留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属-复合材料胶接凹槽形貌增强及参数设计

康振航 雷永鹏 石忠华 宋权威 章继峰

康振航, 雷永鹏, 石忠华, 等. 金属-复合材料胶接凹槽形貌增强及参数设计[J]. 复合材料学报, 2022, 39(0): 1-12
引用本文: 康振航, 雷永鹏, 石忠华, 等. 金属-复合材料胶接凹槽形貌增强及参数设计[J]. 复合材料学报, 2022, 39(0): 1-12
Zhenhang KANG, Yongpeng LEI, Zhonghua SHI, Quanwei SONG, Jifeng ZHANG. Groove morphology enhancement and parameter design of metal-composite bonding[J]. Acta Materiae Compositae Sinica.
Citation: Zhenhang KANG, Yongpeng LEI, Zhonghua SHI, Quanwei SONG, Jifeng ZHANG. Groove morphology enhancement and parameter design of metal-composite bonding[J]. Acta Materiae Compositae Sinica.

金属-复合材料胶接凹槽形貌增强及参数设计

基金项目: 国家自然科学基金 (11772098;51672054)
详细信息
    通讯作者:

    章继峰,博士研究生,教授,硕士生/博士生导师,研究方向为船用复合材料  E-mail: jfzhang@hrbeu.edu.cn

  • 中图分类号: TB3333

Groove morphology enhancement and parameter design of metal-composite bonding

  • 摘要: 金属-复合材料混合接头广泛存在于航空、船舶以及汽车等领域,具有凹槽形貌的共固化金属-复合材料接头可保持复合材料结构的完整性和纤维的连续性。在被连接金属表面设计了±45°凹槽,评估了表面形貌对钢-GFRP接头胶接性能的影响,设计了单搭接拉伸剪切试验,验证胶接接头的剪切性能;在模拟中引入随机Weibull分布,定义内聚单元材料参数,结合VUMAT子程序模拟了接头的渐进失效过程,并建立±45°凹槽结构的代表性体积单元(Representative volume element,RVE)模型,分析了凹槽宽度和深度等参数对胶接接头的性能影响。研究表明,±45°凹槽结构可以显著提高钢-GFRP胶接接头的剪切强度,数值模拟强度和破坏模式与试验吻合;凹槽深度和宽度对结构胶接性能的影响显著,本文的研究可为金属-复合材料接头的设计提供参考。

     

  • 图  1  试样中的金属基板

    Figure  1.  Metal substrate in the specimen

    图  2  钢-GFRP接头的真空辅助成型工艺(VARI)过程

    Figure  2.  Vacuum assisted resin infusion (VARI) process of steel-GFRP joints

    图  3  钢-GFRP接头试验装载图

    Figure  3.  Test loading diagram of steel-GFRP joint

    图  4  ±45°凹槽结构单搭接接头(SLJ)试件模型网格及边界条件

    Figure  4.  Mesh and boundary conditions for the single lap joint (SLJ) specimen model with the ±45° groove structure

    图  5  有限元仿真程序框图和子程序框图

    Figure  5.  Finite element simulation program and subroutine flowchart

    图  6  钢-GFRP接头RVE的定义与选取

    Figure  6.  Definition and selection of RVE of steel-GFRP joint

    图  7  钢-GFRP接头RVE的边缘宽度和深度的定义

    Figure  7.  Definition of edge width and depth of RVE of steel-GFRP joint

    图  8  钢-GFRP接头RVE的网格划分和组件

    Figure  8.  Meshing and components of the RVE of steel-GFRP joint

    图  9  单搭接试验后的钢和GFRP试样

    Figure  9.  Steel and GFRP specimens after the SLJ test

    图  10  2组钢-GFRP胶接接头的剪切强度和树脂残留面积

    Figure  10.  Shear strength and resin residual area of the two sets of steel-GFRP adhesive joints

    图  11  钢-GFRP接头模拟结果与试验结果对比

    Figure  11.  Comparison between the simulation results and test results of steel-GFRP joint

    图  12  ±45°凹槽结构的钢-GFRP SLJ试验、仿真与RVE的极限载荷对比

    Figure  12.  Ultimate load comparison of test, simulation and RVE of steel-GFRP SLJ with ±45° groove structure

    图  13  钢-GFRP接头载荷-位移曲线以及模拟后金属槽内残留树脂(RVE的边缘宽度L=1.414mm)

    Figure  13.  Load-displacement curves of steel-GFRP joint and residual resin in metal grooves after simulation (Edge width of RVE L=1.414mm)

    图  14  不同凹槽深度对应的钢-GFRP接头极限载荷:(a) 极限载荷折线图(按载荷值划分); (b) A、B、C数据折线图

    Figure  14.  Ultimate load of steel-GFRP joint corresponding to different groove depths: (a) Break-line diagram of ultimate load (divided according to load value); (b) Break line diagram of A, B, C data

    图  15  不同凹槽深度对应的钢-GFRP接头极限载荷(凹槽深度划分)

    Figure  15.  Ultimate load of steel-GFRP joint corresponding to different groove depths (Division of groove depth)

    图  16  不同宽度的钢-GFRP接头载荷-位移曲线

    Figure  16.  Load-displacement curves of steel-GFRP joints of different widths

    图  17  不同槽宽对应的钢-GFRP接头极限载荷

    Figure  17.  Ultimate load of steel-GFRP joints corresponding to different groove widths

    表  1  45 #碳素结构钢基板力学性能参数

    Table  1.   Mechanical performance parameters of the 45 # carbon structural steel substrate

    PropertyValue
    Elastic modulus/GPa210
    Poisson's ratio0.275
    Density/(kg·m−3)7900
    Ultimate strength/MPa600
    Yield strength/MPa355
    下载: 导出CSV

    表  2  玻璃纤维增强树脂复合材料的材料参数

    Table  2.   Material parameters of glass fiber reinforced polymer (GFRP)

    Elastic ModulusValueMaterial strengthValue
    ${E_{11}}$/GPa 20 $ {X}_{\mathrm{t}} $/MPa 560
    ${E_{22}}$/GPa 6.545 $ {X}_{\mathrm{c}} $/MPa 450
    ${E_{33}}$/GPa 6.545 $ {Y}_{\mathrm{t}} $/MPa 10.42
    ${G_{12}}$/GPa 3.545 $ {Y}_{\mathrm{c}} $/MPa 106
    ${G_{13}}$/GPa 3.545 $ {Z}_{\mathrm{t}} $/MPa 10.42
    ${G_{23}}$/GPa 1.52 $ {Z}_{\mathrm{c}} $/MPa 106
    ${\nu _{12}}$ 0.3 $ {S}_{12} $/MPa 13.7
    ${\nu _{13}}$ 0.3 $ {S}_{13} $/MPa 13.7
    ${\nu _{23}}$ 0.45 $ {S}_{23} $/MPa 6
    Notes: ${E_{11}}$, ${E_{22}}$ and ${E_{33}}$ the tensile moduli in the principal direction of the composite, ${G_{12}}$, ${G_{13}}$ and ${G_{23}}$ the shear moduli of the composite, ${\nu _{12}}$, ${\nu _{13}}$ and ${\nu _{23}}$ the Poisson's ratios of the composite, where, 1 represents the fiber direction, 2 represents the direction perpendicular to the fiber, and 3 represents the direction perpendicular to the 1 and 2 planes. ${X_{\text{t}}}$,${Y_{\text{t}}}$ and ${Z_{\text{t}}}$ are the tensile strengths in the main direction of the composite, ${X_{\text{c}}}$, ${Y_{\text{c}}}$ and ${Z_{\text{c}}}$ are the compressive strengths in the principal direction of the composite, ${S_{13}}$, ${S_{23}}$ and ${S_{12}}$ are the shear strengths of the composites.
    下载: 导出CSV

    表  3  亚什兰Derakane™ 411环氧乙烯基树脂浇筑体的材料参数

    Table  3.   Material parameters of Ashland Derakane™ 411 epoxy-vinyl resin casting body

    PropertyValue
    Tensile strength/MPa83
    Tensile modulus/GPa2.9
    Flexural strength/MPa148
    Flexural modulus/GPa3.4
    Impact strength/(kJ·m−2)19
    下载: 导出CSV

    表  4  研究中所用材料性能的退化规律

    Table  4.   Degradation rules for the material properties used in the study

    Failure modeFailure criterionMaterial degradation criterion
    Fiber tensile failure ${\sigma _{11}} \geqslant 0$ $ \begin{array}{l}E{{'}}_{11}=0.07{E}_{11};G{{'}}_{12}=0.07{G}_{12};G{{'}}_{13}=0.07{G}_{13};\nu {{'}}_{12}=0.07{\nu }_{12};\nu {{'}}_{13}=0.07{\nu }_{13}\end{array} $
    Fiber compression failure  ${\sigma _{11}} < 0$ $ \begin{array}{l}E{{'}}_{11}=0.07{E}_{11};G{{'}}_{12}=0.07{G}_{12};G{{'}}_{13}=0.07{G}_{13};\nu {{'}}_{12}=0.07{\nu }_{12};\nu {{'}}_{13}=0.07{\nu }_{13}\end{array} $
    Matrix tensile failure ${\sigma _{22}} + {\sigma _{33}} \geqslant 0$ $ \begin{array}{l}E{{'}}_{22}=0.2{E}_{22};G{{'}}_{12}=0.2{G}_{12};G{{'}}_{23}=0.2{G}_{23};\nu {{'}}_{12}=0.2{\nu }_{12};\nu {{'}}_{23}=0.2{\nu }_{23}\end{array} $
    Matrix compression failure ${\sigma _{22}} + {\sigma _{33}} < 0$ $ \begin{array}{l}E{{'}}_{22}=0.4{E}_{22};G{{'}}_{12}=0.4{G}_{12};G{{'}}_{23}=0.4{G}_{23};\nu {{'}}_{12}=0.4{\nu }_{12};\nu {{'}}_{23}=0.4{\nu }_{23}\end{array} $
    Tensile delamination failure ${\sigma _{33}} \geqslant 0$ $ \begin{array}{l}E{{'}}_{33}=0.2{E}_{33};G{{'}}_{13}=0.2{G}_{13};G{{'}}_{23}=0.2{G}_{23};\nu {{'}}_{13}=0.2{\nu }_{13};\nu {{'}}_{23}=0.2{\nu }_{23}\end{array} $
    Compression delamination failure ${\sigma _{33}} < 0$ $ \begin{array}{l}E{{'}}_{33}=0.2{E}_{33};G{{'}}_{13}=0.2{G}_{13};G{{'}}_{23}=0.2{G}_{23};\nu {{'}}_{13}=0.2{\nu }_{13};\nu {{'}}_{23}=0.2{\nu }_{23}\end{array} $
    下载: 导出CSV

    表  5  不同槽深钢-GFRP接头RVE结构失效模式

    Table  5.   Failure modes of steel-GFRP joint RVE structures with different groove depths

    Depth /mmFailure modeDescription
    Fig.13(a)0.1250.250P&DP- pulled out completely; D- Larger damage area
    Fig.13(b)0.3750.5000.625NP&PDNP- not pulled out at all; PD - partially damaged
    0.7500.8751.125
    1.5001.7502.000
    Fig. 13(c)1.0001.1251.375PP&PDPP- pulled out partially; PD- partially destroyed
    1.6251.8752.250
    2.500
    下载: 导出CSV
  • [1] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1):121-131.

    MAO Zhengang, HOU Yuliang, LI Cheng, et al. Effect of lap length and stacking sequence on strength and damage behaviors of adhesively bonded CFRP composite laminates[J]. Acta Materiae Compositae Sinica,2020,37(1):121-131(in Chinese).
    [2] 邓雅琼, 陈洋, 栗娜, 等. 三维编织复合材料与金属胶接结构的力学性能及优化[J]. 复合材料学报, 2018, 35(10):2760-2767.

    DENG Yaqiong, CHEN Yang, LI Na, et al. Mechanical properties and optimization adhesive structure of three-dimensional braided composites and metal[J]. Acta Materiae Compositae Sinica,2018,35(10):2760-2767(in Chinese).
    [3] 段瑛涛, 武肖鹏, 王智文, 等. 碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能[J]. 复合材料学报, 2020, 37(10):2418-2427.

    DUAN Yingtao, WU Xiaopeng, WANG Zhiwen, et al. Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates[J]. Acta Materiae Compositae Sinica,2020,37(10):2418-2427(in Chinese).
    [4] PARK S Y, CHOI W J, CHOI H S, et al. Recent Trends in Surface Treatment Technologies for Airframe Adhesive Bonding Processing: A Review (1995–2008)[J]. Journal of Adhesion,2010,86(2):192-221. doi: 10.1080/00218460903418345
    [5] HE P, CHEN K, YANG J. Surface modifications of Ti alloy with tunable hierarchical structures and chemistry for improved metaΠpolymer interface used in deepwater composite riser[J]. Applied Surface Science,2015,328:614-622. doi: 10.1016/j.apsusc.2014.12.081
    [6] CAPLAN I L. Marine Composites-The US Navy Experience, Lessons Learned Along the Way[J]. Nist Special Publication SP,1995:91-114.
    [7] 李晓文. 舰船复合材料上层建筑连接结构设计优化研究 [D]. 哈尔滨工程大学, 2017.

    Li Xiaowen. Research on optimization design of connection structure of ship composite superstructure [ D]. Harbin Engineering University, 2017. (in Chinese)
    [8] DE FREITAS S T, SINKE J. Failure analysis of adhesively-bonded skin-to-stiffener joints: Metal–metal vs. composite–metal[J]. Engineering Failure Analysis,2015,56:2-13. doi: 10.1016/j.engfailanal.2015.05.023
    [9] DA SILVA L F, FERREIRA N, RICHTER-TRUMMER V, et al. Effect of grooves on the strength of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives,2010,30(8):735-43. doi: 10.1016/j.ijadhadh.2010.07.005
    [10] MARQUES E, CARBAS R, SILVA F, et al. Use of master curves based on time-temperature superposition to predict creep failure of aluminium-glass adhesive joints[J]. International Journal of Adhesion and Adhesives,2017,74:144-154. doi: 10.1016/j.ijadhadh.2016.12.007
    [11] BROCKMANN W, GEIß P L, KLINGEN J, et al. Adhesive bonding: materials, applications and technology [M]. John Wiley & Sons, 2008.
    [12] HE P, CHEN K, YANG J. Surface modifications of Ti alloy with tunable hierarchical structures and chemistry for improved metal–polymer interface used in deepwater composite riser[J]. Applied Surface Science,2015,328:614-622. doi: 10.1016/j.apsusc.2014.12.081
    [13] HE P, HUANG M, FISHER S, et al. Effects of primer and annealing treatments on the shear strength between anodized Ti6Al4V and epoxy[J]. International Journal of Adhesion and Adhesives,2015,57:49-56. doi: 10.1016/j.ijadhadh.2014.10.004
    [14] TAO R, ALFANO M, LUBINEAU G. Laser-based surface patterning of composite plates for improved secondary adhesive bonding[J]. Composites Part A:Applied Science and Manufacturing,2018,109:84-94. doi: 10.1016/j.compositesa.2018.02.041
    [15] NGUYEN A T, BRANDT M, ORIFICI A C, et al. Hierarchical surface features for improved bonding and fracture toughness of metal–metal and metal–composite bonded joints[J]. International Journal of Adhesion and Adhesives,2016,66:81-92. doi: 10.1016/j.ijadhadh.2015.12.005
    [16] FIELDEN-STEWART Z, COOPE T, BACHEVA D, et al. Effect of the surface morphology of SLM printed aluminium on the interfacial fracture toughness of metal-composite hybrid joints[J]. International Journal of Adhesion and Adhesives,2021,105:102779. doi: 10.1016/j.ijadhadh.2020.102779
    [17] 陈潇凯, 符东, 孙凌玉, 等. CFRP/Al胶接接头形貌特征对连接性能影响[J]. 北京理工大学学报, 2020, 40(9):970-974.

    CHEN Xiaokai, FU Dong, SUN Lingyu, et al. The effect of morphology characteristics of CFRP/Al single lap joints on bonding properties[J]. Transactions of Beijing Institute of Technology,2020,40(9):970-974(in Chinese).
    [18] YANG G, YANG T, YUAN W, et al. The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints[J]. Composites Part B:Engineering,2019,160:446-456. doi: 10.1016/j.compositesb.2018.12.095
    [19] MOSTOFINEJAD D, MOGHADDAS A. Bond efficiency of EBR and EBROG methods in different flexural failure mechanisms of FRP strengthened RC beams[J]. Construction and Building Materials,2014,54:605-614. doi: 10.1016/j.conbuildmat.2014.01.002
    [20] MOSTOFINEJAD D, MOFRAD M H, HOSSEINI A, et al. Investigating the effects of concrete compressive strength, CFRP thickness and groove depth on CFRP-concrete bond strength of EBROG joints[J]. Construction and Building Materials,2018,189:323-337. doi: 10.1016/j.conbuildmat.2018.08.203
    [21] CANYURT O E, MERAN C, USLU M. Fatigue strength estimation of adhesively bonded tongue and groove joint of thick woven composite sandwich structures using genetic algorithm approach[J]. International Journal of Adhesion and Adhesives,2010,30(5):281-287. doi: 10.1016/j.ijadhadh.2009.09.005
    [22] CANYURT O E, MERAN C, USLU M. Strength estimation of adhesively bonded tongue and groove joint of thick composite sandwich structures using genetic algorithm approach[J]. International Journal of Adhesion and Adhesives,2010,30(5):281-287. doi: 10.1016/j.ijadhadh.2009.09.005
    [23] ASTM A. D4896. Standard Guide for Use of Adhesive-Bonded Single Lap-Joint Specimen Test Results [Z]. ASTM International: West Conshohocken, PA, USA. 2016
    [24] FIORE V, DI FRANCO F, MIRANDA R, et al. Effects of anodizing surface treatment on the mechanical strength of aluminum alloy 5083 to fibre reinforced composites adhesive joints[J]. International Journal of Adhesion and Adhesives,2021,108:102868. doi: 10.1016/j.ijadhadh.2021.102868
    [25] HASHIN Z. Failure criteria for unidirectional fibre composites[J]. Journal of Applied Mechanics,1980,47:329-334. doi: 10.1115/1.3153664
    [26] TAN S C. A progressive failure model for composite laminates containing openings[J]. Journal of composite materials,1991,25(5):556-577. doi: 10.1177/002199839102500505
  • 加载中
计量
  • 文章访问数:  125
  • HTML全文浏览量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 录用日期:  2022-01-05
  • 修回日期:  2021-12-21
  • 网络出版日期:  2022-02-12

目录

    /

    返回文章
    返回