Removal of methylene blue by Fenton-like system with alkali-activated montmorillonite supported iron catalyst
-
摘要:
尽管高级氧化技术中的芬顿体系具有操作简单和氧化能力强等优点,但其反应条件的苛刻(pH=2.5-3.5)、反应后体系形成大量铁泥、催化剂回收困难等缺陷阻碍了其工业化应用。经过多年研究,发现把铁盐固定到多孔材料上(如活性炭、沸石和粘土)所形成的类芬顿体系可以很好的克服催化剂回收难的问题,并能拓宽反应的pH值。多孔材料具有较大的比表面积,一方面可以起到固定铁的作用,另一方面还可以起到吸附富集有机物、加快反应进行的作用。此外,研究表明一些具有较强酸性的多孔材料,更有利于反应的发生,极大地提高有机污染物的降解效率。因此,对于多相类芬顿催化反应,寻求一种适宜的多孔材料是至关重要的。蒙脱土是由两层硅氧四面体之间夹一层铝氧八面体组成的2:1型层状硅酸盐粘土矿物,在我国储量丰富,价格低廉。其层间阳离子的存在使其具有良好的可交换性。鉴于蒙脱土的结构,本文通过碱活化的方式对其改性,通过控制碱处理的条件实现了对其结构和酸性的有效调控,得到了一系列具有不同结构和酸性的碱活化蒙脱土(Alk-MMT)。以其为载体的负载铁催化剂(Fe/Alk-MMT)与H2O2组成类芬顿体系用于去除亚甲基蓝(MB)。对所制备的材料进行了XRD、NH3-TPD、XPS、SEM、FT-IR、N2吸附-脱附等表征分析。结果表明,与Ca-MMT相比,Alk-MMT的结构和酸性均发生了明显的变化,且变化的程度与碱处理温度密切相关。Alk-MMT结构和酸性的变化明显影响类芬顿体系去除MB的性能。其中以铁负载在100℃碱活化的蒙脱土(Fe/Alk-MMT-100)为催化剂的类芬顿体系在反应温度为50℃,催化剂和H2O2用量分别为1.25 g/L和0.85 mmol/L,在较宽的pH范围(3.0-9.0)反应300 min后MB的去除效率均可达98.7%以上,且表现出较好的稳定性。 Ca-MMT和Alk-MMT的NH3-TPD图谱图(Ca-MMT (a),Alk-MMT-60 (b), Alk-MMT-80 (c), Alk-MMT-100 (d), Alk-MMT-108 (e)) 不同催化剂的类芬顿体系去除MB效果 Abstract: Fenton-like technology is one of the most promising water treatment technologies to remove refractory organic pollutants, and it is the key to construction Fenton-like catalysts with high activity and stability. In this work, a series of alkali -activated montmorillonite (Alk-MMT) with different structure and acidity were prepared via Ca-MMT treated with 5 mol/L NaOH solution at different treatment temperature. Fenton-like system composed with Alk-MMT supported iron catalyst (Fe/Alk-MMT) and H2O2 was used to remove methylene blue (MB). The material was systematically characterized by XRD, NH3-TPD, XPS, SEM, FT-IR, and N2 adsorption-desorption at low temperature techniques. The results show that the structure and acidity of Alk-MMT are significantly changed compared with Ca-MMT, which is dependent on the alkali treatment temperature. The structure and acidity of Alk-MMT obviously affect the removal performance of MB in Fenton-like system. The Fenton-like system using Fe/Alk-MMT-100 as catalyst exhibits higher removal efficiency of MB (> 98.7%) under the condition of 50oC, the catalyst dosage of 1.25 g/L, the H2O2 concentration of 0.85 mmol/L, and a wide pH (3.0-9.0) range for reacting 300 min. Meanwhile, the activity of the catalyst does not decrease after repeated use for 6 times, which exhibiting a good stability.-
Key words:
- Fenton-like /
- Alkali-activated montmorillonite /
- Methylene blue /
- Removal efficiency /
- Stability
-
表 1 Ca-MMT和Alk-MMT的织构特征
Table 1. Textural properties of Alk-MMT determined by N2 adsorption-desorption
Samples BET surface area/(m2·g−1) Pore volume/(cm3·g−1) Average pore size/nm Ca-MMT 49 0.12 9.4 Alk-MMT-60 73 0.11 6.4 Alk-MMT-80 102 0.14 5.6 Alk-MMT-100 130 0.19 6.4 Alk-MMT-108 105 0.17 6.5 表 2 碱处理温度对Fe/Alk-MMT催化剂中Fe溶出量的影响
Table 2. Effect of alkali treatment temperature on amount of leaching Fe in Fe/Alk-MMT catalyst
Catalyst Fe concentration/(μg·L−1) Fe leaching/(μg·g−1) Fe/Ca-MMT 33.2 132.8 Fe/Alk-MMT-60 25.6 102.4 Fe/Alk-MMT-80 16.1 64.4 Fe/Alk-MMT-100 12.2 48.8 Fe/Alk-MMT-108 25.5 102 表 3 不同初始pH对Fe/Alk-MMT-100催化剂中Fe溶出量的影响
Table 3. Effect of different initial pH values on amount of leaching Fe in Fe/Alk-MMT-100 catalyst
pH Fe concentration/(μg·L−1) Fe leaching/(μg·g−1) 3.0 673.0 538.4 4.0 10.64 8.51 5.0 6.82 5.46 7.0 4.72 3.78 9.0 3.87 3.10 表 4 不同催化剂类芬顿体系去除MB的比较
Table 4. Comparison of removal of MB by Fenton-like system composed with different catalyst.
Catalyst Reaction condition Removal efficiency Reference Fe-MMT [Cat.] = 1.0 g·L−1
[H2O2]=10 mmol·L−1
[MB]= 0.2 mmol·L−1
pH = 3.0, t=180 min93.0% [24] Fe / C [Cat.] = 2.0 g·L−1
[H2O2] = 4 mL·L−1
[MB] = 10 mg·L−1
pH =3, t=30 min95% [25] Ce-doped UiO-67 [Cat.] = 1.0 g·L−1
[H2O2] = 7 mmoL·L−1
[MB] = 500 mg·L−1
pH = 3.0, t=30 min94.1% [26] Fe3O4@PDA-MnO2 [Cat.] = 0.2 g·L−1
[H2O2] = 200 mL·L−1
[MB] = 40 mg·L−1
pH = 3.0, t=240 min97.36% [27] HKUST-1/Fe3O4 /CMF [Cat.] = 0.33 g·L−1
[H2O2] = 4 g L−1
[MB] = 10 mg·L−1
pH = 3.0, t=240 min98% [28] Fe/Alk-MMT [Cat.] = 1.25 g·L−1
[H2O2] = 0.85 mmol·L−1
[MB] = 50 mg·L−1
pH = 3.0-9.0, t=300 min98.7% 本文 Notes: Fe-MMT, iron-pillared montmorillonitic clay; Fe/C, iron supported on walnut shell biochar; Ce-doped UiO-67, cerium instead of a part of zirconium into the UiO-67 skeleton; Fe3O4@PDA-MnO2, polydopamine (PDA) coating and MnO2 depositing onto the surface of Fe3O4 nanoparticles; HKUST-1/Fe3O4/CMF, Cellulose-supported magnetic Fe3O4−MOF composites. -
[1] KANG D, YU X, GE M, et al. Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal[J]. Journal of Environmental Sciences,2017,54:1-12. doi: 10.1016/j.jes.2016.04.022 [2] DONG R, CHEN D, LI N, et al. Enhancement of organic pollutants bio-decontamination from aqueous solution using newly-designed Pseudomonas putida-GA/MIL-100(Fe) bio-nanocomposites[J]. Environmental Research,2019,173:237-245. doi: 10.1016/j.envres.2019.03.052 [3] XUE F F, TANG B, BIN L Y, et al. Residual micro organic pollutants and their biotoxicity of the effluent from the typical textile wastewater treatment plants at Pearl River Delta[J]. Science of the Total Environment,2019,657:696-703. doi: 10.1016/j.scitotenv.2018.12.008 [4] CHEN M, WANG N, WANG X, et al. Enhanced degradation of tetrabromobisphenol A by magnetic Fe3O4@ZIF-67 composites as a heterogeneous Fenton-like catalyst[J]. Chemical Engineering Journal,2021,413:127539. doi: 10.1016/j.cej.2020.127539 [5] WU Q, SIDDIQUE M S, YU W. Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies[J]. Journal of Hazardous Materials,2021,401:123261. doi: 10.1016/j.jhazmat.2020.123261 [6] LIU G, ZHANG Y, YU H, et al. Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar[J]. Journal of Hazardous Materials,2020,397:122783. doi: 10.1016/j.jhazmat.2020.122783 [7] 宿程远, 郑鹏, 廖黎明, 等. Fe3O4 NPs类芬顿预处理对活性污泥法处理阿莫西林废水的影响[J]. 化工学报, 2018, 69(12):5237-5245.SU C Y, ZHENG P, LIAO L M, et al. Influence of Fe3O4 NPs heterogeneous Fenton-like pre-treatment on activated sludge technology for treatment amoxicillin wastewater[J]. CIESC Journal,2018,69(12):5237-5245(in Chinese). [8] GAO C, CHEN S, QUAN X, et al. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants[J]. Journal of Catalysis,2017,356:125-132. doi: 10.1016/j.jcat.2017.09.015 [9] 郑宇, 于洁, 李平, 等. 膨润土基类芬顿复合材料的制备及其吸附去除废水中污染物的性能[J]. 复合材料学报, 2022, 39(6):2774-2782.ZHEN Y, YU J, LI P, et al. Preparation of bentonite-based Fenton composite material and its adsorption and removal of pollutants in wastewater[J]. Acta Materiae Compositae Sinica,2022,39(6):2774-2782(in Chinese). [10] KOEKKOEK A J J, XIN H, YANG Q, et al. Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol[J]. Microporous and Mesoporous Materials,2011,145(1-3):172-181. doi: 10.1016/j.micromeso.2011.05.013 [11] XIANG L, ROYER S, ZHANG H, et al. Properties of iron-based mesoporous silica for the CWPO of phenol: a comparison between impregnation and co-condensation routes[J]. Journal of Hazardous Materials,2009,172(2-3):1175-1184. doi: 10.1016/j.jhazmat.2009.07.121 [12] AZMI N H M, VADIVELU V M, HAMEED B H. Iron-clay as a reusable heterogeneous Fenton-like catalyst for decolorization of Acid Green 25[J]. Desalination and Water Treatment,2013,52(28-30):5583-5593. [13] ZHAO Y H, WANG Y J, HAO Q Q, et al. Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt[J]. Fuel Processing Technology,2015,136:87-95. doi: 10.1016/j.fuproc.2014.10.019 [14] ZHAO Y H, HAO Q Q, SONG Y H, et al. Cobalt supported on alkne-activated montmorillonite as an efficient catalyst for Fischer-Tropsch synthesis[J]. Energy & Fuels,2013,27(11):6362-6371. [15] HAO Q Q, LIU Z W, ZHANG B, et al. Porous montmorillonite heterostructures directed by a single alkyl ammonium template for controlling the product distribution of fischer-tropsch synthesis over cobalt[J]. Chemistry of Materials,2012,24(6):972-974. doi: 10.1021/cm203872m [16] HAN X Y, YAO P P, CHENG C, et al. Preparation and in vivo biodistribution of ultra-small superparamagnetic iron oxide nanoparticles with high magnetic targeting response[J]. Journal of Nanoscience Nanotechnol,2018,18(2):879-886. doi: 10.1166/jnn.2018.14110 [17] YAN Y Z, TANG H L, WU F, et al. Facile synthesis of Fe2O3@graphite nanoparticle composite as the anode for Lithium ion batteries with high cyclic stability[J]. Electrochimica Acta,2017,253:104-113. doi: 10.1016/j.electacta.2017.09.061 [18] HUANG X Y, CAI X, XU D H, et al. Hierarchical Fe2O3@CNF fabric decorated with MoS2 nanosheets as a robust anode for flexible lithium-ion batteries exhibiting ultrahigh areal capacity[J]. Journal of Mater Chemical A,2018,6(35):16890-16899. doi: 10.1039/C8TA04341H [19] SHI B F, ZHAO C C, JI Y J, et al. Promotion effect of PANI on Fe-PANI/Zeolite as an active and recyclable Fenton-like catalyst under near-neutral condition[J]. Applied Surface Science,2020,508:145298. doi: 10.1016/j.apsusc.2020.145298 [20] YUAN M H, DENG W Y, DONG S L, et al. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chemical Engineering Journal,2018,353:839-848. doi: 10.1016/j.cej.2018.07.201 [21] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9-10):1051-1069. doi: 10.1515/pac-2014-1117 [22] XUE X F, HANNA K, ABDELMOULA M, et al. Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations[J]. Applied Catalysis B:Environmental,2009,89(3-4):432-440. doi: 10.1016/j.apcatb.2008.12.024 [23] PRADISTY N A, SIHOMBING R, HOWE R F, et al. Fe(III) oxide-modified indonesian bentonite for catalytic photodegradation of phenol in water[J]. Makara Journal of Science,2017,21(1):25-33. [24] MARIA A. DE LEON, JORGE CASTIGLIONI, et al. Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process[J]. Catalysis Today,2008,133-155:600-605. [25] 张森晗, 赵永华, 史兴浩, 等. 核桃壳生物炭负载铁催化降解亚甲基蓝性能研究[J]. 化学研究与应用, 2022, 34(4):897-903. doi: 10.3969/j.issn.1004-1656.2022.04.026ZHANG S, ZHAO Y, SHI X, et al. Catalytic degradation of methylene blue by iron supported on walnut shell biochar[J]. Chemical Research and Application,2022,34(4):897-903(in Chinese). doi: 10.3969/j.issn.1004-1656.2022.04.026 [26] Dong X, Lin Y, Ren G, et al. Catalytic degradation of methylene blue by Fenton-like oxidation of Ce-doped MOF[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,608:125578. doi: 10.1016/j.colsurfa.2020.125578 [27] PAN X, CHENG S, SU T, et al. Fenton-like catalyst Fe3O4@polydopamine-MnO2 for enhancing removal of methylene blue in wastewater[J]. Colloids and Surfaces B:Biointerfaces,2019,181:226-233. doi: 10.1016/j.colsurfb.2019.05.048 [28] LU H, ZHANG L, WANG B, et al. Cellulose-supported magnetic Fe3O4-MOF composites for enhanced dye removal application[J]. Cellulose,2019,26(8):4909-4920. doi: 10.1007/s10570-019-02415-y [29] IMAMURA K, IKEDA E, NAGAYASU T, et al. Adsorption behavior of methylene blue and its congeners on a stainless steel surface[J]. Journal of Colloid & Interface Science,2002,245(1):50-57. [30] WANG W H, ZHANG W, SUN H B, et al. Enhanced photodynamic efficiency of methylene blue with controlled aggregation state in silica-methylene bule-acetate@tannic acid-iron(III) ions complexes[J]. Dyes and Pigments,2019,160:663-670. doi: 10.1016/j.dyepig.2018.08.068 -