留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温等离子体表面改性对CFRP胶接性能的影响

王大伟 李晔 刘志浩 邹田春

王大伟, 李晔, 刘志浩, 等. 低温等离子体表面改性对CFRP胶接性能的影响[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 王大伟, 李晔, 刘志浩, 等. 低温等离子体表面改性对CFRP胶接性能的影响[J]. 复合材料学报, 2022, 40(0): 1-12
Dawei WANG, Ye LI, Zhihao LIU, Tianchun ZOU. Effect of low-temperature plasma surface modification on the adhesive performance of CFRP[J]. Acta Materiae Compositae Sinica.
Citation: Dawei WANG, Ye LI, Zhihao LIU, Tianchun ZOU. Effect of low-temperature plasma surface modification on the adhesive performance of CFRP[J]. Acta Materiae Compositae Sinica.

低温等离子体表面改性对CFRP胶接性能的影响

基金项目: 国家自然科学基金(52071069)
详细信息
    通讯作者:

    王大伟,博士,副研究员,硕士生导师,研究方向为复合材料胶接 E-mail:dwwang@cauc.edu.cn

  • 中图分类号: TB332

Effect of low-temperature plasma surface modification on the adhesive performance of CFRP

Funds: National Natural Science Foundation of China(52071069)
  • 摘要: 采用低温等离子体处理技术对碳纤维增强树脂复合材料(CFRP)表面进行处理,以氩气、氮气和氧气作为等离子体激发气体,通过接触角测量仪、原子力显微镜(AFM)、扫描电子显微镜(SEM)和光电子能谱仪(XPS)等测试分析手段,对CFRP表面的润湿性、粗糙度、微观形貌和化学组分进行表征,并结合拉伸剪切试验测试和失效形貌分析,研究了等离子体气体类型、放电功率和处理时间对CFRP表面理化特性和胶接性能的影响。结果表明,氩气、氮气和氧气等离子体处理可以显著改善CFRP胶接性能,当放电功率P=800W,处理时间t=20s时,与未处理相比,CFRP胶接强度分别提高了138%、172%和253%。表面测试分析可知,氩气等离子体处理后,CFRP胶接强度的增加主要是通过提高表面清洁度和增大界面粘接表面积,试样失效模式由界面失效转变为内聚失效为主的混合失效模式。与氩气相比,氮气等离子体处理后,CFRP表面生成了较多—NH2极性基团,表面活性增加,进一步提高了CFRP和胶粘剂之间界面的结合力。与以上两种气体相比,氧气等离子体刻蚀CFRP表面更为剧烈,并对表层基团进行重组,形成了极性较强—COOH官能团,试样胶接强度提高效果最佳,试样失效模式由界面失效转变为基板失效。此外,当活性粒子的密度和能量过高时,较大的等离子体刻蚀孔隙,在一定程度上会降低胶接性能。

     

  • 图  1  CFRP层合板制作工艺

    Figure  1.  Production process of CFRP Laminnates

    图  2  低压等离子体处理原理示意图

    Figure  2.  Schematic diagram of low pressure plasma processing principle

    图  3  低压等离子体处理装置

    Figure  3.  Low pressure plasma treatment equipment

    图  4  CFRP单搭接试样尺寸示意图

    Figure  4.  Schematic diagram of CFRP single-lap samples size

    图  5  测试装置

    Figure  5.  Testing equipment

    图  6  不同等离子体处理条件下CFRP试样的单搭接剪切强度

    Figure  6.  Lap-shear strength of CFRP samples under different plasma treatment conditions

    图  7  (a) 放电功率P=800 W,处理时间t=20 s时,不同气体等离子体处理后CFRP试样的拉伸断裂形貌;(b) 不同放电功率和处理时间下,氧气等离子体处理后CFRP试样的拉伸断裂形貌

    Figure  7.  (a) Effect of plasma treatment with different gases on the tensile fracture morphology of the CFRP samples (P=800 W, t=20 s); (b) Tensile fracture morphologies of the CFRP samples under oxygen plasma treatment with different discharge powers and processing time

    图  8  不同等离子体处理条件下CFRP试样的水接触角

    Figure  8.  Water contact angle of CFRP samples under different plasma treatment conditions

    图  9  放电功率P=800 W,处理时间t=20 s时,不同气体等离子体处理后CFRP试样的水接触角:(a)未处理;(b) Ar;(c) N2;(d) O2

    Figure  9.  Effect of plasma treatment with different gases on the surface water contact angle of CFRP samples (P=800 W, t=20 s): (a) Untreated; (b) Ar; (c) N2; (d) O2

    图  10  放电功率P=800 W,处理时间t=20 s时,不同气体等离子体处理后CFRP试样表面的2 D-3 D AFM图像:(a)未处理;(b) Ar;(c) N2;(d) O2

    Figure  10.  2 D-3 D AFM images of CFRP samples surface treated under plasma treatment with different gases (P=800 W, t=20 s): (a) Untreated; (b) Ar; (c) N2; (d) O2

    图  11  不同放电功率和处理时间下氧气等离子体处理后CFRP样品表面的SEM图像:(a)未处理;(b) P=200 W, t=30 s;(c) P=800 W, t=20 s;(d) P=800 W, t=30 s

    Figure  11.  SEM images of CFRP samples surface treated under oxygen plasma treatment with different discharge powers and processing time: (a) Untreated; (b) P=200 W, t=30 s; (c) P=800 W, t=20 s; (d) P=800 W, t=30 s

    图  12  放电功率P=800 W,处理时间t=20 s时,不同气体等离子体处理后CFRP试样表面XPS图谱

    Fig. 12 Effect of plasma treatment with different gases on the surface chemical elements of CFRP samples presented through XPS spectra (P=800 W, t=20 s)

    图  13  放电功率P=800 W,处理时间t=20 s时,不同气体等离子体处理后CFRP试样表面XPS光谱:(a) C1s; (b) O1s; (c) N1s; (d) Si2p

    Figure  13.  Narrow-scan XPS spectra of CFRP samples surface treated under plasma treatment with different gases (P=800 W, t=20 s): (a) C1s; (b) O1s; (c) N1s; (d) Si2p

    表  1  CFRP复合材料主要性能参数

    Table  1.   Main performance parameters of CFRP composites

    Mechanical propertyValue
    Tensile modulus E11/GPa 121
    Tensile modulus E22/GPa 8.6
    Tensile modulus E33/GPa 8.6
    Tensile modulus G12/MPa 3450
    Tensile modulus G13/MPa 3450
    Tensile modulus G23/MPa 2800
    Poisson's ratio 0.3
    Density/(kg·m−3) 1467
    下载: 导出CSV

    表  2  Araldite 2015主要力学性能参数

    Table  2.   Main mechanical property parameters of the Araldite 2015

    Araldite 2015Value
    Tensile strength/MPa 21.63
    Shear strength/MPa 17.9
    Elongation/% 0.33
    下载: 导出CSV

    表  3  低压等离子体处理工艺参数

    Table  3.   Process parameters of low pressure plasma treatment

    ItemNominal parameter value
    Plasma frequency/MHz 13.56
    Power input/W 0-1000
    Process pressure/Pa 100
    Speed/(mL·min−1) 150
    下载: 导出CSV

    表  4  放电功率P=800 W,处理时间t=20 s时,不同气体等离子体处理后CFRP试样表面化学元素组成及其所占比例

    Table  4.   Surface chemical composition and proportion of CFRP samples under plasma treatment with different gases (P=800 W, t=20 s)

    Surface treatmentChemical composition in terms of atomic ratio/at%
    CONSiO/CN/C
    Untreated 74.52 17.85 3.87 3.76 23.95 5.19
    Ar 72.89 21.42 3.46 2.23 29.39 4.75
    N2 66.54 19.61 11.48 2.37 29.47 17.25
    O2 62.47 30.89 3.17 3.47 49.45 5.07
    下载: 导出CSV

    表  5  放电功率P=800 W,处理时间t=20 s时,不同气体等离子体处理后CFRP试样表面XPS的C1s、O1s、N1s和Si2p分峰拟合数据

    Table  5.   C1s、O1s、N1s and Si2p peak-differentiating and imitating data for XPS of CFRP samples surface under plasma treatment with different gases (P=800 W, t=20 s)

    Relative content of surface group/at%Surface treatment
    UntreatedArN2O2
    C 1s C—C/C—H 71.92 70.95 68.01 60.36
    C—O/C—N 23.71 25.49 27.96 33.37
    C=O 4.37 3.56 4.03 6.27
    O 1s C—O 79.57 86.13 81.28 61.76
    C=O 20.43 13.87 18.72 25.96
    O=C—O 0 0 0 12.28
    N 1s C—NH2 100 100 100 100
    Si 2p Si—C 69.21 66.32 67.17 45.47
    Si—O 30.79 33.68 32.83 54.53
    下载: 导出CSV
  • [1] 马立敏, 张嘉振, 岳广全. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    MA L M, ZHANG J Z, YUE G Q et al. Application of composite in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [2] KATNAM K B, DA S L F M, YOUNG T M. Bonded repair of composite aircraft structures: A review of scien tific challenges and opportunities[J]. Progress in Aerospace Sciences,2013,61:26-42. doi: 10.1016/j.paerosci.2013.03.003
    [3] BARILE C, CASAVOLA C, DE C F. Mechanical comparison of new composite materials for aerospace applications[J]. Composites Part B:Engineering,2019,162:122-128. doi: 10.1016/j.compositesb.2018.10.101
    [4] 孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11):61-64+69.

    SUN Z Q, WU A R. Application of Advanced Composite in Aircraft Structures[J]. Materials Reports,2015,29(11):61-64+69(in Chinese).
    [5] DENG S, DJUKIC L, PATON R, et al. Thermoplastic– epoxy interactions and their potential applications in joining composite structures–A review[J]. Composites Part A:Applied Science and Manufacturing,2015,68:121-132. doi: 10.1016/j.compositesa.2014.09.027
    [6] QIN G, NA J, MU W, et al. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive CFRP and adhesively bonded CFRP-aluminum alloy joints[J]. Composites Part B:Engineering,2018,154:43-55. doi: 10.1016/j.compositesb.2018.07.059
    [7] PARK S M, ROY R, KWEON J H, et al. Strength and failure modes of surface treated CFRP secondary bonded single-lap joints in static and fatigue tensile loading regimes[J]. Composites Part A:Applied Science and Manufacturing,2020,134:105897. doi: 10.1016/j.compositesa.2020.105897
    [8] DI B Y, JOSHI S C, ONG L S. Interfacial bonding between CFRP and mechanically-treated aluminum liner surfaces for risers[J]. Composite Structures,2018,188:374-386. doi: 10.1016/j.compstruct.2018.01.047
    [9] BUCHMANN C, LANGER S, FILSINGER J, et al. Analysis of the removal of peel ply from CFRP surfaces[J]. Composites Part B:Engineering,2016,89:352-361. doi: 10.1016/j.compositesb.2015.11.019
    [10] HU Y, YUAN B, CHENG F, et al. NaOH etching and resin pre-coating treatments for stronger adhesive bonding between CFRP and aluminium alloy[J]. Composites Part B:Engineering,2019,178:107478. doi: 10.1016/j.compositesb.2019.107478
    [11] 尚文翰, 李姜. 旧橡胶颗粒的表面改性及粘接性能[J]. 高分子材料科学与工程, 2018, 34(10):99-104.

    SHANG W H, LI j. Surface Modification of Ground Tire rubber and Its Adhesion Property[J]. Polymer Materials Science & Engineering,2018,34(10):99-104(in Chinese).
    [12] AKMAN E, ERDOĞAN Y, BORA M Ö, et al. Investigation of accumulated laser fluence and bondline thickness effects on adhesive joint performance of CFRP composites[J]. International Journal of Adhesion and Adhesives,2019,89:109-116. doi: 10.1016/j.ijadhadh.2018.12.003
    [13] ZALDIVAR R J, NOKES J, STECKEL G L, et al. The effect of atmospheric plasma treatment on the chemistry, morphology and resultant bonding behavior of a pan-based carbon fiber-reinforced epoxy composite[J]. Journal of composite materials,2010,44(2):137-156. doi: 10.1177/0021998309345343
    [14] HOLTMANNSPÖTTER J. How surfaces of carbon fiber reinforced plastics with thermoset matrices need to be treated for structural adhesive bonding[J]. The Journal of Adhesion,2018,96(9):839-854.
    [15] PROLONGO S G, GUDE M R, DEL R G, et al. Surface pretreatments for composite joints: study of surface profile by SEM image analysis[J]. Journal of adhesion science and technology,2010,24(11-12):1855-1867. doi: 10.1163/016942410X507623
    [16] LIU G, XU Y, YANG W, et al. Bonding repair of CFRP based on cold plasma treatment surface modification[J]. Journal of Adhesion Science and Technology,2020,34(16):1796-1808. doi: 10.1080/01694243.2020.1730663
    [17] SUNDRIYAL P, PANDEY M, BHATTACHARYA S. Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding[J]. International Journal of Adhesion and Adhesives,2020,101:102626. doi: 10.1016/j.ijadhadh.2020.102626
    [18] CHO B G, HWANG S H, PARK M, et al. The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites[J]. Composites Part B:Engineering,2019,160:436-445. doi: 10.1016/j.compositesb.2018.12.062
    [19] YOOZBASHIZADEH M, CHARTOSIAS M, VICTORINO C, et al. Investigation on the effect of process parameters in atmospheric pressure plasma treatment on carbon fiber reinforced polymer surfaces for bonding[J]. Materials and Manufacturing Processes,2019,34(6):660-669. doi: 10.1080/10426914.2019.1566613
    [20] 翟全胜, 苗春卉, 崔海超, 等. 基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能[J]. 复合材料学报, 2021, 38(7):2162-2171.

    ZHAI Q S, MIAO C B, CUI H C, et al. Bonding Performance of Domestic T800/High Toughness Epoxy Resin Composites Based on Surface Modification[J]. Acta Materiae Compositae Sinicam,2021,38(7):2162-2171(in Chinese).
    [21] SUN C, MIN J, LIN J, et al. Effect of atmospheric pressure plasma treatment on adhesive bonding of carbon fiber reinforced polymer[J]. Polymers,2019,11(1):139. doi: 10.3390/polym11010139
    [22] LIN J, SUN C, MIN J, et al. Effect of atmospheric pressure plasma treatment on surface physicochemical properties of carbon fiber reinforced polymer and its interfacial bonding strength with adhesive[J]. Composites Part B:Engineering,2020,199:108237. doi: 10.1016/j.compositesb.2020.108237
    [23] PIZZORNI M, LERTORA E, MANDOLFINO C. Low pressure plasma treatment of CFRP substrates for adhesive bonding: an investigation of joint durability under severe temperature-moisture conditioning[J]. International Journal of Adhesion and Adhesives,2020,99:102592. doi: 10.1016/j.ijadhadh.2020.102592
    [24] ASTM International. Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading: ASTM D1002-10[S]. West Conshohocken: ASTM International, 2010.
    [25] ASTM International. Standard test method for lab shear adhesion for fiber reinforced plastic (FRP) bonding: ASTM D5868-01[S]. West Conshohocken: ASTM International, 2014.
    [26] HARTWIG A, VITR G, DIECKHOFF S, et al. Surface treatment of an epoxy resin by CO2 laser irradition[J]. Die Angewandte Makromolekulare Chemie:Applied Macromolecular Chemistry and Physics,1996,238(1):177-189. doi: 10.1002/apmc.1996.052380115
    [27] YANG D, ZHOU L, CHEN L, et al. Chemically modified graphene oxides as a hole transport layer in organic solar cells[J]. Chemical Communications,2012,48(65):8078-8080. doi: 10.1039/c2cc33829g
    [28] JIANG L, DING H, LU S, et al. Photoactivated fluorescence enhancement in F, N-doped carbon dots with piezochromic behavior[J]. Angewandte Chemie,2020,132(25):10072-10077. doi: 10.1002/ange.201913800
    [29] ZHANG L, LI Y, ZHANG L, et al. Electrocatalytic oxidation of NADH on graphene oxide and reduced graphene oxide modified screen-printed electrode[J]. Int. J. Electrochem. Sci,2011,6(3):819-829.
    [30] LI X, ZHANG P, HUANG H, et al. Etched carbon fiber/ polyaniline composite with p-n heterojunction for high-energy electrochemical supercapacitor[J]. ECS Journal of Solid State Science and Technology,2021,10(1):013005. doi: 10.1149/2162-8777/abdd84
    [31] ZHAO X, MAGTOTO N P, KELBER J A. Chemical vapor deposition of tantalum nitride with tertbutylimino tris (diethylamino) tantalum and atomic hydrogen[J]. Thin Solid Films,2005,478(1-2):188-195. doi: 10.1016/j.tsf.2004.10.042
  • 加载中
计量
  • 文章访问数:  57
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 录用日期:  2022-05-02
  • 修回日期:  2022-04-24
  • 网络出版日期:  2022-05-30

目录

    /

    返回文章
    返回