留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MOF改性的超细聚乳酸纤维过滤性能强化及其智能监测应用

吕英华 陈雨阳 王存民 李欣雨 朱桂英 张明明 朱金佗 徐欢

吕英华, 陈雨阳, 王存民, 等. 基于MOF改性的超细聚乳酸纤维过滤性能强化及其智能监测应用[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 吕英华, 陈雨阳, 王存民, 等. 基于MOF改性的超细聚乳酸纤维过滤性能强化及其智能监测应用[J]. 复合材料学报, 2024, 42(0): 1-11.
LV Yinghua, CHEN Yuyang, WANG Cunmin, et al. Enhanced air filtration performance and intelligent monitoring by MOF-functionalized ultrafine poly(lactic acid) fibers[J]. Acta Materiae Compositae Sinica.
Citation: LV Yinghua, CHEN Yuyang, WANG Cunmin, et al. Enhanced air filtration performance and intelligent monitoring by MOF-functionalized ultrafine poly(lactic acid) fibers[J]. Acta Materiae Compositae Sinica.

基于MOF改性的超细聚乳酸纤维过滤性能强化及其智能监测应用

基金项目: 国家自然科学基金(52003292;52174222);国家重点研发计划(2023YFC3011704);江苏省自然科学基金(BK20200661);国家能源集团十大重点科技攻关项目(E210100285)
详细信息
    通讯作者:

    徐欢,博士,副教授,硕士生导师,研究方向为安全防护材料 E-mail: hihuan@cumt.edu.cn

  • 中图分类号: X513;TB332

Enhanced air filtration performance and intelligent monitoring by MOF-functionalized ultrafine poly(lactic acid) fibers

Funds: National Natural Science Foundation of China (52003292, 52174222); National Key R&D Program (2023YFC3011704); Natural Science Foundation of Jiangsu Province (BK20200661); Key Science and Technology Program of CHN Energy Group (E210100285)
  • 摘要: 在工业和医疗场所,传统不可降解过滤材料的大量使用已造成巨大生态环境压力。为此,研究和发展聚乳酸(PLA)纤维膜已成为前沿热点。在此基础上,提出利用同轴静电纺丝技术将高介电性能金属有机框架材料(MOF)嵌入纤维的表面工程策略,制备了用于呼吸防护装备的驻极效果优异、高电活性、可完全降解的聚乳酸纳米纤维膜,同时实现高效过滤和呼吸状态监测。通过调控纤维形貌和改善电活性,提高纤维的物理拦截和静电吸附能力,提升对颗粒物的过滤效率,多种表征测试结果表明:纤维平均直径降低33%(304 nm),表面电势提高38% (1.8 kV),介电常数提高55% (1.7),输出电压提高74% (87 V),对PM0.3的过滤效率高达99.65% (32 L/min),即使在85 L/min的高流量下过滤效率也在99.30%,且无显著衰减。在呼吸防护的基础上集成传感功能,可实现对人呼吸状态的实时监测,为疾病的早期诊断提供了参考,在个体防护领域有广阔的应用前景。

     

  • 图  1  聚乳酸(PLA)/MIL-88A纳米纤维膜制备流程和自主搭建的空气过滤性能测试装置

    Figure  1.  Preparation process of poly(lactic acid) (PLA)/MIL-88A nanofiber membranes and homemade air filtration test equipment

    图  2  PLA/MIL-88A纳米纤维膜扫描电子显微镜(SEM)图像及纤维直径分布

    Figure  2.  Scanning electron microscope (SEM) images and diameter distributions of PLA/MIL-88A nanofibrous membranes

    图  3  PLA/MIL-88A纳米纤维膜傅里叶变换红外光谱(FTIR)图

    Figure  3.  Fourier transform infrared spectroscopy (FTIR) images of PLA/MIL-88A nanofiber membranes

    图  4  PLA/MIL-88A纳米纤维膜表面电势和介电常数

    Figure  4.  Surface potential and dielectric constant of PLA/MIL-88A nanofiber membranes

    图  5  PLA/MIL-88A纳米纤维膜组装的摩擦纳米发电机示意及其输出电压

    Figure  5.  Schematic of triboelectric nanogenerator assembled with PLA/MIL-88A nanofiber membranes and their voltage output

    图  6  PLA/MIL-88A纳米纤维膜的PM0.3过滤性能评价。(a-d)过滤效率和压降、(e)品质因子、(f)与已报道的纤维滤料的PM0.3过滤性能对比

    Figure  6.  Filtration efficiency evaluation for PM0.3 of PLA/MIL-88A nanofiber membranes. (a-d) Filtration efficiency, (e) Quality factor, (f) Comparison of PM0.3 filtration efficiency with other existing fibrous filter

    图  7  PLA/MIL-88A纳米纤维膜用于呼吸状态监测

    Figure  7.  PLA/MIL-88A nanofiber membrane for respiratory rate monitoring

  • [1] 王桂军, 张辉. 新时代建设现代化产业体系: 成就、问题与路径选择[J]. 教学与研究, 2023, (6): 12-30. doi: 10.3969/j.issn.0257-2826.2023.06.002

    WANG G J, ZHANG H. Research on the Achievements, Problems and Paths of Building a Modern Industrial System in the New Era[J]. Teaching and Research, 2023, (6): 12-30(in Chinese). doi: 10.3969/j.issn.0257-2826.2023.06.002
    [2] BACHER J, RINTALA L, HORTTANAINEN M. The effect of crusher type on printed circuit board assemblies’ liberation and dust generation from waste mobile phones[J]. Minerals Engineering, 2022, 185: 11.
    [3] CUI Y Q, YIN J, CAI Y T, et al. Spatial distribution characteristics of the dust emitted at different cutting speeds during MDF milling by image analysis[J]. Journal of Wood Science, 2022, 68(1): 13. doi: 10.1186/s10086-022-02019-4
    [4] LIU B, YIN W J, XU K L, et al. Inerting Waste Al Alloy Dust with Natural High Polymers: Sustainability of Industrial Waste[J]. Materials, 2022, 15(16): 5540-5540. doi: 10.3390/ma15165540
    [5] LU X X, ZHANG H, CHEN Y M, et al. The evaluation analysis on the airborne dust regional pollution of the anchor drilling operation in the tunnel.[J]. Environmental science and pollution research international, 2023, 30(34): 82906-82926. doi: 10.1007/s11356-023-28093-9
    [6] ROSA P, PEDRO S, HÉctor G, et al. Characterization of organic aerosols at the Natura 2000 remote environment of Sanabria Lake (Spain): Evaluating the influence of African dust and regional biomass burning smoke[J]. Atmospheric Environment, 2023, 298: 9.
    [7] PRABHJOT S, ARUNANGSHU M, PUNIT G. Performance of surface finished polyester filter media exposed to different dust types with the variation of dust concentration[J]. Powder Technology, 2023, 426: 11.
    [8] 左培杰, 黄俞铭, 李翔宇, 等. 基于电感耦合等离子体质谱的大气细颗粒物的多维表征研究进展[J]. 分析测试学报, 2024, 43(3): 501-510.

    ZUO P J, HUANG Y M, LI X Y, et al. Recent advance in multi-dimensional characterization on atmospheric fine particulate matter based on inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2024, 43(3): 501-510(in Chinese).
    [9] 巫燕园, 刘逸凡, 汤蓉, 等. 中国特大城市群PM2.5污染及健康负担的时空演变特征[J]. 南京大学学报(自然科学), 2024, 60(1): 158-167.

    WU Y Y, LIU Y F, TANG R, et al. Spatiotemporal evolution characteristics of PM2.5 pollution andhealth burden in mega-urban agglomerations of China[J]. Journal of Nanjing University (Natural Science), 2024, 60(1): 158-167(in Chinese).
    [10] LIU Z X, ZHU Q S, SONG E Q, et al. Characterization of blood protein adsorption on PM2.5 and its implications on cellular uptake and cytotoxicity of PM2.5[J]. Journal of Hazardous Materials, 2021, 414: 125499-125499. doi: 10.1016/j.jhazmat.2021.125499
    [11] LIU H, ZHANG S C, LIU L F, et al. High-performance PM0.3 air filters using self-polarized electret nanofiber/nets[J]. Advanced Functional Materials, 2020, 30(13): 8.
    [12] ZHANG S C, LIU H, TANG N, et al. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks[J]. Advanced Materials, 2020, 32(49): 1.
    [13] CANU I G, WILD P, CHARREAU T, et al. Long-term exposure to PM10 and respiratory health among Parisian subway workers[J]. International Journal of Hygiene and Environmental Health, 2024, 256: 114316-114316. doi: 10.1016/j.ijheh.2023.114316
    [14] 黄荣廷, 朱桂英, 李欣雨, 等. 电活性聚乳酸纳纤膜的形态调控及高效捕集PM0.3性能[J]. 高等学校化学学报, 2024, 45(1): 162-171.

    HUANG R T, ZHU G Y, LI X Y, et al. Morphological manipulation of highly electroactive poly(lactic acid) nanofibrous membranes for efficient removal of airborne PM0.3[J]. Chemical Journal of Chinese Universities, 2024, 45(1): 162-171(in Chinese).
    [15] 柴喜存, 周凌蕾, 何春霞. 竹纤维和海藻酸钠提升聚乳酸的降解性能[J]. 复合材料学报, 2023, 40(6): 3553-3561.

    CHAI X C, ZHOU L L, HE C X. Study on bamboo fiber and sodium alginate enhancing the degradability of polylactic acid[J]. Acta Matriae Compositae Sinica, 2023, 40(6): 3553-3561(in Chinese).
    [16] 杨奇, 刘高慧, 黄琪帏, 等. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(1): 12-22.

    YANG Q, LIU G H, HUANG Q W, et al. Study on correlation between charge storage and filtration performance of melt-blown polylactic acid/polyvinylidene fluoride electret air filter materials[J]. Journal of Textile Research, 2024, 45(1): 12-22(in Chinese).
    [17] XU S, ZHANG D A, HUANG Q, et al. Trap-induced hydro-charging polylactic acid nonwovens with high charge storage capability for stable and efficient air filtration[J]. Separation and Purification Technology, 2024, 343: 127164. doi: 10.1016/j.seppur.2024.127164
    [18] 屈展, 夏广波, 方剑. 静电纺P(VDF-TrFE)纳米纤维在柔性压电传感与能量收集领域的研究进展[J]. 复合材料学报, 2024, 41(3): 1141-1152.

    QU Z, XIA G B, FANG J. Research progress of electrospun P(VDF-TrFE) nanofibers in the field of flexible piezoelectric sensing and energy harvesting[J]. Acta Matriae Compositae Sinica, 2024, 41(3): 1141-1152 (in Chinese).
    [19] 李沐紫, 贾国伟, 赵砚珑, 等. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379.

    LI M Z, JIA G W, ZHAO Y L, et al. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture[J]. CIESC Journal, 2023, 74(1): 365-379(in Chinese).
    [20] WANG R, XU H J, ZHANG K, et al. High-quality Al@Fe-MOF prepared using Fe-MOF as a micro-reactor to improve adsorption performance for selenite[J]. Journal of Hazardous Materials, 2019, 364: 272-280. doi: 10.1016/j.jhazmat.2018.10.030
    [21] CHEN J X, YANG Z Z, LI W G, et al. MXene-supported MIL-88A(Fe) as persulfate activator for removal of tetracycline[J]. Environmental Science and Pollution Research, 2024, 31(17): 25273-25286. doi: 10.1007/s11356-024-32677-4
    [22] JING L Q, XU Y G, XIE M, et al. Rational construction of visible-light-driven perylene diimides/Fe2O3@C derived from MIL-88A (Fe) heterojunction with S-scheme electron transfer pathway to activate peroxymonosulfate for degradation of antibiotics[J]. Journal of Colloid and Interface Science, 2024, 659: 520-532. doi: 10.1016/j.jcis.2024.01.011
    [23] LONG Z W, DAI H, WU C Q, et al. Growth-controllable spindle chain heterostructural anodes based on MIL-88A for enhanced lithium/sodium storage[J]. Advanced Fiber Materials, 2024, 6(1): 297-311. doi: 10.1007/s42765-023-00360-x
    [24] KHANDELWAL G, RAJ N, VIVEKANANTHAN V, et al. Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator[J]. iScience, 2021, 24(2): 18.
    [25] HMOUDAH M, EL-QANNI A, TESSER R, et al. Assessment of the robustness of MIL-88A in an aqueous solution: Experimental and DFT investigations[J]. Materials Science and Engineering: B, 2023, 288: 10.
    [26] SAKTHI P T, CHEN T W, CHEN S M, et al. MIL-88A derived zerovalent iron embedded mesoporous carbon with carbon black composite based electrochemical sensor for the detection of metol[J]. Carbon, 2024, 223: 119026. doi: 10.1016/j.carbon.2024.119026
    [27] VISWANATHAN V P, MATHEW S V, DUBAL D P, et al. Exploring the effect of morphologies of Fe(III) metal-organic framework MIL-88A(Fe) on the photocatalytic degradation of rhodamine B[J]. ChemistrySelect, 2020, 5(25): 7534-7542. doi: 10.1002/slct.202001670
    [28] WANG C M, SONG X Y, LI T, et al. Biodegradable electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592.
    [29] ZHANG Z B, ERSAN M S, WESTERHOFF P, et al. Do surface charges on polymeric filters and airborne particles control the removal of nanoscale aerosols by polymeric facial masks?[J]. Toxics, 2024, 12(1): 17.
    [30] BAIK S J, JEON S, KIM G W, et al. Composition dependent charge retention in amorphous HfxAl1−xOy dielectric layers[J]. Journal of Applied Physics, 2023, 133(16): 6.
    [31] PENG Z H, SHI J H, XIAO X, et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration[J]. Nature Communications, 2022, 13(1): 10. doi: 10.1038/s41467-021-27507-x
    [32] CHENG T, SHAO J, WANG Z L. Triboelectric nanogenerators[J]. Nature Reviews Methods Primers, 2023, 3(1): 39. doi: 10.1038/s43586-023-00220-3
    [33] AKRAM W, CHEN Q, XIA G, et al. A review of single electrode triboelectric nanogenerators[J]. Nano Energy, 2023, 106: 108043. doi: 10.1016/j.nanoen.2022.108043
    [34] AMALIA R, NOVIYANTO A, RAHMA L A, et al. PVC waste-derived nanofiber: Simple fabrication with high potential performance for PM removal in air filtration[J]. Sustainable Materials and Technologies, 2024, 40: e00928. doi: 10.1016/j.susmat.2024.e00928
    [35] HOSSAIN M, KARMAKAR K, SARKAR P, et al. Self-Sanitization in a Silk Nanofibrous Network for Biodegradable PM0.3 Filters with In Situ Joule Heating[J]. Acs Omega, 2024, 9(8): 9137-9146. doi: 10.1021/acsomega.3c08020
    [36] LIN M G, SHEN J L, QIAN Q A, et al. Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal-Organic Frameworks for Efficient Air Filtration and Bacteriostasis[J]. Polymers, 2024, 16(7): 14.
    [37] MATON M, GABUT S, NEUT C, et al. Antiviral functionalization of a polypropylene nonwoven textile structure as a self-decontaminating layer for respiratory masks[J]. Biomaterials Science, 2023, 11(10): 3502-3511. doi: 10.1039/D2BM01988D
    [38] SU C, ZHANG L, ZHANG Y, et al. P(VDF-TrFE)/BaTiO3 Nanofibrous Membrane with Enhanced Piezoelectricity for High PM0.3 Filtration and Reusable Face Masks[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5845-5855.
    [39] Fang Y, Xu J, Xiao X, et al. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring[J]. Advanced Materials, 2022, 34(24): 2200252. doi: 10.1002/adma.202200252
    [40] ZHAO L, ZHANG F, ZHANG H, et al. Robust respiratory rate monitoring using smartwatch photoplethysmography[J]. IEEE Internet of Things Journal, 2023, 10(6): 4830-4844. doi: 10.1109/JIOT.2022.3219813
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 修回日期:  2024-08-14
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-09-05

目录

    /

    返回文章
    返回