留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维弹性理论的任意铺层FRP管热变形及残余应力计算方法

张恒铭 李峰

张恒铭, 李峰. 基于三维弹性理论的任意铺层FRP管热变形及残余应力计算方法[J]. 复合材料学报, 2022, 39(12): 6139-6156. doi: 10.13801/j.cnki.fhclxb.20211222.002
引用本文: 张恒铭, 李峰. 基于三维弹性理论的任意铺层FRP管热变形及残余应力计算方法[J]. 复合材料学报, 2022, 39(12): 6139-6156. doi: 10.13801/j.cnki.fhclxb.20211222.002
ZHANG Hengming, LI Feng. Calculation method of thermal deformation and residual stress of arbitrarily laminated FRP tube based on three-dimensional elastic theory[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6139-6156. doi: 10.13801/j.cnki.fhclxb.20211222.002
Citation: ZHANG Hengming, LI Feng. Calculation method of thermal deformation and residual stress of arbitrarily laminated FRP tube based on three-dimensional elastic theory[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6139-6156. doi: 10.13801/j.cnki.fhclxb.20211222.002

基于三维弹性理论的任意铺层FRP管热变形及残余应力计算方法

doi: 10.13801/j.cnki.fhclxb.20211222.002
基金项目: 国家自然科学基金(51778620);国家重点研发计划(2017YFC0703008)
详细信息
    通讯作者:

    李峰,博士,副教授,博士生导师,研究方向为复合材料结构与力学  E-mail: 83812546@qq.com

  • 中图分类号: TB330.1

Calculation method of thermal deformation and residual stress of arbitrarily laminated FRP tube based on three-dimensional elastic theory

  • 摘要: 为了解决纤维增强树脂复合材料(FRP)圆管在工程中热变形和热残余应力的问题,提出了一种针对任意铺层FRP圆管等效热膨胀系数和热残余应力的计算方法,该方法是综合考虑了层合效应、各向异性材料三维本构关系的三维弹性理论。通过与本文试验和ANSYS数值模型的多组数据进行对比分析,验证了理论的正确性。并以此理论模型为基础,首先对多种铺层FRP圆管等效热膨胀系数进行研究,其次结合Hashin失效准则的强度比方程,对由热残余应力引起FRP圆管强度失效进行分析。结果表明:FRP圆管铺层角度对等效热膨胀系数的影响在热缩阶段、热胀阶段表现不同,且存在等效热膨胀系数为0的铺层方式;径厚比仅对等效径向热膨胀系数影响较大,对等效轴向热膨胀系数无影响;温差大小及温差方向影响FRP圆管的破坏模式及破坏位置,热残余应力引起的FRP圆管的强度破坏均为基体破坏。

     

  • 图  1  纤维增强树脂复合材料(FRP)层合管坐标系、铺层角度和铺层参数

    Figure  1.  Coordinate system, layer angle and layer parameters of fiber reinforced polymer (FRP) laminated tube

    rn—Inner radius of the n layer

    图  2  FRP层合管铺层节点

    Figure  2.  Layer node point of FRP laminated tube

    图  3  MATLAB函数流程图

    Figure  3.  Flow chart of MATLAB function

    图  4  纤维和基体失效模式与失效界面

    Figure  4.  Failure modes and failure planes of fiber and matrix

    σ1—Fiber direction normal stress; τ—Shear stress, subscripts 1, 2 and 3 indicate the axial, radial and circumferential directions of the fiber, respectively; σn—Normal stress in normal direction; τnt—Transverse shear stress; τln—Axial shear stress

    图  5  FRP层合管试件制备过程

    Figure  5.  FRP laminated tube specimen preparation process

    图  6  试验开展过程

    Figure  6.  Test development process

    图  7  应变测试点布置方案

    Figure  7.  Strain test point layout scheme

    图  8  FRP层合管试件的时间-应变曲线

    Figure  8.  Time-strain curve of FRP laminated tube specimen

    图  9  FRP层合管试件Tube B变形协调机制示意图

    Figure  9.  Schematic diagram of deformation coordination of FRP laminated tube specimen Tube B

    图  10  ANSYS定义材料参数、铺层参数

    Figure  10.  ANSYS defines material parameters and layering parameters

    图  11  FRP圆管的铺层信息和模型的端部约束方式

    Figure  11.  Layup information of FRP circular tube and the end constraint mode of the model

    图  12  ANSYS数值模型计算结果的查看方法

    Figure  12.  View method of ANSYS numerical model calculation results

    图  13  FRP层合管ANSYS数值模型应变计算结果

    Figure  13.  ANSYS numerical model strain calculation results of FRP laminated tubes

    图  15  约束铺层位于不同位置时FRP层合管等效热膨胀系数随约束铺层θ的变化关系(ΔT=100℃)

    Figure  15.  Relation of the equivalent thermal expansion coefficient with θ of FRP laminated tubes when the constraint layer is located at different positions (ΔT=100℃)

    图  14  FRP层合管试件Tube B应力应变沿壁厚分布图

    Figure  14.  Distribution diagram of stress and strain along wall thickness of FRP laminated tube specimen Tube B

    图  16  FRP层合管等效热膨胀系数$\bar \alpha $随环向约束铺层层数n增加的变化曲线

    Figure  16.  Curve of equivalent thermal expansion coefficient $\bar \alpha $ with the increase of the constraint layer n of FRP laminated tube

    图  17  圆形变形的几何关系

    Figure  17.  Geometric relation of circular deformation

    R—Radius before deformation; Rf—Radius after free temperature deformation

    图  18  不同径厚比λ时FRP圆管等效热膨胀系数与铺层角度θ的关系

    Figure  18.  Relationship between equivalent thermal expansion coefficient of FRP tubes with different diameter-thickness ratios λ and layer angle θ

    图  19  FRP层合管等效热膨胀系数与径厚比λ的关系

    Figure  19.  Relationship between equivalent thermal expansion coefficient and diameter-thickness ratio λ of FRP laminated tube

    图  20  FRP层合管强度比和极限温差的计算方法流程图

    Figure  20.  Flow chart of calculation method of strength ratio and limit temperature difference of FRP laminated tube

    图  21  FRP层合管试件Tube B应力沿壁厚分布

    Figure  21.  Stress distribution along wall thickness of FRP laminated tube specimen Tube B

    $\sigma _{2}^{\max } $—Maximum normal stress in 2 direction

    图  22  FRP层合管试件Tube B节点的坐标位置

    Figure  22.  Coordinates of node point of FRP laminated tube specimen Tube B

    图  23  FRP层合管试件Tube B破坏点处的应力单元体

    Figure  23.  Stress element at failure point of FRP laminated tube specimen Tube B

    图  24  FRP圆管强度比R与铺层角度θ的关系

    Figure  24.  Relationship between the strength ratio R of FRP laminated tubes and ply angles θ

    图  25  FRP圆管垂直纤维方向的变形协调

    Figure  25.  Deformation coordination of FRP laminated tubes in vertical fiber direction

    图  26  FRP圆管纤维方向的变形协调

    Figure  26.  Deformation coordination of FRP laminated tubes in fiber direction

    表  1  T700SC-12K-50C碳纤维/YPH-307环氧树脂预浸料基本力学性能参数

    Table  1.   Basic mechanical property parameters of T700SC-12K-50C carbon fber/YPH-307 epoxy prepreg

    Engineering
    constants
    ValueStrength
    parameters
    Value
    E1/GPa 95.0 Xt/MPa 2448
    E2/GPa 7.4 Xc/MPa 835
    G12/GPa 3.60 Yt/MPa 31.0
    G23/GPa 2.74 Yc/MPa 103.9
    v12 0.30 Q/MPa 45.0
    v23 0.35 S/MPa 53.2
    αL/(10−6 −1) −15
    αT/(10−6 −1) 23
    Notes: E, G, and ν—Elastic modulus, shear modulus and Poisson's ratio; Subscripts 1, 2 and 3—Axial, radial and circumferential directions of the fiber respectively; αL—Axial thermal expansion coefficient; αT —Transverse thermal expansion coefficient; Xt—Tensile failure stress in fiber direction; Xc—Compressive failure stress in fiber direction (absolute value); Yt—Tensile failure stress transverse to fiber direction; Yc—Compressive failure stress transverse to fiber direction (absolute value); Q—Transverse failure shear, τnt in Fig. 4(b); S—Axial failure shear, τln in Fig. 4(a).
    下载: 导出CSV

    表  2  FRP层合管试件表观应变值

    Table  2.   Apparent strain of FRP laminated tube specimens 10−6

    SpecimenMeasuring pointsMeasured strainMean strain
    Tube A1 850 875
    2 900
    3−1474−1381
    4−1288
    Tube B1 594 629
    2 664
    3 114 167
    4 220
    下载: 导出CSV

    表  3  FRP层合管试验、理论、ANSYS结果对比

    Table  3.   Comparison of experimental, theoretical and ANSYS results of FRP laminated tubes 10−6

    SpecimenTest
    results
    ANSYS
    results
    Theoretical
    results
    Relative error/%
    Tube A Axial strain 875 900 900 2.9
    Hoop strain −1381 −1380 −1380 0.1
    Tube B Axial strain 629 639 639 1.4
    Hoop strain 167 413 413 146.0
    下载: 导出CSV

    表  4  FRP圆管破坏位置及破坏模式

    Table  4.   Location and mode of failure of FRP laminated tubes

    Laminated θFailure layerFailure modeTemperature difference
    [04θ]0°-90°
    (exclude 0°)
    Fifth layerTransverse tensile failure of matrix−100℃
    Transverse compression failure of matrix 100℃
    θ]30°-90°
    (exclude 0°, 90°)
    First layerTransverse tensile failure of matrix−100℃
    Transverse compression failure of matrix 100℃
    θ/θ]s0°-10°
    (exclude 0°)
    Fifth layerTransverse tensile failure of matrix−100℃
    Transverse compression failure of matrix 100℃
    11°-90°
    (exclude 90°)
    Second layerTransverse tensile failure of matrix−100℃
    Transverse compression failure of matrix 100℃
    下载: 导出CSV
  • [1] ZHANG D, YUAN J, LI F, et al. Experimental characterization of static behavior of a new GFRP-metal space truss deployable bridge: Comparative case study[J]. Journal of Bridge Engineering,2021,26:5020011. doi: 10.1061/(ASCE)BE.1943-5592.0001650
    [2] ZHANG D. Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads[J]. Steel and Composite Structures,2020,35:641-657.
    [3] ZHANG D, LV Y, ZHAO Q, et al. Development of lightweight emergency bridge using GFRP-metal composite plate-truss girder[J]. Engineering Structures,2019,196:109291. doi: 10.1016/j.engstruct.2019.109291
    [4] ZHANG D, LI F, SHAO F, et al. Evaluation of equivalent bending stiffness by simplified theoretical solution for an FRP-aluminum deck-truss structure[J]. KSCE Journal of Civil Engineering,2018,23:367-375.
    [5] GAO J, ZHAO Q, LI F, et al. Fatigue failure investigation of pultruded GFRP pre-tightened single-tooth connector (PTSTC)[J]. Engineering Failure Analysis,2019,106:104191. doi: 10.1016/j.engfailanal.2019.104191
    [6] ZHU R, LI F, CHEN Y, et al. The effect of tube-in-tube buckling-restrained device on performance of hybrid PFRP-aluminium space truss structure[J]. Composite Structures,2021,260:113260. doi: 10.1016/j.compstruct.2020.113260
    [7] ZHU R, LI F, CHEN Y, et al. A hybrid beam-column element for direct second-order nonlinear analysis of PFRP frame structures[J]. Composite Structures,2021,271:114171. doi: 10.1016/j.compstruct.2021.114171
    [8] ZHU R, LI F, SHAO F, et al. Static and dynamic behaviour of a hybrid PFRP-aluminium space truss girder: Experimental and numerical study[J]. Composite Structures,2020,243:112226. doi: 10.1016/j.compstruct.2020.112226
    [9] 吴杰, 肖正航. 碳纤维复合材料残余应力消除方法探讨[J]. 航天制造技术, 2012(4):38-40.

    WU Jie, XIAO Zhenghang. Discussion on carbon fiber composite residual stress relief[J]. Aerospace Maunfacturing Technology,2012(4):38-40(in Chinese).
    [10] 赵启林, 高一峰, 李飞. 复合材料预紧力齿连接技术研究现状与进展[J]. 玻璃钢/复合材料, 2014(12):52-56.

    ZHAO Qilin, GAO Yifeng, LI Fei. Current reseach and development of the application of the pre-tightened tooth connection[J]. Fiber Reinforced Plastics/Composites,2014(12):52-56(in Chinese).
    [11] 左扬, 李飞, 赵启林, 等. 基于挤压法的复合材料预紧力齿连接预紧力计算方法研究[J]. 复合材料科学与工程, 2020(5):32-39. doi: 10.3969/j.issn.1003-0999.2020.05.005

    ZUO Yang, LI Fei, ZHAO Qilin, et al. Study on the calculation method of preload for composite pre-tightened tooth connections based on extrusion method[J]. Composites Science and Engineering,2020(5):32-39(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.05.005
    [12] 孙宝玉. 轻型大视场光学遥感器结构动态特性研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2004.

    SUN Baoyu. Research on dynamic characteristic of the light-duty great visual field optical remote sensor[D]. Changchun: Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2014(in Chinese).
    [13] 王建花. 复合材料身管残余应力研究[D]. 南京: 南京理工大学, 2007.

    WANG Jianhua. Study on residual stress of the composite materials barrel[D]. Nanjing : Nanjing University of Science & Technology, 2007(in Chinese).
    [14] MAIER G, HOFMANN F. Performance enhancements of polymer-matrix composites by changing of residual stresses[J]. Composites Science and Technology,2008,68(9):2056-2065. doi: 10.1016/j.compscitech.2008.03.001
    [15] SHOKRIEH M M, AKBARI S, DANESHVAR A. A comparison between the slitting method and the classical lamination theory in determination of macro-residual stresses in laminated composites[J]. Composite Structures,2013,96:708-715. doi: 10.1016/j.compstruct.2012.10.001
    [16] 梁群, 冯喜平. 复合材料壳体固化成型过程残余应力和形变分析[J]. 固体火箭技术, 2019, 42(5):628-634.

    LIANG Qun, FENG Xiping. Residual stress and structural distortion analysis for the curing process of srm composite case[J]. Journal of Solid Rocket Technology,2019,42(5):628-634(in Chinese).
    [17] 刘加顺, 李峰, 张恒铭. 树脂基碳纤维卷铺管件热残余应力分析[J]. 玻璃钢/复合材料, 2016(2):18-23.

    LIU Jiashun, LI Feng, ZHANG Hengming. Thermal residual stress analysis of polymer matrix carbon fiber reinforced composite winding tubes[J]. Fiber Reinforced Plastics/Composites,2016(2):18-23(in Chinese).
    [18] 娄菊红, 杨延清. 基体性能对复合材料热残余应力的影响[J]. 材料研究学报, 2016, 30(7):503-508.

    LOU Juhong, YANG Yanqing. Effect of matrix properties on thermal residual stress of fiber reinforced ti-matrix composities[J]. Chinese Journal of Materials Research,2016,30(7):503-508(in Chinese).
    [19] 杨雷, 武湛君. 热残余应力对纤维增强树脂基复合材料横向力学性能的影响[C]. 上海: 中国力学大会, 2015.

    YANG Lei, WU Zhanjun. Effect of thermal residual stress on transverse mechanical properties of fiber reinforced resin matrix composites[C]. Shanghai: Chinese Conference on Mechanics, 2015(in Chinese).
    [20] PETRUSHIN S I. Calculation of thermal residual stresses in multilayer composite materials[J]. Applied Mechanics and Materials,2013,379:95-100. doi: 10.4028/www.scientific.net/AMM.379.95
    [21] 徐亮工. 缠绕玻璃钢管道的残余热应力[J]. 玻璃钢/复合材料, 1997(1):11-12.

    XU Lianggong. Thermal residual stress in filament winding FRP pipe[J]. Fiber Reinforced Plastics/Composites,1997(1):11-12(in Chinese).
    [22] 王建花, 钱林方, 袁人枢. 复合材料身管的热残余应力[J]. 弹道学报, 2007(1):82-85. doi: 10.3969/j.issn.1004-499X.2007.01.023

    WANG Jianhua, QIAN Linfang, YUAN Renshu. Thermal residual stresses in composite material barrel[J]. Journal of Ballistics,2007(1):82-85(in Chinese). doi: 10.3969/j.issn.1004-499X.2007.01.023
    [23] WANG J, QIAN L, YUAN R. The Residual stresses and strains in the composite material barrel[C]. Proceedings of the International Conference on Mechanical Engineering and Mechanics, Nanjing, 2005.
    [24] 徐芝纶. 弹性力学简明教程[M]. 第五版. 北京: 高等教育出版社, 2018: 167-172.

    XU Zhilun. Concise course of elasticity[M]. Fifth Edition. Beijing: Higher Education Press, 2018: 167-172(in Chinese).
    [25] 李峰, 李若愚. 复合材料力学与圆管计算方法[M]. 北京: 科学出版社, 2021: 170-172.

    LI Feng, LI Ruoyu. Mechanics of composite materials and calculation methods for circular tubes[M]. Beijing: Science Press, 2021: 170-172(in Chinese).
    [26] 国家质量技术监督局. 定向纤维增强塑料拉伸性能试验方法: GB/T 3354—1999[S]. 北京: 中国标准出版社, 1999.

    State Bureau of Quality and Technical Supervision. Test method for tensile properties of oriented fiber reinforced plastics: GB/T 3354—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [27] 中华人民共和国国家质量监督检验检疫总局. 单向纤维增强塑料平板压缩性能试验方法: GB/T 3856—2005[S]. 北京: 中国标准出版社, 2005.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for compression properties of unidirectional fiber reinforced plastics: GB/T 3856—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [28] ASTM International. Standard test method for shear pro-perties of composite materials by V-notched rail shear method: ASTM D7078/D7078M-12[S]. West Conshohocken: ASTM International, 2012.
    [29] 张恒铭, 李峰, 潘大荣. 基于三维梁理论的复合材料层合管等效抗弯刚度[J]. 复合材料学报, 2016, 33(8):1694-1701.

    ZHANG Hengming, LI Feng, PANG Darong. Equivalent bending stiffness of composite laminated tube based on 3D beam theory[J]. Acta Materiae Compositae Sinica,2016,33(8):1694-1701(in Chinese).
    [30] 姜海林. 基于等效位移法的低速冲击载荷下复合材料层合板损伤力学模型[D]. 大连: 大连理工大学, 2020.

    JIANG Hailin. Damage mechanics model of composite laminates under low speed impact loading based on equivalent displacement method[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [31] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 第二版. 北京: 清华大学出版社, 2013: 129-133.

    SHEN Guanlin, HU Gengkai, LIU Bin. Mechanics of composite materials[M]. Second Edition. Beijing: Tsinghua University Press, 2013: 129-133(in Chinese).
  • 加载中
图(26) / 表(4)
计量
  • 文章访问数:  1020
  • HTML全文浏览量:  491
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2021-12-05
  • 录用日期:  2021-12-16
  • 网络出版日期:  2021-12-23
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回