Investigation on tensile modulus of lumen-bast fiber reinforced composites using multiscale simulation method
-
摘要: 本研究针对现有植物麻纤维增强复合材料弹性模量预测模型中,未能充分考虑麻纤维独特的腔体微观结构特征,难以准确获取真实纤维特征参数并预测麻纤维增强复合材料弹性模量的现状,综合混合定律和Micro-CT技术,提出了基于麻纤维腔体结构特征的麻纤维等效模型及其弹性模量计算公式。在此基础上,采用多尺度模拟法构建基于腔体结构的苎麻纤维增强树脂基复合材料(RFPC)的代表性体积元(RVE)模型并求解了RFPC的拉伸模量。并通过RFPC拉伸实验测试结果验证了RVE模型的有效性。另一方面,本文采用正交试验设计和方差分析探讨了纤维含量、纤维空腔占比、纤维取向和纤维长径比4个参数对RFPC拉伸弹性模量的影响权重,从而明确了纤维含量和纤维取向是影响复合材料拉伸弹性模量的主要因素。运用多项式拟合法获得了以上述4个参数为自变量的麻纤维增强树脂基复合材料拉伸弹性模量预测公式,并系统揭示了影响RFPC拉伸模量的参数主效应和参数两两之间的协同效应规律。本研究提出的基于腔体结构的植物麻纤维增强树脂基复合材料弹性模量预测方法,可望为麻纤维增强树脂基一大类复合材料的拉伸性能调控提供新方法。Abstract: Currently, the models for predicting the tensile modulus of bast fiber reinforced composites have not considered unique lumen microstructure of bast fibers. Therefore, in the present work, an equivalent model of lumen-bast fiber and its theoretical formula for calculating the elastic modulus were proposed in this study by combining the rule of mixture and Micro-CT technology. On this basis, a representative volume element (RVE) model of ramie fiber reinforced composite (RFPC) which considered lumen microstructures was established using multiscale simulation method, and its tensile modulus was computed. The validity of the RVE model was verified by experimental results. Additionally, the influence weights of four parameters (fiber content, fiber lumen ratio, fiber orientation, and aspect ratio) on the tensile elastic modulus of RFPC were investigated using orthogonal experimental design and variance analysis. It was found that fiber content and fiber orientation are the primary factors affecting the tensile modulus of RFPCs. A polynomial fitting method was employed to obtain a predictive equation for estimating the tensile modulus of RFPC using these four parameters as independent variables. The main effects and synergistic effects of parameters on the tensile modulus of RFPC were systematically analyzed. This research provides a prediction method for estimating the tensile modulus of lumen-bast fiber reinforced composites and can be served as a theoretical basis for controlling their tensile performance.
-
Key words:
- lumen structure /
- bast fibers /
- composites /
- orthogonal design /
- prediction of tensile modulus
-
图 10 纤维参数协同作用对苎麻/聚丙烯复合材料拉伸模量的影响(a)空腔占比和纤维含量(b)纤维取向和纤维含量(c)纤维长径比和纤维含量(d)纤维取向和空腔占比(e)空腔占比和纤维长径比(f)纤维长径比和纤维取向
Figure 10. Synergistic effects of fiber parameters on tensile modulus of ramie fiber reinforced composites (a) lumen volume fraction and fiber content (b) fiber orientation and fiber content (c) fiber aspect ratio and fiber content (d) fiber orientation and lumen volume fraction (e) lumen volume fraction and fiber aspect ratio (f) fiber aspect ratio and fiber orientation
表 1 CT扫描获取苎麻增强复合材料中苎麻纤维取向张量分量值、长度和直径分布参数
Table 1. Distribution parameters of orientation tensor components, length and diameters of ramie fibers in the ramie fiber reinforced composite from CT scanning
Parameters Max Min Mean $ {\lambda }_{1} $ 1.00 0.00 0.83 $ {\lambda }_{2} $ 1.00 0.00 0.14 $ {\lambda }_{3} $ 0.92 0.00 0.03 L/μm 505 65 122 d/μm 86 3 20 Notes:$ {\lambda }_{1} $、$ {\lambda }_{2} $、$ {\lambda }_{3} $-fiber orientation tensor components, L-fiber length,d-fiber diameter 表 2 苎麻纤维与聚丙烯力学性能参数
Table 2. Mechanical properties of ramie fiber and polypropylene in materials
Components Elastic modulus/
MPaDensity/
(g·cm−3)Poisson's
RatioRamie fiber 61400 1.550 0.30 Polypropylene(PP) 790 0.904 0.42 表 3 仿真实验水平和因素
Table 3. Simulation experiment levels and factors
Level Factors A/wt% B/vol% C D 1 5 16 0.4 2 2 10 18 0.6 6 3 15 20 0.8 10 4 20 22 1.0 14 Notes:A - fiber content,B - lumen volume fraction,C - fiber orientation tensor component $ {\lambda }_{1} $,D - fiber aspect ratio 表 4 苎麻/聚丙烯复合材料拉伸模量正交试验结果
Table 4. Orthogonal experimental results for tensile modulus of ramie fiber reinforced composites
No. Factors Evaluation metrics A/wt% B/vol% C D Tensile Modulus/MPa 1 1 1 1 1 836.1 2 1 2 2 2 955.6 3 1 3 3 3 1084.0 4 1 4 4 4 1234.7 5 2 1 2 3 1185.5 6 2 2 1 4 1131.7 7 2 3 4 1 991.1 8 2 4 3 2 1195.1 9 3 1 3 4 2149.3 10 3 2 4 3 2255.0 11 3 3 1 2 1187.3 12 3 4 2 1 1070.1 13 4 1 4 2 2051.8 14 4 2 3 1 1191.0 15 4 3 2 4 2202.0 16 4 4 1 3 1426.8 Notes:A – code of fiber content,B - code of lumen volume fraction,C - code of fiber orientation tensor component $ {\lambda }_{1} $,D - code of fiber aspect ratio,TM-tensile modulus 表 5 苎麻/聚丙烯复合材料拉伸模量方差分析
Table 5. Analysis of variance for tensile modulus of ramie fiber reinforced composites
Factor Df Sum Sq Mean Sq F value P value A 3 1537406 512469 4.127 0.137 B 3 211984 70661 0.569 0.673 C 3 481388 160463 1.292 0.419 D 3 921524 307175 2.474 0.238 Notes:Df – degree of freedom,Sum Sq – sum of squares,Mean Sq – mean of squares 表 6 苎麻/聚丙烯复合材料拉伸模量正交实验结果与拟合结果误差表
Table 6. Errors between orthogonal experimental results and fitting results for tensile modulus of ramie fiber reinforced composites
No. Factors Tensile modulus/MPa $ {x}_{1} $/wt% $ {x}_{2} $/vol% $ {x}_{3} $ $ {x}_{4} $ Fitting values Simulation values Error/% 1 5 16 0.4 2 841.1 836.1 0.59 2 5 18 0.6 6 955.0 955.6 −0.06 3 5 20 0.8 10 1084.6 1084.0 0.05 4 5 22 1.0 14 1229.7 1234.7 −0.40 5 10 16 0.6 10 1167.7 1185.5 −1.50 6 10 18 0.4 14 1135.3 1131.7 0.32 7 10 20 1.0 2 987.5 991.1 −0.36 8 10 22 0.8 6 1212.9 1195.1 1.49 9 15 16 0.8 14 2167.1 2149.3 0.83 10 15 18 1.0 10 2258.6 2255.0 0.16 11 15 20 0.4 6 1183.7 1187.3 −0.30 12 15 22 0.6 2 1052.3 1070.1 −1.67 13 20 16 1.0 6 2039.3 2051.8 −0.61 14 20 18 0.8 2 1207.1 1191.0 1.35 15 20 20 0.6 14 2185.9 2202.0 −0.73 16 20 22 0.4 10 1439.3 1426.8 0.88 Notes:$ {x}_{1} $− fiber content,$ {x}_{2} $− lumen volume fraction,$ {x}_{3} $− fiber orientation tensor component $ {\lambda }_{1} $,$ {x}_{4} $− fiber aspect ratio -
[1] KUMAR R, UL HAQ M I, RAINA A, et al. Industrial applications of natural fibre-reinforced polymer composites – challenges and opportunities[J]. International Journal of Sustainable Engineering, 2019, 12(3): 212-220. doi: 10.1080/19397038.2018.1538267 [2] CHANDGUDE S, SALUNKHE S. In state of art: Mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components[J]. Polymer Composites, 2021, 42(6): 2678-2703. doi: 10.1002/pc.26045 [3] 何莉萍, 刘龙镇, 苏胜培, 等. 纤维含量对黄麻纤维增强树脂基复合材料力学与热性能的影响[J]. 复合材料学报, 2023, 40(4): 2038-2048.HE Liping, LIU Longzhen, SU Shengpei, et al. Effects of fiber addition on the mechanical and thermal properties of jute fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2038-2048 (in Chinese). [4] THYAVIHALLI GIRIJAPPA Y G, MAVINKERE RANGAPPA S, PARAMESWARANPILLAI J, et al. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review[J]. Frontiers in Materials, 2019, 6: 226. doi: 10.3389/fmats.2019.00226 [5] SHAHRIAR KABIR M, HOSSAIN M S, MIA M, et al. Mechanical Properties of Gamma-Irradiated Natural Fiber Reinforced Composites[J]. Nano Hybrids and Composites, 2018, 23(4): 24-38. [6] AKASH, VENKATESHA GUPTA N S, SREENIVAS RAO K V. An Experimental Study on Sisal/Hemp Fiber Reinforced Hybrid Composites[J]. Materials Today: Proceedings, 2018, 5(2): 7383-7387. doi: 10.1016/j.matpr.2017.11.408 [7] JOSEPH J, MUNDA P R, KUMAR M, et al. Sustainable conducting polymer composites: study of mechanical and tribological properties of natural fiber reinforced PVA composites with carbon nanofillers[J]. Polymer-Plastics Technology and Materials, 2020, 59(10): 1088-1099. doi: 10.1080/25740881.2020.1719144 [8] KERN W T, KIM W, ARGENTO A, et al. Finite element analysis and microscopy of natural fiber composites containing microcellular voids[J]. Materials & Design, 2016, 106: 285-294. [9] SHARMA V, GRUJOVIC N, ZIVIC F, et al. Effective thermal and mechanical properties of randomly oriented short and long fiber composites[J]. Mechanics of Materials, 2017, 107: 56-70. doi: 10.1016/j.mechmat.2017.02.002 [10] SLISERIS J, YAN L, KASAL B. Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites[J]. Composites Part B: Engineering, 2016, 89: 143-154. doi: 10.1016/j.compositesb.2015.11.038 [11] SINHA A K, BHATTACHARYA S, NARANG H K. Abaca fibre reinforced polymer composites: a review[J]. Journal of Materials Science, 2021, 56(7): 4569-4587. doi: 10.1007/s10853-020-05572-9 [12] YANG C, ZHU D, YANG F, et al. Quantitative analysis based on atomic force microscopy characterization of interfacial properties between carbon fibers and epoxy resin subjected to hygrothermal and thermal treatments[J]. Composites Science and Technology, 2020, 198: 108278. doi: 10.1016/j.compscitech.2020.108278 [13] HAMAD S F, STEHLING N, HOLLAND C, et al. Low-Voltage SEM of Natural Plant Fibers: Microstructure Properties (Surface and Cross-Section) and their Link to the Tensile Properties[J]. Procedia Engineering, 2017, 200: 295-302. doi: 10.1016/j.proeng.2017.07.042 [14] HAMAD S F, STEHLING N, HAYES S A, et al. Exploiting Plasma Exposed, Natural Surface Nanostructures in Ramie Fibers for Polymer Composite Applications[J]. Materials, 2019, 12(10): 1631. doi: 10.3390/ma12101631 [15] BOGARD F, BACH T, ABBES B, et al. A comparative review of Nettle and Ramie fiber and their use in biocomposites, particularly with a PLA matrix[J]. Journal of Natural Fibers, 2022, 19(14): 8205-8229. doi: 10.1080/15440478.2021.1961341 [16] 栾丛丛, 林志伟, 姚鑫骅, 等. 3D打印碳纤维复合材料力学性能计算与实验[J]. 材料科学与工程学报, 2023, 41(4): 540-544.Luan Congcong, Lin Zhiwei, Yao Xinhua, et al. Calculation and Experiment of Mechanical Properties of 3D Printed Carbon Fiber Reinforced Composite[J]. Journal of Materials Science and Engineering, 2023, 41(4): 540-544(in Chinese). [17] BARBERO E J. Finite Element Analysis of Composite Materials using Abaqus[M]. 2th ed. Boca Raton: CRC Press, 2023: 216-218. [18] HE L, LU G, CHEN D, et al. Smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites[J]. Journal of Composite Materials, 2018, 52(11): 1531-1539. doi: 10.1177/0021998317726365 [19] HE L, LU G, CHEN D, et al. Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites[J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(5): 055007. doi: 10.1088/1361-651X/aa6dc9 [20] 丁智平, 黄达勇, 荣继刚, 等. 注塑成型短玻纤增强复合材料各向异性弹性常数预测方法[J]. 机械工程学报, 2017, 53(24): 126-134.DING Zhiping, HUANG Dayong, RONG Jigang, et al. Predicting Method of Anisotropic Elastic Constants for Injection Molded Short Glass Fiber Reinforced Composites[J]. Journal of Mechanical Engineering, 2017, 53(24): 126-134(in Chinese). [21] LI Z, LU J, QIU R, et al. Multiscale modeling based failure criterion of injection molded SFRP composites considering skin-core-skin layered microstructure and variable parameters[J]. Composite Structures, 2022, 286: 115277. doi: 10.1016/j.compstruct.2022.115277 [22] LI Z, LIU Z, XUE Y, et al. A novel algorithm for significantly increasing the fiber volume fraction in the reconstruction model with large fiber aspect ratio[J]. Journal of Industrial Textiles, 2022, 51(1_suppl): 506S-530S. doi: 10.1177/15280837211032078 [23] BABU K P, MOHITE P M, UPADHYAY C S. Development of an RVE and its stiffness predictions based on mathematical homogenization theory for short fibre composites[J]. International Journal of Solids and Structures, 2018, 130-131: 80-104. doi: 10.1016/j.ijsolstr.2017.10.011 [24] HE L, XIA F, WANG Y, et al. Mechanical and Dynamic Mechanical Properties of the Amino Silicone Oil Emulsion Modified Ramie Fiber Reinforced Composites[J]. Polymers, 2021, 13(23): 4083. doi: 10.3390/polym13234083 [25] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447-2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People’s Repub-lic of China. Fiber-reinforced plastics composites-Determination of tensile properties: GB/T 1447-2005[S]. Beijing: China Standards Press, 2005 (in Chinese). [26] 乔力伟, 桑琮辉, 王列妮, 等. 双通道供风条件下施工隧道最优风速参数研究[J]. 中国安全科学学报, 2023, 33(7): 105-112.QIAO Liwei, SANG Zonghui, WANG Lieni, et al. Study on optimal wind speed parameters of construction tunnel under condition of double-channel air supply[J]. China Safety Science Journal, 2023, 33(7): 105-112(in Chinese).
计量
- 文章访问数: 16
- HTML全文浏览量: 29
- 被引次数: 0