorine chains for frosting suppression: Effects of polarity, coalescence and ice nucleation free energy barrier[J]. RSC Advances,2016,6(95):92197-92205. doi: 10.1039/C6RA18483A
    [37] LEI S, FANG X, OU J F, et al. Icing of static and high-speed water droplets on superhydrophobic surface[J]. Materials Letters,2021,285:129048. doi: 10.1016/j.matlet.2020.129048
    [38] WANG L, GONG Q H, ZHAN S H, et al. Robust anti-icing performance of a flexible superhydrophobic surface[J]. Advanced Materials,2016,28(35):7729-7735. doi: 10.1002/adma.201602480
    [39] GUO P, ZHENG Y M, WEN M X, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces[J]. Advanced Materials,2012,24(19):2642-2648. doi: 10.1002/adma.201104412
    [40] PAN R, ZHANG H J, ZHONG M L. Triple-scale superhydrophobic surface with excellent antiicing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces,2021,13(1):1743-1753.
    [41] PAN S, WANG N, XIONG D S, et al. Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion[J]. Applied Surface Science,2016,389:547-553. doi: 10.1016/j.apsusc.2016.07.138
    [42] LI Y B, HU T, LI B C, et al. Totally waterborne and highly durable superamphiphobic coatings for anti-icing and anticorrosion[J]. Advanced Materials Interfaces,2019,6(23):1901255. doi: 10.1002/admi.201901255
    [43] LIU G Y, YUAN Y, LIAO R J, et al. Robust and self-healing superhydrophobic aluminum surface with excellent anti-icing performance[J]. Surfaces and Interfaces,2022,28:101588. doi: 10.1016/j.surfin.2021.101588
    [44] 韩佳, 勾昱君, 秦仪. 超疏水表面制备及防冰抑霜性能研究[J]. 低温工程, 2022, 250(6):48-55.

    HAN Jia, GUO Yujun, QIN Yi. Preparation of super hydrophobic surface and study on anti-icing and anti-frost properties[J]. Cryogenic Engineering,2022,250(6):48-55(in Chinese).
    [45] 胡琴, 杨航, 蒋兴良, 等. 覆冰损伤后天然超疏水表面湿润性恢复机理研究[J/OL]. 表面技术, 2022, 12: 1-7.

    HU Qin, YANG Hang, JIANG Xingliang, et al. Wettability recovery mechanism of natural superhydrophobic surface after icing damage[J/OL]. Surface Technology, 2022, 12: 1-7(in Chinese).
    [46] 刘佳佳, 黄凯健, 王家庆, 等. 路面用超疏水材料的抑冰研究进展[J]. 化工新型材料, 2023, 51(2):223-228.

    LIU Jiajia, HUANG Kaijian, WANG Jiaqing, et al. Research progress on ice suppression of superhydrophobic materials for road surface[J]. New Chemical Materials,2023,51(2):223-228(in Chinese).
    [47] 张树林, 刘云峰, 梁前晟, 等. 防覆冰涂料在输电线路上的应用[J]. 中国涂料, 2013, 28(3):71-73. doi: 10.3969/j.issn.1006-2556.2013.03.017

    ZHANG Shulin, LIU Yunfeng, LIANG Qiansheng, et al. Application of anti-icing coatings on transmission line[J]. China Coatings,2013,28(3):71-73(in Chinese). doi: 10.3969/j.issn.1006-2556.2013.03.017
    [48] XIANG T F, HAN Y, GUO Z Q, et al. Fabrication of inherent anticorrosion superhydrophobic surfaces on metals[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):5598-5606.
    [49] 王喆, 沈一洲, 刘森云, 等. 低冰粘附力涂层的设计与制备技术研究进展[J]. 表面技术, 2021, 50(8):18-27.

    WANG Zhe, SHEN Yizhou, LIU Senyun, et al. Research progress in the design and fabrication technology of low-ice-adhesion coatings[J]. Surface Technology,2021,50(8):18-27(in Chinese).
    [50] KIM P, WONG T S, ALVARENGA J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano,2012,6(8):6569-6577. doi: 10.1021/nn302310q
    [51] 周橙. 基于织物表面形貌特征的吸湿快干性能研究[D]. 上海: 东华大学, 2020.

    ZHOU Cheng. Study on moisture absorption and quick drying properties of fabric based on surface morphology[D]. Shanghai: Donghua University, 2020(in Chinese).
    [52] HUANG D X, CHENG X G, TANG X D, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature,2011,477:443-447. doi: 10.1038/nature10447
    [53] YEONG Y H, WANG C, WYNNE K J, et al. Oil-infused superhydrophobic silicone material for low ice adhesion with long term infusion stability[J]. ACS Applied Materials & Interfaces,2016,8(46):32050-32059. doi: 10.1021/acsami.6b11184
    [54] RAO Q Q, LU Y L, SONG L N, et al. Highly efficient self-repairing slippery liquid-infused surface with promising anti-icing and anti-fouling performance[J]. ACS Applied Materials & Interfaces,2021,13(33):40032-40041.
    [55] 王亮. 7075铝合金超润滑表面的制备与防覆冰性能研究[D]. 重庆: 重庆大学, 2021.

    WANG Liang. Study on preparation and anti-icing performance of 7075 aluminum alloy slippery liquid-infused porous surface[D]. Chongqing: Chongqing University, 2021(in Chinese).
    [56] BARTHWAL S, LEE B, LIM S H. Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil[J]. Applied Surface Science,2019,496:143677. doi: 10.1016/j.apsusc.2019.143677
    [57] 刘俊文, 张净, 李琼, 等. 飞机蒙皮表面的预处理及涂装研究[J]. 中国金属通报, 2022, 1066(4):138-140.

    LIU Junwen, ZHANG Jing, LI Qiong, et al. Research on pretreatment and coating of aircraft skin surface[J]. China Metal Bulletin,2022,1066(4):138-140(in Chinese).
    [58] 向娇娇, 樊莎, 高达利, 等. 光热转换用碳基材料的制备及应用进展[J]. 浙江理工大学学报(自然科学版), 2023, 49(1):33-42.

    XIANG Jiaojiao, FAN Sha, GAO Daoli, et al. Progress in preparation and application of carbon-based materials for photothermal conversion[J]. Journal of Zhejiang University of Technology (Natural Science Edition),2023,49(1):33-42(in Chinese).
    [59] CHEN C J, KUANG Y D, HU L B. Challenges and opportunities for solar evaporation[J]. Joule,2019,3(3):683-718.
    [60] 孙鹏. 光热超疏水双功能表面的构建及其防除冰性能研究[D]. 徐州: 中国矿业大学, 2022.

    SUN Peng. Construction of dual function surface with photothermal and superhydrophobic properties and its characteristics of anti-icing and deicing[D]. Xuzhou: China University of Mining and Technology, 2022(in Chinese).
    [61] MA L W, WANG J K, ZHAO F T, et al. Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications[J]. Composites Science and Technology,2019,181:107696. doi: 10.1016/j.compscitech.2019.107696
    [62] CHEN L, REN J J, ZHANG Y S, et al. Microstructure simulation and heat transfer optimization for graphene oxide doped anti-/deicing composites[J]. Composites Science and Technology,2021,213:108901.
    [63] QIN L M, ZHU Y, ZHOU X, et al. Fast healable superhydrophobic material[J]. ACS Applied Materials & Interfaces,2019,11(32):29388-29395.
    [64] WANG P, YAO T, LI Z Q. A superhydrophobic/electrothermal synergistically anti-icing strateg based on graphene composite[J]. Composites Science and Technology,2020,198:108307.
    [65] KIM A, KIM S, HUH M, et al. Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite[J]. Journal of Materials Science & Technology,2020,49:106-116.
    [66] WU X L, LIAO Y J, YAO L, et al. A non-percolative rGO/XLPE composite with high electrothermal performance at high voltage and effective de/anti-icing for transmission-lines[J]. Composites Science and Technology,2022,230:109772. doi: 10.1016/j.compscitech.2022.109772
    [67] 舒忠虎, 何建军, 段焱森, 等. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(S2) : 56-59.

    SHU Zhonghu, HE Jianjun, DUAN Yansen, et al. Study on preparation of EP-ZnO nano superhydrophobic coating by compound fluorination modification[J]. Materials Review, 2021, 35(S2): 56-59(in Chinese).
    [68] YANG D Y, TAO R, HOU X H, et al. Nanoscale "earthquake" effect induced by thin film surface acoustic waves as a new strategy for ice protection[J]. Advanced Materials Interfaces,2021,8(2):2001776. doi: 10.1002/admi.202001776
    [69] ZHAO Z H, CHEN H W, ZHU Y T, et al. A robust superhydrophobic anti-icing/de-icing composite coating with electrothermal and auxiliary photothermal performances[J]. Composites Science and Technology,2022,227:109578. doi: 10.1016/j.compscitech.2022.109578
    [70] LEE S H, KIM J, SEONG M, et al. Magneto-responsive photothermal composite cilia for active anti-icing and de-icing[J]. Composites Science and Technology,2022,217:109086. doi: 10.1016/j.compscitech.2021.109086
    [71] 谢震廷, 王宏, 朱恂, 等. 光热超疏水材料的制备与防、除冰性能研究[J]. 化工学报, 2021, 72(11):5840-5848.

    XIE Zhenting, WANG Hong, ZHU Xun, et al. Preparation and anti-icing/deicing performance of photothermal superhydropho-bic surfaces[J]. CIESC Journal,2021,72(11):5840-5848(in Chinese).
    [72] 彭慧璇, 张健洪. 基于电热效应超疏水抗冰涂层的制备及其性能研究[J]. 现代盐化工, 2022, 49(5):10-12.

    PENG Huixuan, ZHANG Jianhong. Preparation and properties of superhydrophobic anti-ice coating based on electrothermal effect[J]. Modern Salt and Chemical Industry,2022,49(5):10-12(in Chinese).
    [73] 马丕波, 梅德轩. 生物医用纺织材料研究应用与进展[J]. 服装学报, 2022, 7(3):189-195. doi: 10.3969/j.issn.1671-7147.2022.03.001

    MA Pibo, MEI Dexuan. Research application and progress of biomedical textile materials[J]. Journal of Clothing Research,2022,7(3):189-195(in Chinese). doi: 10.3969/j.issn.1671-7147.2022.03.001
    [74] 赵颖. 航空航天用纺织材料全球关注[J]. 纺织科学研究, 2021(9):24-25.

    ZHAO Ying. Global concern of textile materials for aerospace[J]. Textile Science Research,2021(9):24-25(in Chinese).
    [75] LI W L, LIU K X, ZHANG Y X, et al. A facile strategy to prepare robust self-healable superhydrophobic fabrics with self-cleaning, anti-icing, UV resistance, and antibacterial properties[J]. Chemical Engineering Journal,2022,446:137195. doi: 10.1016/j.cej.2022.137195
    [76] JIN K L, ZHANG M, WANG J, et al. Robust highly conductive fabric with fluorine-free healable superhydrophobicity for the efficient deicing of outdoor's equipment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,651:129639. doi: 10.1016/j.colsurfa.2022.129639
    [77] LI X, LI Y, GUAN T T, et al. Durable, highly electrically conductive cotton fabrics with healable superamphiphobicity[J]. ACS Applied Materials & Interfaces,2018,10(14):12042-12050.
    [78] WANG P, LI Z, XIE Q, et al. A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength[J]. Journal of Bionic Engineering,2021,18(1):55-64.
    [79] XUE C H, DU M M, GUO X J, et al. Fabrication of superhydrophobic photothermal conversion fabric via layer-by-layer assembly of carbon nanotubes[J]. Cellulose,2021,28(8):5107-5121.
    [80] WANG B, YU S Z, YANG Q, et al. Upcycling of biomass waste into photothermal superhydrophobic coating for efficient anti-icing and deicing[J]. Materials Today Physics,2022,24:100683. doi: 10.1016/j.mtphys.2022.100683
    [81] ZENG H Y, WANG P, LIANG L Z, et al. Facile preparation of superhydrophobic cotton fabric with a photothermal conversion effect via polypyrrole deposition for oil/water separation[J]. Journal of Environmental Chemical Engineering,2022,10(1):106915. doi: 10.1016/j.jece.2021.106915
    [82] HU J, LI H, LIU Z, et al. Functionalized superhydrophobic quartz fabric with electro-photo-thermal conversion performance: Designed for low-cost and efficient self-heating deicing[J]. Surface and Coatings Technology,2021,425:127646. doi: 10.1016/j.surfcoat.2021.127646
    [83] LUO J C, HUO L Y, WANG L, et al. Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance[J]. Chemical Engineering Journal,2020,391:123537. doi: 10.1016/j.cej.2019.123537
    [84] 孙英纯, 刘如, 徐建峰, 等. 绿色环保型超疏水涂层的研究进展[J/OL]. 表面技术: 1-22[2023-08-13].

    SUN Yingchun, LIU Ru, XU Jianfeng, et al. Research progress and development trend of green and environmental friendly superhydrophobic coating[J/OL]. Surface Technology: 1-22[2023-08-13](in Chinese).
    [85] LIU Y Y, SONG D, CHOI C H. Anti- and de-icing behaviors of superhydrophobic fabrics[J]. Coatings,2018,8(6):198. doi: 10.3390/coatings8060198
    [86] CHEN P G, TIAN S, GUO H S, et al. An extreme environment-tolerant anti-icing coating[J]. Chemical Engineering Science,2022,262:118010. doi: 10.1016/j.ces.2022.118010
  • 加载中
图(7)
计量
  • 文章访问数:  1068
  • HTML全文浏览量:  483
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 修回日期:  2023-02-07
  • 录用日期:  2023-02-25
  • 网络出版日期:  2023-03-03
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回