留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多尺度模拟法研究腔体结构麻纤维增强树脂基复合材料拉伸模量

夏凡 何莉萍 陈大川

夏凡, 何莉萍, 陈大川. 多尺度模拟法研究腔体结构麻纤维增强树脂基复合材料拉伸模量[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 夏凡, 何莉萍, 陈大川. 多尺度模拟法研究腔体结构麻纤维增强树脂基复合材料拉伸模量[J]. 复合材料学报, 2024, 42(0): 1-10.
XIA Fan, HE Liping, CHEN Dachuan. Investigation on tensile modulus of lumen-bast fiber reinforced composites using multiscale simulation method[J]. Acta Materiae Compositae Sinica.
Citation: XIA Fan, HE Liping, CHEN Dachuan. Investigation on tensile modulus of lumen-bast fiber reinforced composites using multiscale simulation method[J]. Acta Materiae Compositae Sinica.

多尺度模拟法研究腔体结构麻纤维增强树脂基复合材料拉伸模量

基金项目: 国家重点研发计划项目(2022YFB3704803);湖南大学整车先进设计制造技术全国重点实验室研究课题(No.72175004)
详细信息
    通讯作者:

    何莉萍,博士,教授,博士生导师,研究方向为纤维增强复合材料 E-mail: lphe@hnu.edu.cn

  • 中图分类号: TB332

Investigation on tensile modulus of lumen-bast fiber reinforced composites using multiscale simulation method

Funds: National Key Research and Development Program of China (2022YFB3704803); Foundation of State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle (No. 72175004)
  • 摘要: 本研究针对现有植物麻纤维增强复合材料弹性模量预测模型中,未能充分考虑麻纤维独特的腔体微观结构特征,难以准确获取真实纤维特征参数并预测麻纤维增强复合材料弹性模量的现状,综合混合定律和Micro-CT技术,提出了基于麻纤维腔体结构特征的麻纤维等效模型及其弹性模量计算公式。在此基础上,采用多尺度模拟法构建基于腔体结构的苎麻纤维增强树脂基复合材料(RFPC)的代表性体积元(RVE)模型并求解了RFPC的拉伸模量。并通过RFPC拉伸实验测试结果验证了RVE模型的有效性。另一方面,本文采用正交试验设计和方差分析探讨了纤维含量、纤维空腔占比、纤维取向和纤维长径比4个参数对RFPC拉伸弹性模量的影响权重,从而明确了纤维含量和纤维取向是影响复合材料拉伸弹性模量的主要因素。运用多项式拟合法获得了以上述4个参数为自变量的麻纤维增强树脂基复合材料拉伸弹性模量预测公式,并系统揭示了影响RFPC拉伸模量的参数主效应和参数两两之间的协同效应规律。本研究提出的基于腔体结构的植物麻纤维增强树脂基复合材料弹性模量预测方法,可望为麻纤维增强树脂基一大类复合材料的拉伸性能调控提供新方法。

     

  • 图  1  苎麻/聚丙烯复合材料CT扫描(a)工作台(b) CT扫描2D图(c) CT扫描3D图(d)图像处理前(e)图像处理后

    Figure  1.  CT scan of RFPC (a) workstation (b) 2D pictures (c) 3D pictures (d) before image process (e) after image process

    图  2  苎麻纤维等效模型(a)(b)苎麻纤维SEM截面图[14][15](c)含空腔麻纤维等效为实心结构

    Figure  2.  Equivalent model of ramie fiber (a)(b) SEM images of ramie fiber(c) ramie fiber with lumen equivalent to solid

    图  3  纤维取向

    Figure  3.  Fiber orientation

    图  4  纤维取向三角和三角端点ABC对应的纤维取向状态

    Figure  4.  Orientation triangle of fiber and corresponding states of its vertex

    图  5  苎麻纤维长径比分布图

    Figure  5.  Aspect ratio distribution of ramie fibers

    图  6  苎麻/聚丙烯复合材料拉伸模量模拟和实验结果对比

    Figure  6.  Comparison of simulation and experimental results of tensile modulus of ramie fiber reinforced composites (Notes:RF – ramie fiber,LRF – lumen-ramie fiber)

    图  7  苎麻/聚丙烯复合材料正交实验RVE有限元模型

    Figure  7.  RVE finite element models of ramie fiber reinforced composites for orthogonal experiment

    图  8  苎麻/聚丙烯复合材料拉伸模量均值折线图

    Figure  8.  Mean line chart for tensile modulus of ramie fiber reinforced composites

    图  9  纤维含量和纤维长径比对苎麻/聚丙烯复合材料拉伸模量影响的主效应图(a)纤维含量(b)纤维长径比

    Figure  9.  Main effects of fiber content and fiber orientation on tensile modulus of ramie fiber reinforced composite (a)fiber content (b)fiber aspect ratio

    图  10  纤维参数协同作用对苎麻/聚丙烯复合材料拉伸模量的影响(a)空腔占比和纤维含量(b)纤维取向和纤维含量(c)纤维长径比和纤维含量(d)纤维取向和空腔占比(e)空腔占比和纤维长径比(f)纤维长径比和纤维取向

    Figure  10.  Synergistic effects of fiber parameters on tensile modulus of ramie fiber reinforced composites (a) lumen volume fraction and fiber content (b) fiber orientation and fiber content (c) fiber aspect ratio and fiber content (d) fiber orientation and lumen volume fraction (e) lumen volume fraction and fiber aspect ratio (f) fiber aspect ratio and fiber orientation

    表  1  CT扫描获取苎麻增强复合材料中苎麻纤维取向张量分量值、长度和直径分布参数

    Table  1.   Distribution parameters of orientation tensor components, length and diameters of ramie fibers in the ramie fiber reinforced composite from CT scanning

    ParametersMaxMinMean
    $ {\lambda }_{1} $1.000.000.83
    $ {\lambda }_{2} $1.000.000.14
    $ {\lambda }_{3} $0.920.000.03
    L/μm50565122
    d/μm86320
    Notes:$ {\lambda }_{1} $、$ {\lambda }_{2} $、$ {\lambda }_{3} $-fiber orientation tensor components, L-fiber length,d-fiber diameter
    下载: 导出CSV

    表  2  苎麻纤维与聚丙烯力学性能参数

    Table  2.   Mechanical properties of ramie fiber and polypropylene in materials

    Components Elastic modulus/
    MPa
    Density/
    (g·cm−3)
    Poisson's
    Ratio
    Ramie fiber 61400 1.550 0.30
    Polypropylene(PP) 790 0.904 0.42
    下载: 导出CSV

    表  3  仿真实验水平和因素

    Table  3.   Simulation experiment levels and factors

    Level Factors
    A/wt% B/vol% C D
    1 5 16 0.4 2
    2 10 18 0.6 6
    3 15 20 0.8 10
    4 20 22 1.0 14
    Notes:A - fiber content,B - lumen volume fraction,C - fiber orientation tensor component $ {\lambda }_{1} $,D - fiber aspect ratio
    下载: 导出CSV

    表  4  苎麻/聚丙烯复合材料拉伸模量正交试验结果

    Table  4.   Orthogonal experimental results for tensile modulus of ramie fiber reinforced composites

    No. Factors Evaluation metrics
    A/wt% B/vol% C D Tensile Modulus/MPa
    1 1 1 1 1 836.1
    2 1 2 2 2 955.6
    3 1 3 3 3 1084.0
    4 1 4 4 4 1234.7
    5 2 1 2 3 1185.5
    6 2 2 1 4 1131.7
    7 2 3 4 1 991.1
    8 2 4 3 2 1195.1
    9 3 1 3 4 2149.3
    10 3 2 4 3 2255.0
    11 3 3 1 2 1187.3
    12 3 4 2 1 1070.1
    13 4 1 4 2 2051.8
    14 4 2 3 1 1191.0
    15 4 3 2 4 2202.0
    16 4 4 1 3 1426.8
    Notes:A – code of fiber content,B - code of lumen volume fraction,C - code of fiber orientation tensor component $ {\lambda }_{1} $,D - code of fiber aspect ratio,TM-tensile modulus
    下载: 导出CSV

    表  5  苎麻/聚丙烯复合材料拉伸模量方差分析

    Table  5.   Analysis of variance for tensile modulus of ramie fiber reinforced composites

    Factor Df Sum Sq Mean Sq F value P value
    A 3 1537406 512469 4.127 0.137
    B 3 211984 70661 0.569 0.673
    C 3 481388 160463 1.292 0.419
    D 3 921524 307175 2.474 0.238
    Notes:Df – degree of freedom,Sum Sq – sum of squares,Mean Sq – mean of squares
    下载: 导出CSV

    表  6  苎麻/聚丙烯复合材料拉伸模量正交实验结果与拟合结果误差表

    Table  6.   Errors between orthogonal experimental results and fitting results for tensile modulus of ramie fiber reinforced composites

    No. Factors Tensile modulus/MPa
    $ {x}_{1} $/wt% $ {x}_{2} $/vol% $ {x}_{3} $ $ {x}_{4} $ Fitting values Simulation values Error/%
    1 5 16 0.4 2 841.1 836.1 0.59
    2 5 18 0.6 6 955.0 955.6 −0.06
    3 5 20 0.8 10 1084.6 1084.0 0.05
    4 5 22 1.0 14 1229.7 1234.7 −0.40
    5 10 16 0.6 10 1167.7 1185.5 −1.50
    6 10 18 0.4 14 1135.3 1131.7 0.32
    7 10 20 1.0 2 987.5 991.1 −0.36
    8 10 22 0.8 6 1212.9 1195.1 1.49
    9 15 16 0.8 14 2167.1 2149.3 0.83
    10 15 18 1.0 10 2258.6 2255.0 0.16
    11 15 20 0.4 6 1183.7 1187.3 −0.30
    12 15 22 0.6 2 1052.3 1070.1 −1.67
    13 20 16 1.0 6 2039.3 2051.8 −0.61
    14 20 18 0.8 2 1207.1 1191.0 1.35
    15 20 20 0.6 14 2185.9 2202.0 −0.73
    16 20 22 0.4 10 1439.3 1426.8 0.88
    Notes:$ {x}_{1} $− fiber content,$ {x}_{2} $− lumen volume fraction,$ {x}_{3} $− fiber orientation tensor component $ {\lambda }_{1} $,$ {x}_{4} $− fiber aspect ratio
    下载: 导出CSV
  • [1] KUMAR R, UL HAQ M I, RAINA A, et al. Industrial applications of natural fibre-reinforced polymer composites – challenges and opportunities[J]. International Journal of Sustainable Engineering, 2019, 12(3): 212-220. doi: 10.1080/19397038.2018.1538267
    [2] CHANDGUDE S, SALUNKHE S. In state of art: Mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components[J]. Polymer Composites, 2021, 42(6): 2678-2703. doi: 10.1002/pc.26045
    [3] 何莉萍, 刘龙镇, 苏胜培, 等. 纤维含量对黄麻纤维增强树脂基复合材料力学与热性能的影响[J]. 复合材料学报, 2023, 40(4): 2038-2048.

    HE Liping, LIU Longzhen, SU Shengpei, et al. Effects of fiber addition on the mechanical and thermal properties of jute fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2038-2048 (in Chinese).
    [4] THYAVIHALLI GIRIJAPPA Y G, MAVINKERE RANGAPPA S, PARAMESWARANPILLAI J, et al. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review[J]. Frontiers in Materials, 2019, 6: 226. doi: 10.3389/fmats.2019.00226
    [5] SHAHRIAR KABIR M, HOSSAIN M S, MIA M, et al. Mechanical Properties of Gamma-Irradiated Natural Fiber Reinforced Composites[J]. Nano Hybrids and Composites, 2018, 23(4): 24-38.
    [6] AKASH, VENKATESHA GUPTA N S, SREENIVAS RAO K V. An Experimental Study on Sisal/Hemp Fiber Reinforced Hybrid Composites[J]. Materials Today: Proceedings, 2018, 5(2): 7383-7387. doi: 10.1016/j.matpr.2017.11.408
    [7] JOSEPH J, MUNDA P R, KUMAR M, et al. Sustainable conducting polymer composites: study of mechanical and tribological properties of natural fiber reinforced PVA composites with carbon nanofillers[J]. Polymer-Plastics Technology and Materials, 2020, 59(10): 1088-1099. doi: 10.1080/25740881.2020.1719144
    [8] KERN W T, KIM W, ARGENTO A, et al. Finite element analysis and microscopy of natural fiber composites containing microcellular voids[J]. Materials & Design, 2016, 106: 285-294.
    [9] SHARMA V, GRUJOVIC N, ZIVIC F, et al. Effective thermal and mechanical properties of randomly oriented short and long fiber composites[J]. Mechanics of Materials, 2017, 107: 56-70. doi: 10.1016/j.mechmat.2017.02.002
    [10] SLISERIS J, YAN L, KASAL B. Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites[J]. Composites Part B: Engineering, 2016, 89: 143-154. doi: 10.1016/j.compositesb.2015.11.038
    [11] SINHA A K, BHATTACHARYA S, NARANG H K. Abaca fibre reinforced polymer composites: a review[J]. Journal of Materials Science, 2021, 56(7): 4569-4587. doi: 10.1007/s10853-020-05572-9
    [12] YANG C, ZHU D, YANG F, et al. Quantitative analysis based on atomic force microscopy characterization of interfacial properties between carbon fibers and epoxy resin subjected to hygrothermal and thermal treatments[J]. Composites Science and Technology, 2020, 198: 108278. doi: 10.1016/j.compscitech.2020.108278
    [13] HAMAD S F, STEHLING N, HOLLAND C, et al. Low-Voltage SEM of Natural Plant Fibers: Microstructure Properties (Surface and Cross-Section) and their Link to the Tensile Properties[J]. Procedia Engineering, 2017, 200: 295-302. doi: 10.1016/j.proeng.2017.07.042
    [14] HAMAD S F, STEHLING N, HAYES S A, et al. Exploiting Plasma Exposed, Natural Surface Nanostructures in Ramie Fibers for Polymer Composite Applications[J]. Materials, 2019, 12(10): 1631. doi: 10.3390/ma12101631
    [15] BOGARD F, BACH T, ABBES B, et al. A comparative review of Nettle and Ramie fiber and their use in biocomposites, particularly with a PLA matrix[J]. Journal of Natural Fibers, 2022, 19(14): 8205-8229. doi: 10.1080/15440478.2021.1961341
    [16] 栾丛丛, 林志伟, 姚鑫骅, 等. 3D打印碳纤维复合材料力学性能计算与实验[J]. 材料科学与工程学报, 2023, 41(4): 540-544.

    Luan Congcong, Lin Zhiwei, Yao Xinhua, et al. Calculation and Experiment of Mechanical Properties of 3D Printed Carbon Fiber Reinforced Composite[J]. Journal of Materials Science and Engineering, 2023, 41(4): 540-544(in Chinese).
    [17] BARBERO E J. Finite Element Analysis of Composite Materials using Abaqus[M]. 2th ed. Boca Raton: CRC Press, 2023: 216-218.
    [18] HE L, LU G, CHEN D, et al. Smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites[J]. Journal of Composite Materials, 2018, 52(11): 1531-1539. doi: 10.1177/0021998317726365
    [19] HE L, LU G, CHEN D, et al. Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites[J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(5): 055007. doi: 10.1088/1361-651X/aa6dc9
    [20] 丁智平, 黄达勇, 荣继刚, 等. 注塑成型短玻纤增强复合材料各向异性弹性常数预测方法[J]. 机械工程学报, 2017, 53(24): 126-134.

    DING Zhiping, HUANG Dayong, RONG Jigang, et al. Predicting Method of Anisotropic Elastic Constants for Injection Molded Short Glass Fiber Reinforced Composites[J]. Journal of Mechanical Engineering, 2017, 53(24): 126-134(in Chinese).
    [21] LI Z, LU J, QIU R, et al. Multiscale modeling based failure criterion of injection molded SFRP composites considering skin-core-skin layered microstructure and variable parameters[J]. Composite Structures, 2022, 286: 115277. doi: 10.1016/j.compstruct.2022.115277
    [22] LI Z, LIU Z, XUE Y, et al. A novel algorithm for significantly increasing the fiber volume fraction in the reconstruction model with large fiber aspect ratio[J]. Journal of Industrial Textiles, 2022, 51(1_suppl): 506S-530S. doi: 10.1177/15280837211032078
    [23] BABU K P, MOHITE P M, UPADHYAY C S. Development of an RVE and its stiffness predictions based on mathematical homogenization theory for short fibre composites[J]. International Journal of Solids and Structures, 2018, 130-131: 80-104. doi: 10.1016/j.ijsolstr.2017.10.011
    [24] HE L, XIA F, WANG Y, et al. Mechanical and Dynamic Mechanical Properties of the Amino Silicone Oil Emulsion Modified Ramie Fiber Reinforced Composites[J]. Polymers, 2021, 13(23): 4083. doi: 10.3390/polym13234083
    [25] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Repub-lic of China. Fiber-reinforced plastics composites-Determination of tensile properties: GB/T 1447-2005[S]. Beijing: China Standards Press, 2005 (in Chinese).
    [26] 乔力伟, 桑琮辉, 王列妮, 等. 双通道供风条件下施工隧道最优风速参数研究[J]. 中国安全科学学报, 2023, 33(7): 105-112.

    QIAO Liwei, SANG Zonghui, WANG Lieni, et al. Study on optimal wind speed parameters of construction tunnel under condition of double-channel air supply[J]. China Safety Science Journal, 2023, 33(7): 105-112(in Chinese).
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 修回日期:  2024-08-15
  • 录用日期:  2024-08-25
  • 网络出版日期:  2024-08-31

目录

    /

    返回文章
    返回