Enhanced air filtration performance and intelligent monitoring by MOF-functionalized ultrafine poly(lactic acid) fibers
-
摘要: 在工业和医疗场所,传统不可降解过滤材料的大量使用已造成巨大生态环境压力。为此,研究和发展聚乳酸(PLA)纤维膜已成为前沿热点。在此基础上,提出利用同轴静电纺丝技术将高介电性能金属有机框架材料(MOF)嵌入纤维的表面工程策略,制备了用于呼吸防护装备的驻极效果优异、高电活性、可完全降解的聚乳酸纳米纤维膜,同时实现高效过滤和呼吸状态监测。通过调控纤维形貌和改善电活性,提高纤维的物理拦截和静电吸附能力,提升对颗粒物的过滤效率,多种表征测试结果表明:纤维平均直径降低33%(304 nm),表面电势提高38% (1.8 kV),介电常数提高55% (1.7),输出电压提高74% (87 V),对PM0.3的过滤效率高达99.65% (32 L/min),即使在85 L/min的高流量下过滤效率也在99.30%,且无显著衰减。在呼吸防护的基础上集成传感功能,可实现对人呼吸状态的实时监测,为疾病的早期诊断提供了参考,在个体防护领域有广阔的应用前景。Abstract: The extensive use of traditional non-biodegradable filtration materials in industrial and medical sites has caused tremendous ecological and environmental pressure. For this reason, the research and development of poly(lactic acid) (PLA) fibrous membranes have become a cutting-edge hotspot. Based on this, the surface engineering strategy of using coaxial electrostatic spinning to embed high dielectric performance metal-organic framework (MOF) materials into fibers is proposed to prepare PLA nanofibrous membranes with excellent electronegativity, high electroactivity, and complete degradability for respiratory protection equipment, which can simultaneously achieve high-efficiency filtration and respiratory status monitoring. By regulating the fiber morphology and improving the electroactivity, the physical interception and electrostatic adsorption ability of the fibers were improved to enhance the filtration efficiency of particulate matter. The results of multiple characterization tests showed that the average fiber diameter was reduced by 33% (304 nm), the surface potential was increased by 38% (1.8 kV), the dielectric constant was increased by 55% (1.7), and the output voltage was increased by 74% (87 V). The filtration efficiency for PM0.3 is up to 99.65% (32 L/min), and even at a high flow rate of 85 L/min, the filtration efficiency is still at 99.30% with no significant attenuation. Integrating the sensing function based on respiratory protection can realize the real-time monitoring of human respiratory status, which provides a reference for the early diagnosis of diseases and has a broad application prospect in the field of personal protection.
-
-
[1] 王桂军, 张辉. 新时代建设现代化产业体系: 成就、问题与路径选择[J]. 教学与研究, 2023, (6): 12-30. doi: 10.3969/j.issn.0257-2826.2023.06.002WANG G J, ZHANG H. Research on the Achievements, Problems and Paths of Building a Modern Industrial System in the New Era[J]. Teaching and Research, 2023, (6): 12-30(in Chinese). doi: 10.3969/j.issn.0257-2826.2023.06.002 [2] BACHER J, RINTALA L, HORTTANAINEN M. The effect of crusher type on printed circuit board assemblies’ liberation and dust generation from waste mobile phones[J]. Minerals Engineering, 2022, 185: 11. [3] CUI Y Q, YIN J, CAI Y T, et al. Spatial distribution characteristics of the dust emitted at different cutting speeds during MDF milling by image analysis[J]. Journal of Wood Science, 2022, 68(1): 13. doi: 10.1186/s10086-022-02019-4 [4] LIU B, YIN W J, XU K L, et al. Inerting Waste Al Alloy Dust with Natural High Polymers: Sustainability of Industrial Waste[J]. Materials, 2022, 15(16): 5540-5540. doi: 10.3390/ma15165540 [5] LU X X, ZHANG H, CHEN Y M, et al. The evaluation analysis on the airborne dust regional pollution of the anchor drilling operation in the tunnel.[J]. Environmental science and pollution research international, 2023, 30(34): 82906-82926. doi: 10.1007/s11356-023-28093-9 [6] ROSA P, PEDRO S, HÉctor G, et al. Characterization of organic aerosols at the Natura 2000 remote environment of Sanabria Lake (Spain): Evaluating the influence of African dust and regional biomass burning smoke[J]. Atmospheric Environment, 2023, 298: 9. [7] PRABHJOT S, ARUNANGSHU M, PUNIT G. Performance of surface finished polyester filter media exposed to different dust types with the variation of dust concentration[J]. Powder Technology, 2023, 426: 11. [8] 左培杰, 黄俞铭, 李翔宇, 等. 基于电感耦合等离子体质谱的大气细颗粒物的多维表征研究进展[J]. 分析测试学报, 2024, 43(3): 501-510.ZUO P J, HUANG Y M, LI X Y, et al. Recent advance in multi-dimensional characterization on atmospheric fine particulate matter based on inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2024, 43(3): 501-510(in Chinese). [9] 巫燕园, 刘逸凡, 汤蓉, 等. 中国特大城市群PM2.5污染及健康负担的时空演变特征[J]. 南京大学学报(自然科学), 2024, 60(1): 158-167.WU Y Y, LIU Y F, TANG R, et al. Spatiotemporal evolution characteristics of PM2.5 pollution andhealth burden in mega-urban agglomerations of China[J]. Journal of Nanjing University (Natural Science), 2024, 60(1): 158-167(in Chinese). [10] LIU Z X, ZHU Q S, SONG E Q, et al. Characterization of blood protein adsorption on PM2.5 and its implications on cellular uptake and cytotoxicity of PM2.5[J]. Journal of Hazardous Materials, 2021, 414: 125499-125499. doi: 10.1016/j.jhazmat.2021.125499 [11] LIU H, ZHANG S C, LIU L F, et al. High-performance PM0.3 air filters using self-polarized electret nanofiber/nets[J]. Advanced Functional Materials, 2020, 30(13): 8. [12] ZHANG S C, LIU H, TANG N, et al. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks[J]. Advanced Materials, 2020, 32(49): 1. [13] CANU I G, WILD P, CHARREAU T, et al. Long-term exposure to PM10 and respiratory health among Parisian subway workers[J]. International Journal of Hygiene and Environmental Health, 2024, 256: 114316-114316. doi: 10.1016/j.ijheh.2023.114316 [14] 黄荣廷, 朱桂英, 李欣雨, 等. 电活性聚乳酸纳纤膜的形态调控及高效捕集PM0.3性能[J]. 高等学校化学学报, 2024, 45(1): 162-171.HUANG R T, ZHU G Y, LI X Y, et al. Morphological manipulation of highly electroactive poly(lactic acid) nanofibrous membranes for efficient removal of airborne PM0.3[J]. Chemical Journal of Chinese Universities, 2024, 45(1): 162-171(in Chinese). [15] 柴喜存, 周凌蕾, 何春霞. 竹纤维和海藻酸钠提升聚乳酸的降解性能[J]. 复合材料学报, 2023, 40(6): 3553-3561.CHAI X C, ZHOU L L, HE C X. Study on bamboo fiber and sodium alginate enhancing the degradability of polylactic acid[J]. Acta Matriae Compositae Sinica, 2023, 40(6): 3553-3561(in Chinese). [16] 杨奇, 刘高慧, 黄琪帏, 等. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(1): 12-22.YANG Q, LIU G H, HUANG Q W, et al. Study on correlation between charge storage and filtration performance of melt-blown polylactic acid/polyvinylidene fluoride electret air filter materials[J]. Journal of Textile Research, 2024, 45(1): 12-22(in Chinese). [17] XU S, ZHANG D A, HUANG Q, et al. Trap-induced hydro-charging polylactic acid nonwovens with high charge storage capability for stable and efficient air filtration[J]. Separation and Purification Technology, 2024, 343: 127164. doi: 10.1016/j.seppur.2024.127164 [18] 屈展, 夏广波, 方剑. 静电纺P(VDF-TrFE)纳米纤维在柔性压电传感与能量收集领域的研究进展[J]. 复合材料学报, 2024, 41(3): 1141-1152.QU Z, XIA G B, FANG J. Research progress of electrospun P(VDF-TrFE) nanofibers in the field of flexible piezoelectric sensing and energy harvesting[J]. Acta Matriae Compositae Sinica, 2024, 41(3): 1141-1152 (in Chinese). [19] 李沐紫, 贾国伟, 赵砚珑, 等. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379.LI M Z, JIA G W, ZHAO Y L, et al. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture[J]. CIESC Journal, 2023, 74(1): 365-379(in Chinese). [20] WANG R, XU H J, ZHANG K, et al. High-quality Al@Fe-MOF prepared using Fe-MOF as a micro-reactor to improve adsorption performance for selenite[J]. Journal of Hazardous Materials, 2019, 364: 272-280. doi: 10.1016/j.jhazmat.2018.10.030 [21] CHEN J X, YANG Z Z, LI W G, et al. MXene-supported MIL-88A(Fe) as persulfate activator for removal of tetracycline[J]. Environmental Science and Pollution Research, 2024, 31(17): 25273-25286. doi: 10.1007/s11356-024-32677-4 [22] JING L Q, XU Y G, XIE M, et al. Rational construction of visible-light-driven perylene diimides/Fe2O3@C derived from MIL-88A (Fe) heterojunction with S-scheme electron transfer pathway to activate peroxymonosulfate for degradation of antibiotics[J]. Journal of Colloid and Interface Science, 2024, 659: 520-532. doi: 10.1016/j.jcis.2024.01.011 [23] LONG Z W, DAI H, WU C Q, et al. Growth-controllable spindle chain heterostructural anodes based on MIL-88A for enhanced lithium/sodium storage[J]. Advanced Fiber Materials, 2024, 6(1): 297-311. doi: 10.1007/s42765-023-00360-x [24] KHANDELWAL G, RAJ N, VIVEKANANTHAN V, et al. Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator[J]. iScience, 2021, 24(2): 18. [25] HMOUDAH M, EL-QANNI A, TESSER R, et al. Assessment of the robustness of MIL-88A in an aqueous solution: Experimental and DFT investigations[J]. Materials Science and Engineering: B, 2023, 288: 10. [26] SAKTHI P T, CHEN T W, CHEN S M, et al. MIL-88A derived zerovalent iron embedded mesoporous carbon with carbon black composite based electrochemical sensor for the detection of metol[J]. Carbon, 2024, 223: 119026. doi: 10.1016/j.carbon.2024.119026 [27] VISWANATHAN V P, MATHEW S V, DUBAL D P, et al. Exploring the effect of morphologies of Fe(III) metal-organic framework MIL-88A(Fe) on the photocatalytic degradation of rhodamine B[J]. ChemistrySelect, 2020, 5(25): 7534-7542. doi: 10.1002/slct.202001670 [28] WANG C M, SONG X Y, LI T, et al. Biodegradable electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592. [29] ZHANG Z B, ERSAN M S, WESTERHOFF P, et al. Do surface charges on polymeric filters and airborne particles control the removal of nanoscale aerosols by polymeric facial masks?[J]. Toxics, 2024, 12(1): 17. [30] BAIK S J, JEON S, KIM G W, et al. Composition dependent charge retention in amorphous HfxAl1−xOy dielectric layers[J]. Journal of Applied Physics, 2023, 133(16): 6. [31] PENG Z H, SHI J H, XIAO X, et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration[J]. Nature Communications, 2022, 13(1): 10. doi: 10.1038/s41467-021-27507-x [32] CHENG T, SHAO J, WANG Z L. Triboelectric nanogenerators[J]. Nature Reviews Methods Primers, 2023, 3(1): 39. doi: 10.1038/s43586-023-00220-3 [33] AKRAM W, CHEN Q, XIA G, et al. A review of single electrode triboelectric nanogenerators[J]. Nano Energy, 2023, 106: 108043. doi: 10.1016/j.nanoen.2022.108043 [34] AMALIA R, NOVIYANTO A, RAHMA L A, et al. PVC waste-derived nanofiber: Simple fabrication with high potential performance for PM removal in air filtration[J]. Sustainable Materials and Technologies, 2024, 40: e00928. doi: 10.1016/j.susmat.2024.e00928 [35] HOSSAIN M, KARMAKAR K, SARKAR P, et al. Self-Sanitization in a Silk Nanofibrous Network for Biodegradable PM0.3 Filters with In Situ Joule Heating[J]. Acs Omega, 2024, 9(8): 9137-9146. doi: 10.1021/acsomega.3c08020 [36] LIN M G, SHEN J L, QIAN Q A, et al. Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal-Organic Frameworks for Efficient Air Filtration and Bacteriostasis[J]. Polymers, 2024, 16(7): 14. [37] MATON M, GABUT S, NEUT C, et al. Antiviral functionalization of a polypropylene nonwoven textile structure as a self-decontaminating layer for respiratory masks[J]. Biomaterials Science, 2023, 11(10): 3502-3511. doi: 10.1039/D2BM01988D [38] SU C, ZHANG L, ZHANG Y, et al. P(VDF-TrFE)/BaTiO3 Nanofibrous Membrane with Enhanced Piezoelectricity for High PM0.3 Filtration and Reusable Face Masks[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5845-5855. [39] Fang Y, Xu J, Xiao X, et al. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring[J]. Advanced Materials, 2022, 34(24): 2200252. doi: 10.1002/adma.202200252 [40] ZHAO L, ZHANG F, ZHANG H, et al. Robust respiratory rate monitoring using smartwatch photoplethysmography[J]. IEEE Internet of Things Journal, 2023, 10(6): 4830-4844. doi: 10.1109/JIOT.2022.3219813
点击查看大图
计量
- 文章访问数: 49
- HTML全文浏览量: 27
- 被引次数: 0