留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管协同六亚甲基四胺增韧改性酚醛树脂及其性能研究

张威 李敏 毕浩宇 周钰博 王绍凯 李庆辉 韩建超 顾轶卓

张威, 李敏, 毕浩宇, 等. 碳纳米管协同六亚甲基四胺增韧改性酚醛树脂及其性能研究[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 张威, 李敏, 毕浩宇, 等. 碳纳米管协同六亚甲基四胺增韧改性酚醛树脂及其性能研究[J]. 复合材料学报, 2024, 42(0): 1-9.
ZHNAG Wei, LI Min, BI Haoyu, et al. Studies on toughening modification and the properties of phenolic resin by carbon nanotubes in collaboration with hexamethylenetetramine[J]. Acta Materiae Compositae Sinica.
Citation: ZHNAG Wei, LI Min, BI Haoyu, et al. Studies on toughening modification and the properties of phenolic resin by carbon nanotubes in collaboration with hexamethylenetetramine[J]. Acta Materiae Compositae Sinica.

碳纳米管协同六亚甲基四胺增韧改性酚醛树脂及其性能研究

详细信息
    通讯作者:

    李 敏,博士,教授,博士生导师,研究方向为先进复合材料 E-mail: leemy@buaa.edu.cn

  • 中图分类号: TB332

Studies on toughening modification and the properties of phenolic resin by carbon nanotubes in collaboration with hexamethylenetetramine

  • 摘要: 传统热固性酚醛树脂脆性大,本文采用六亚甲基四胺(HMTA)对酚醛树脂进行了化学增韧改性,并考察了碳纳米管协同改性提高酚醛树脂耐热性能的综合效应。研究发现,不同含量HMTA对酚醛树脂力学性能影响规律呈先增长后下降趋势,2.5wt%HMTA改性酚醛的力学性能最为突出,其压缩强度达到393 MPa,弯曲强度为149 MPa,相比未改性酚醛树脂分别提升24%与62%,断口分析表明增韧体系中形成的“海-岛”结构显著提升了树脂基体的力学性能。但是,HMTA导致酚醛树脂的耐热性能明显下降,在2.5wt%HMTA增韧酚醛体系中加入碳纳米管可将树脂体系的Td5提升至初始酚醛树脂的水平,同时兼具优异的增韧后力学性能。这一结果对结构/防热一体化新型酚醛树脂基体的设计研制具有重要参考价值。

     

  • 图  1  六亚甲基四胺(HMTA)与酚醛树脂的化学反应:(a) HMTA热分解;(b) HMTA分解产物与酚醛树脂交联

    Figure  1.  Chemical reaction between hexamethylenetetramine (HMTA) and phenolic resin: (a) thermal decomposition of HMTA; (b) cross-linking reaction between HMTA decomposition products and phenolic resin

    图  2  实验用碳纳米管(CNTs)扫描电镜照片

    Figure  2.  SEM images of the utilized Carbon nanotubes (CNTs)

    图  3  不同含量HMTA改性酚醛树脂半凝胶粉末的红外光谱

    Figure  3.  Infrared spectra of HMTA modified phenolic resins with different contents

    图  4  添加不同含量HMTA的酚醛树脂的 (a)压缩强度与压缩模量和 (b)弯曲强度与弯曲模量的变化

    Figure  4.  Changes in (a) compressive strength and compressive modulus and (b) flexural strength and flexural modulus of phenolic resins added with different contents of HMTA

    图  5  各组酚醛树脂弯曲浇注体断口形貌SEM照片:(a, b)PF; (c, d)PF/2.5H; (e, f)PF/5.0H; (g, h)PF/7.0H

    Figure  5.  SEM images of the fracture morphology of phenolic resin bending casting matrix in each group: (a, b) PF; (c, d) PF/2.5H; (e, f) PF/5.0H;(g, h) PF/7.0H

    图  6  不同含量HMTA改性酚醛树脂基体的DMA测试结果 (a)损耗角正切;(b)玻璃化转变温度

    Figure  6.  DMA test results of HMTA-modified phenolic resin matrix with different contents (a) tan δ; (b) Tg

    图  7  不同含量HMTA改性酚醛树脂固化后的热重曲线

    Figure  7.  Thermogravimetric curves of cured phenolic resins modified with different contents of HMTA

    图  8  CNTs与HMTA协同改性酚醛树脂固化后的热重曲线

    Figure  8.  Thermogravimetric profiles of cured phenolic resins co-modified with CNTs and HMTA

    图  9  不同含量CNTs与2.5wt%HMTA协同改性酚醛树脂的 (a)压缩性能和(b)弯曲性能。

    Figure  9.  (a) compressive and (b) flexural properties of phenolic resins co-modified with different contents of CNTs and 2.5wt%HMTA

    图  10  协同改性浇注体断口形貌及其CNTs团聚区SEM照片:(a, b) PF/2.5H-0.25CNTs; (c, d) PF/2.5H-0.50CNTs; (e, f) PF/2.5H-0.75CNTs

    Figure  10.  SEM images of fracture morphology for co-modified casting matrix and their CNTs agglomeration area:(a, b) PF/2.5H-0.25CNTs;(c, d) PF/2.5H-0.50CNTs; (e, f) PF/2.5H-0.75CNTs

    表  1  改性酚醛树脂(PF)的样品名称与组成

    Table  1.   Nominations and compositions of modified phenolic resins (PF)

    NominationsPF/gHMTA/gCNTs/g
    PF10000
    PF/2.5H97.52.50
    PF/5.0H95.05.00
    PF/7.0H93.07.00
    PF/2.5H-0.25CNTs97.52.50.25
    PF/2.5H-0.50CNTs97.52.50.50
    PF/2.5H-0.75CNTs97.52.50.75
    下载: 导出CSV

    表  2  不同含量HMTA改性酚醛树脂固化后的热性能参数

    Table  2.   Thermogravimetric analysis data of cured phenolic resins modified with different contents of HMTA

    Designation Td5/℃ Td10/℃ Residue
    at 800℃/%
    PF 362 446 63.8
    PF/2.5H 329 430 61.6
    PF/5.0H 324 425 60.3
    PF/7.0H 304 417 59.5
    Notes:Td5 is the pyrolysis temperature at 5% mass loss; Td10 is the pyrolysis temperature at 10% mass loss.
    下载: 导出CSV

    表  3  CNTs与HMTA协同改性酚醛树脂固化后的热性能参数

    Table  3.   Thermogravimetric analysis data of cured phenolic resins co-modified with CNTs and HMTA

    Designation Td5/℃ Td10/℃ Residue
    at 800℃/%
    PF 362 446 63.8
    PF/2.5H 329 430 61.6
    PF/2.5H-0.25CNTs 380 444 61.8
    PF/2.5H-0.50CNTs 392 446 62.5
    PF/2.5H-0.75CNTs 394 449 62.9
    下载: 导出CSV
  • [1] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. doi: 10.1016/j.actaastro.2020.06.047
    [2] PELIN G, PELIN C E, STEFAN A, et al. Oxy-Butane Ablation Testing of Thermal Protection Systems Based on Nanomodified Phenolic Resin Matrix Materials[J]. Polymers, 2023, 15(19): 4016. doi: 10.3390/polym15194016
    [3] GE T, TANG K, YU Y, et al. Preparation and properties of the 3-pentadecyl-phenol in situ modified foamable phenolic resin[J]. Polymers, 2018, 10(10): 1124. doi: 10.3390/polym10101124
    [4] BO C, SHI Z, HU L, et al. Cardanol derived P, Si and N based precursors to develop flame retardant phenolic foam[J]. Scientific Reports, 2020, 10(1): 12082. doi: 10.1038/s41598-020-68910-6
    [5] HU L, WANG Z, ZHAO Q. Flame retardant and mechanical properties of toughened phenolic foams containing a melamine phosphate borate[J]. Polymer-Plastics Technology and Engineering, 2017, 56(6): 678-686. doi: 10.1080/03602559.2016.1227844
    [6] TANG K, TANG X, LIU X, et al. Phenolic Foams Toughened with Triethylene Glycol by In Situ Polymerization and Prepolymerization Processes[J]. ACS Applied Polymer Materials, 2022, 4(11): 8303-8314. doi: 10.1021/acsapm.2c01277
    [7] LI X, WANG Z, WU L. Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy[J]. Rsc Advances, 2015, 5(121): 99907-99913. doi: 10.1039/C5RA19830E
    [8] WANG Z, LI X. Synthesis of CoAl-layered double hydroxide/graphene oxide nanohybrid and its reinforcing effect in phenolic foams[J]. High Performance Polymers, 2018, 30(6): 688-698. doi: 10.1177/0954008317716976
    [9] YU Y, WANG Y, XU P, et al. Preparation and characterization of phenolic foam modified with bio-oil[J]. Materials, 2018, 11(11): 2228. doi: 10.3390/ma11112228
    [10] JING S, LI T, LI X, et al. Phenolic foams modified by cardanol through bisphenol modification[J]. Journal of Applied Polymer Science, 2014, 131(4): 39942. doi: 10.1002/app.39942
    [11] YANG H, WANG X, YU B, et al. A novel polyurethane prepolymer as toughening agent: Preparation, characterization, and its influence on mechanical and flame retardant properties of phenolic foam[J]. Journal of applied polymer science, 2013, 128(5): 2720-2728. doi: 10.1002/app.38399
    [12] WANG J, WANG R, JI X, et al. Enhancing and toughening bamboo interfacial bonding strength by reactive hyperbranched polyethyleneimine modified phenol formaldehyde resin adhesive[J]. Journal of Materials Research and Technology, 2023, 26: 8213-8228. doi: 10.1016/j.jmrt.2023.09.176
    [13] YANG W, Rallini M, Natali M, et al. Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: A comparative study[J]. Materials & Design, 2019, 161: 55-63.
    [14] 张丽青, 张国利, 王伟伟等. 聚乙烯醇缩丁醛改性酚醛树脂的耐热与增韧性能[J]. 高分子材料科学与工程, 2021, 37(6): 85-93.

    ZHANG Liqing, ZHANG Guoli, WANG Weiwei, et al. Heat Resistance and Toughening Properties of Polyvinyl Butyral Modified Phenolic Resin[J]. Polymer Materials Science and Engineering, 2021, 37(6): 85-93(in Chinese).
    [15] LIU L, FU M, WANG Z. Synthesis of boron-containing toughening agents and their application in phenolic foams[J]. Industrial & Engineering Chemistry Research, 2015, 54(7): 1962-1970.
    [16] GAO M, WU W, WANG Y, et al. Phenolic foam modified with dicyandiamide as toughening agent[J]. Journal of thermal analysis and calorimetry, 2016, 124: 189-195. doi: 10.1007/s10973-015-5156-1
    [17] SONG F, JIA P, BO C, et al. Preparation and characterization of tung oil toughened modified phenolic foams with enhanced mechanical properties and smoke suppression[J]. Journal of Renewable Materials, 2020, 8(5): 535-547. doi: 10.32604/jrm.2020.09304
    [18] YU Z, LI J, YANG L, et al. Synthesis and properties of nano carboxylic acrylonitrile butadiene rubber latex toughened phenolic resin[J]. Journal of Applied Polymer Science, 2012, 123(2): 1079-1084. doi: 10.1002/app.34573
    [19] LIU W W, MA J J, ZHAN M S, et al. The toughening effect and mechanism of styrene-butadiene rubber nanoparticles for novolac resin[J]. Journal of Applied Polymer Science, 2015, 132(9): 41533. doi: 10.1002/app.41533
    [20] LIU D, WANG H, JIANG H, et al. Improving the heat-resistance and toughness performance of phenolic resins by adding a rigid aromatic hyperbranched polyester[J]. Journal of Applied Polymer Science, 2016, 133(4): 42734. doi: 10.1002/app.42734
    [21] RAVINDRAN L, MS S, ANILKUMAR S, et al. Mechanical, Morphological Behaviour and Electrical Conductivity of Phenol Formaldehyde-Flax Fabric (PF-F) Hybrid Composites Reinforced with Rice Husk Derived Nano-silica[J]. Silicon, 2023, 15(7): 3237-3250. doi: 10.1007/s12633-022-02193-6
    [22] LIU L, WANG Z. Facile synthesis of a novel magnesium amino-tris-(methylene phosphonate)-reduced graphene oxide hybrid and its high performance in mechanical strength, thermal stability, smoke suppression and flame retardancy in phenolic foam[J]. Journal of hazardous materials, 2018, 357: 89-99. doi: 10.1016/j.jhazmat.2018.05.052
    [23] LI X, WANG Z, WU L, et al. One-step in situ synthesis of a novel α-zirconium phosphate/graphene oxide hybrid and its application in phenolic foam with enhanced mechanical strength, flame retardancy and thermal stability[J]. RSC advances, 2016, 6(78): 74903-74912. doi: 10.1039/C6RA12208F
    [24] ZHU Y, WANG Z. Phenolic foams, modified by nano-metallic oxides, improved in mechanical strengths and friability[J]. Iranian Polymer Journal, 2016, 25: 579-587. doi: 10.1007/s13726-016-0447-3
    [25] TANG K, ZHANG A, Ge T, et al. Research progress on modification of phenolic resin[J]. Materials Today Communications, 2021, 26: 101879. doi: 10.1016/j.mtcomm.2020.101879
    [26] ZHANG W, JIANG N, ZHANG T, et al. Thermal stability and thermal degradation study of phenolic resin modified by cardanol[J]. Emerging Materials Research, 2020, 9(1): 180-185.
    [27] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567-2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test methods for properties of resin casting body: GB/T 2567-2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28] CORCIONE C E, FRIGIONE M. Characterization of nanocomposites by thermal analysis[J]. Materials, 2012, 5(12): 2960-2980. doi: 10.3390/ma5122960
  • 加载中
计量
  • 文章访问数:  158
  • HTML全文浏览量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-04-23
  • 录用日期:  2024-04-27
  • 网络出版日期:  2024-06-03

目录

    /

    返回文章
    返回