留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱活化蒙脱土负载铁类芬顿体系去除亚甲基蓝

蔡玉福 周艳军 路君凤 张启俭 王欢 赵永华

蔡玉福, 周艳军, 路君凤, 等. 碱活化蒙脱土负载铁类芬顿体系去除亚甲基蓝[J]. 复合材料学报, 2023, 40(8): 4601-4612. doi: 10.13801/j.cnki.fhclxb.20221025.001
引用本文: 蔡玉福, 周艳军, 路君凤, 等. 碱活化蒙脱土负载铁类芬顿体系去除亚甲基蓝[J]. 复合材料学报, 2023, 40(8): 4601-4612. doi: 10.13801/j.cnki.fhclxb.20221025.001
CAI Yufu, ZHOU Yanjun, LU Junfeng, et al. Removal of methylene blue by Fenton-like system with alkali-activated montmorillonite supported iron catalyst[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4601-4612. doi: 10.13801/j.cnki.fhclxb.20221025.001
Citation: CAI Yufu, ZHOU Yanjun, LU Junfeng, et al. Removal of methylene blue by Fenton-like system with alkali-activated montmorillonite supported iron catalyst[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4601-4612. doi: 10.13801/j.cnki.fhclxb.20221025.001

碱活化蒙脱土负载铁类芬顿体系去除亚甲基蓝

doi: 10.13801/j.cnki.fhclxb.20221025.001
基金项目: 辽宁省教育厅重点攻关项目(JZL202015405);辽宁省自然科学基金指导计划项目(2019-ZD-0690)
详细信息
    通讯作者:

    赵永华,博士,教授,硕士生导师,研究方向为多相催化 E-mail: lgdzyh@163.com

  • 中图分类号: O643.32;TB332

Removal of methylene blue by Fenton-like system with alkali-activated montmorillonite supported iron catalyst

Funds: Key Projects of Liaoning Province Education Department of China (JZL202015405); Liaoning Provincial Natural Science Foundation of China (2019-ZD-0690)
  • 摘要: 类芬顿技术是去除水中难降解有机污染物最有应用前景的处理技术之一,构建高效稳定的类芬顿催化剂是其研究的关键。本文采用5 mol/L NaOH溶液在不同温度对Ca-蒙脱土(MMT)进行活化改性,制备了一系列具有不同结构和酸性的碱活化蒙脱土(Alk-MMT),并将Alk-MMT负载铁催化剂(Fe/Alk-MMT)与H2O2组成类芬顿体系用于去除亚甲基蓝(MB)。对所制备的材料进行了XRD、NH3-程序升温脱附(TPD)、XPS、SEM、FTIR、N2吸附-脱附等表征分析。结果表明:与Ca-MMT相比,Alk-MMT的结构和酸性均发生了明显的变化,且变化的程度与碱处理温度密切相关。Alk-MMT结构和酸性的变化明显影响类芬顿体系去除MB的性能。其中以Fe/Alk-MMT-100为催化剂的类芬顿体系在反应温度为50℃,催化剂和H2O2用量分别为1.25 g/L和0.85 mmol/L,在较宽的pH范围(3.0~9.0)反应300 min后MB的去除效率均可达98.7%以上,且表现出较好的稳定性,重复使用6次后,活性未下降。

     

  • 图  1  Ca-蒙脱土(MMT)和Alk-MMT的XRD图谱

    Figure  1.  XRD patterns of Ca-montmorillonite (MMT) and Alk-MMT

    图  2  Fe/Ca-MMT和Fe/Alk-MMT的XRD图谱

    Figure  2.  XRD patterns of Fe/Ca-MMT and Fe/Alk-MMT

    图  3  Fe/Ca-MMT、Fe/Alk-MMT的XPS全谱图和Fe2p精细图谱

    Figure  3.  XPS survey spectra and Fe2p spectra of Fe/Ca-MMT and Fe/Alk-MMT

    图  4  Ca-MMT和Alk-MMT的FTIR图谱

    Figure  4.  FTIR spectra of Ca-MMT and Alk-MMT

    图  5  Ca-MMT和Alk-MMT的N2吸附-脱附等温线

    Figure  5.  N2 adsorption-desorption isotherms of Ca-MMT and Alk-MMT

    图  6  Ca-MMT和Alk-MMT的SEM图像

    Figure  6.  SEM images of Ca-MMT and Alk-MMT

    图  7  Ca-MMT和Alk-MMT的NH3-TPD图谱

    TCD—Thermal conductivity detector

    Figure  7.  NH3-TPD patterns of Ca-MMT and Alk-MMT

    图  8  Fe/Ca-MMT和Fe/Alk-MMT催化H2O2去除亚甲基蓝(MB)效果

    [MB]=50 mg/L, [H2O2]=0.85 mmol/L, [Catalyst]=0.25 g/L, Initial pH=7.0, Temperature=50℃, Time=300 min

    Figure  8.  Removal efficiency of methylene blue (MB) with Fe/Ca-MMT and Fe/Alk-MMT catalyze H2O2

    图  9  反应温度对类芬顿体系去除MB的影响

    [MB]=50 mg/L, [H2O2] =0.85 mmol/L, [Fe/Alk-MMT-100]=0.25 g/L, Initial pH=7.0, Temperature=20-60℃, Time=300 min

    Figure  9.  Influence of reaction temperatures on the removal of MB in Fenton-like system

    图  10  不同H2O2浓度对类芬顿体系去除MB的影响

    [MB]=50 mg/L, [Fe/Alk-MMT-100]=0.25 g/L, [H2O2]=0-1.95 mmol/L, Initial pH=7.0, Temperature=50℃, Time=300 min

    Figure  10.  Influence of H2O2 concentration on the removal of MB in Fenton-like system

    图  11  催化剂用量对类芬顿体系去除MB的影响

    [MB]=50 mg/L, [Fe/Alk-MMT-100]=0.15-1.50 g/L, [H2O2]=0.85 mmol/L, Initial pH=7.0, Temperature=50℃, Time=300 min

    Figure  11.  Influence of catalyst dosages on the removal of MB in Fenton-like system

    图  12  初始pH对类芬顿体系去除MB的影响

    [MB]=50 mg/L, [Fe/Alk-MMT-100]=1.25 g/L, [H2O2]=0.85 mmol/L, Initial pH=3.0-9.0, Temperature=50℃, Time=300 min

    Figure  12.  Influence of initial pH values on the removal of MB in Fenton-like system

    图  13  Fe/Alk-MMT-100反应前后的FTIR图谱

    Figure  13.  FTIR spectra of Fe/Alk-MMT-100 before and after reaction

    图  14  催化剂重复使用次数对MB去除的影响

    [MB]=50 mg/L, [Fe/Alk-MMT-100]=1.25 g/L, [H2O2]=0.85 mmol/L, Initial pH=7.0, Temperature=50℃, Time=300 min

    Figure  14.  Influence of catalyst recycle times on MB removal rate

    表  1  样品编号说明

    Table  1.   Sample name description

    Sample Alkali treatment temperature/℃ Content of Fe/wt%
    Alk-MMT-60 60
    Alk-MMT-80 80
    Alk-MMT-100 100
    Alk-MMT-108 108
    Fe/Alk-MMT-60 60 10
    Fe/Alk-MMT-80 80 10
    Fe/Alk-MMT-100 100 10
    Fe/Alk-MMT-108 108 10
    下载: 导出CSV

    表  2  Ca-MMT和Alk-MMT的织构特征

    Table  2.   Textural properties of Ca-MMT and Alk-MMT

    SampleBET surface area/(m2·g−1)Pore volume/(cm3·g−1)Average pore size/nm
    Ca-MMT490.129.4
    Alk-MMT-60730.116.4
    Alk-MMT-801020.145.6
    Alk-MMT-1001300.196.4
    Alk-MMT-1081050.176.5
    Note: BET—Brunauer-Emmett-Teller.
    下载: 导出CSV

    表  3  碱处理温度对Fe/Alk-MMT催化剂中Fe溶出量的影响

    Table  3.   Effect of alkali treatment temperature on amount of leaching Fe in Fe/Alk-MMT catalyst

    CatalystFe concentration/(μg·L−1)Fe leaching/(μg·g−1)
    Fe/Ca-MMT33.2132.8
    Fe/Alk-MMT-6025.6102.4
    Fe/Alk-MMT-8016.1 64.4
    Fe/Alk-MMT-10012.2 48.8
    Fe/Alk-MMT-10825.5102.0
    下载: 导出CSV

    表  4  不同初始pH对Fe/Alk-MMT-100催化剂中Fe溶出量的影响

    Table  4.   Effect of different initial pH values on amount of leaching Fe in Fe/Alk-MMT-100 catalyst

    pHFe concentration/(μg·L−1)Fe leaching/(μg·g−1)
    3.0673.00538.40
    4.010.648.51
    5.06.825.46
    7.04.723.78
    9.03.873.10
    下载: 导出CSV

    表  5  不同催化剂类芬顿体系去除MB的比较

    Table  5.   Comparison of removal of MB by Fenton-like system composed with different catalyst

    CatalystReaction conditionRemoval efficiency/%Ref.
    Fe-MMT[Catalyst] = 1.0 g·L−1
    [H2O2]=10 mmol·L−1
    [MB]= 0.2 mmol·L−1
    pH=3.0, t=180 min
    93.0[24]
    Fe/C[Catalyst] = 2.0 g·L−1
    [H2O2] = 4 mL·L−1
    [MB] = 10 mg·L−1
    pH=3, t=30 min
    95[25]
    Ce-doped UiO-67[Catalyst] = 1.0 g·L−1
    [H2O2] = 7 mmoL·L−1
    [MB] = 500 mg·L−1
    pH=3.0, t=30 min
    94.1[26]
    Fe3O4@PDA-MnO2[Catalyst] = 0.2 g·L−1
    [H2O2] = 200 mL·L−1
    [MB] = 40 mg·L−1
    pH=3.0, t=240 min
    97.36[27]
    HKUST-1/Fe3O4 /CMF[Catalyst] = 0.33 g·L−1
    [H2O2] = 4 g·L−1
    [MB] = 10 mg·L−1
    pH=3.0, t=240 min
    98.0[28]
    Fe/Alk-MMT[Catalyst]=1.25 g·L−1
    [H2O2]=0.85 mmol·L−1
    [MB]=50 mg·L−1
    pH=3.0-9.0, t=300 min
    98.7This work
    Notes: Fe-MMT—Iron-pillared montmorillonitic clay; Fe/C—Iron supported on walnut shell biochar; Ce-doped UiO-67—Cerium instead of a part of zirconium into the UiO-67 skeleton; Fe3O4@PDA-MnO2—Polydopamine (PDA) coating and MnO2 depositing onto the surface of Fe3O4 nanoparticles; HKUST-1/Fe3O4/CMF—Cellulose-supported magnetic Fe3O4-MOF composites; t—Time.
    下载: 导出CSV
  • [1] KANG D, YU X, GE M, et al. Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal[J]. Journal of Environmental Sciences,2017,54:1-12. doi: 10.1016/j.jes.2016.04.022
    [2] DONG R, CHEN D, LI N, et al. Enhancement of organic pollutants bio-decontamination from aqueous solution using newly-designed Pseudomonas putida-GA/MIL-100(Fe) bio-nanocomposites[J]. Environmental Research,2019,173:237-245. doi: 10.1016/j.envres.2019.03.052
    [3] XUE F F, TANG B, BIN L Y, et al. Residual micro organic pollutants and their biotoxicity of the effluent from the typical textile wastewater treatment plants at Pearl River Delta[J]. Science of the Total Environment,2019,657:696-703. doi: 10.1016/j.scitotenv.2018.12.008
    [4] CHEN M, WANG N, WANG X, et al. Enhanced degradation of tetrabromobisphenol A by magnetic Fe3O4@ZIF-67 composites as a heterogeneous Fenton-like catalyst[J]. Chemical Engineering Journal,2021,413:127539. doi: 10.1016/j.cej.2020.127539
    [5] WU Q, SIDDIQUE M S, YU W. Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies[J]. Journal of Hazardous Materials,2021,401:123261. doi: 10.1016/j.jhazmat.2020.123261
    [6] LIU G, ZHANG Y, YU H, et al. Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar[J]. Journal of Hazardous Materials,2020,397:122783. doi: 10.1016/j.jhazmat.2020.122783
    [7] 宿程远, 郑鹏, 廖黎明, 等. Fe3O4 NPs类芬顿预处理对活性污泥法处理阿莫西林废水的影响[J]. 化工学报, 2018, 69(12):5237-5245.

    SU Chengyuan, ZHENG Peng, LIAO Liming, et al. Influence of Fe3O4 NPs heterogeneous Fenton-like pre-treatment on activated sludge technology for treatment amoxicillin wastewater[J]. CIESC Journal,2018,69(12):5237-5245(in Chinese).
    [8] GAO C, CHEN S, QUAN X, et al. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants[J]. Journal of Catalysis,2017,356:125-132. doi: 10.1016/j.jcat.2017.09.015
    [9] 郑宇, 于洁, 李平, 等. 膨润土基类芬顿复合材料的制备及其吸附去除废水中污染物的性能[J]. 复合材料学报, 2022, 39(6):2774-2782.

    ZHENG Yu, YU Jie, LI Ping, et al. Preparation of bentonite-based Fenton composite material and its adsorption and removal of pollutants in wastewater[J]. Acta Materiae Compositae Sinica,2022,39(6):2774-2782(in Chinese).
    [10] KOEKKOEK A J J, XIN H, YANG Q, et al. Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol[J]. Microporous and Mesoporous Materials,2011,145(1-3):172-181. doi: 10.1016/j.micromeso.2011.05.013
    [11] XIANG L, ROYER S, ZHANG H, et al. Properties of iron-based mesoporous silica for the CWPO of phenol: A comparison between impregnation and co-condensation routes[J]. Journal of Hazardous Materials,2009,172(2-3):1175-1184. doi: 10.1016/j.jhazmat.2009.07.121
    [12] AZMI N H M, VADIVELU V M, HAMEED B H. Iron-clay as a reusable heterogeneous Fenton-like catalyst for decolorization of Acid Green 25[J]. Desalination and Water Treatment,2013,52(28-30):5583-5593.
    [13] ZHAO Y H, WANG Y J, HAO Q Q, et al. Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt[J]. Fuel Processing Technology,2015,136:87-95. doi: 10.1016/j.fuproc.2014.10.019
    [14] ZHAO Y H, HAO Q Q, SONG Y H, et al. Cobalt supported on alkne-activated montmorillonite as an efficient catalyst for Fischer-Tropsch synthesis[J]. Energy & Fuels,2013,27(11):6362-6371.
    [15] HAO Q Q, LIU Z W, ZHANG B, et al. Porous montmorillonite heterostructures directed by a single alkyl ammonium template for controlling the product distribution of fischer-tropsch synthesis over cobalt[J]. Chemistry of Materials,2012,24(6):972-974. doi: 10.1021/cm203872m
    [16] HAN X Y, YAO P P, CHENG C, et al. Preparation and in vivo biodistribution of ultra-small superparamagnetic iron oxide nanoparticles with high magnetic targeting response[J]. Journal of Nanoscience and Nanotechnology,2018,18(2):879-886. doi: 10.1166/jnn.2018.14110
    [17] YAN Y Z, TANG H L, WU F, et al. Facile synthesis of Fe2O3@graphite nanoparticle composite as the anode for lithium ion batteries with high cyclic stability[J]. Electrochimica Acta,2017,253:104-113. doi: 10.1016/j.electacta.2017.09.061
    [18] HUANG X Y, CAI X, XU D H, et al. Hierarchical Fe2O3@CNF fabric decorated with MoS2 nanosheets as a robust anode for flexible lithium-ion batteries exhibiting ultrahigh areal capacity[J]. Journal of Materials Chemistry A,2018,6(35):16890-16899. doi: 10.1039/C8TA04341H
    [19] SHI B F, ZHAO C C, JI Y J, et al. Promotion effect of PANI on Fe-PANI/zeolite as an active and recyclable Fenton-like catalyst under near-neutral condition[J]. Applied Surface Science,2020,508:145298. doi: 10.1016/j.apsusc.2020.145298
    [20] YUAN M H, DENG W Y, DONG S L, et al. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chemical Engineering Journal,2018,353:839-848. doi: 10.1016/j.cej.2018.07.201
    [21] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9-10):1051-1069. doi: 10.1515/pac-2014-1117
    [22] XUE X F, HANNA K, ABDELMOULA M, et al. Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations[J]. Applied Catalysis B: Environmental,2009,89(3-4):432-440. doi: 10.1016/j.apcatb.2008.12.024
    [23] PRADISTY N A, SIHOMBING R, HOWE R F, et al. Fe(III) oxide-modified indonesian bentonite for catalytic photodegradation of phenol in water[J]. Makara Journal of Science,2017,21(1):25-33.
    [24] MARIA A, DE LEON, JORGE C, et al. Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process[J]. Catalysis Today,2008,133-155:600-605.
    [25] 张森晗, 赵永华, 史兴浩, 等. 核桃壳生物炭负载铁催化降解亚甲基蓝性能研究[J]. 化学研究与应用, 2022, 34(4):897-903. doi: 10.3969/j.issn.1004-1656.2022.04.026

    ZHANG Senhan, ZHAO Yonghua, SHI Xinghao, et al. Catalytic degradation of methylene blue by iron supported on walnut shell biochar[J]. Chemical Research and Application,2022,34(4):897-903(in Chinese). doi: 10.3969/j.issn.1004-1656.2022.04.026
    [26] DONG X, LIN Y, REN G, et al. Catalytic degradation of methylene blue by Fenton-like oxidation of Ce-doped MOF[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,608:125578. doi: 10.1016/j.colsurfa.2020.125578
    [27] PAN X, CHENG S, SU T, et al. Fenton-like catalyst Fe3O4@polydopamine-MnO2 for enhancing removal of methylene blue in wastewater[J]. Colloids and Surfaces B: Biointerfaces,2019,181:226-233. doi: 10.1016/j.colsurfb.2019.05.048
    [28] LU H, ZHANG L, WANG B, et al. Cellulose-supported magnetic Fe3O4-MOF composites for enhanced dye removal application[J]. Cellulose,2019,26(8):4909-4920. doi: 10.1007/s10570-019-02415-y
    [29] IMAMURA K, IKEDA E, NAGAYASU T, et al. Adsorption behavior of methylene blue and its congeners on a stainless steel surface[J]. Journal of Colloid & Interface Science,2002,245(1):50-57.
    [30] WANG W H, ZHANG W, SUN H B, et al. Enhanced photodynamic efficiency of methylene blue with controlled aggregation state in silica-methylene bule-acetate@tannic acid-iron(III) ions complexes[J]. Dyes and Pigments,2019,160:663-670. doi: 10.1016/j.dyepig.2018.08.068
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  669
  • HTML全文浏览量:  386
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2022-09-25
  • 录用日期:  2022-10-01
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回