留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2D-C/SiC复合材料的主泊松比演化行为

郑茹悦 杨成鹏 乔成成 贾斐

郑茹悦, 杨成鹏, 乔成成, 等. 2D-C/SiC复合材料的主泊松比演化行为[J]. 复合材料学报, 2023, 40(6): 3683-3694. doi: 10.13801/j.cnki.fhclxb.20220913.003
引用本文: 郑茹悦, 杨成鹏, 乔成成, 等. 2D-C/SiC复合材料的主泊松比演化行为[J]. 复合材料学报, 2023, 40(6): 3683-3694. doi: 10.13801/j.cnki.fhclxb.20220913.003
ZHENG Ruyue, YANG Chengpeng, QIAO Chengcheng, et al. Evolution behavior of major Poisson's ratio of 2D-C/SiC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3683-3694. doi: 10.13801/j.cnki.fhclxb.20220913.003
Citation: ZHENG Ruyue, YANG Chengpeng, QIAO Chengcheng, et al. Evolution behavior of major Poisson's ratio of 2D-C/SiC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3683-3694. doi: 10.13801/j.cnki.fhclxb.20220913.003

2D-C/SiC复合材料的主泊松比演化行为

doi: 10.13801/j.cnki.fhclxb.20220913.003
基金项目: 国家自然科学基金(12072274);陕西省自然科学基础研究计划(2021JM-123)
详细信息
    通讯作者:

    杨成鹏,博士,副教授,博士生导师,研究方向为复合材料力学 E-mail: yang@mail.nwpu.edu.cn

  • 中图分类号: TB332

Evolution behavior of major Poisson's ratio of 2D-C/SiC composites

Funds: National Natural Science Foundation of China (12072274); Natural Science Basic Research Program of Shaanxi Province (2021JM-123)
  • 摘要: 泊松比是材料及其结构力学性能分析的重要参数之一。本文旨在研究2D-C/SiC复合材料主泊松比的非线性演化行为。首先,基于Mini复合材料模型与正交层压板模型,考虑纤维的横观各向同性性质,建立了2D-C/SiC复合材料的热残余应力计算模型;其次,应用剪滞理论与经典层压板理论,考虑材料的损伤与热残余应力释放机制,建立了2D-C/SiC复合材料的主泊松比计算模型;最后,通过试验表征了材料的应变响应及泊松比演化规律,并对理论模型进行了分析验证。结果表明,2D-C/SiC复合材料内部热残余应力较大,拉伸损伤过程中的热残余应力释放是负泊松比产生的原因;应力-应变曲线及泊松比演化曲线的模型预测结果均与试验曲线吻合较好,表明了理论分析模型的准确性与合理性。

     

  • 图  1  正交铺设C/SiC复合材料的特征体元

    Figure  1.  Representative volume element of cross-ply C/SiC

    图  2  同心圆柱单胞模型

    Figure  2.  Concentric cylindrical unit cell model

    图  3  圆筒截面应力示意图

    Figure  3.  Schematic illustration of stresses on cylinder section

    q—Fiber-matrix interface pressure; σφm—Circumferential stress in the matrix; ρ—Radial coordinate; φ—Angular coordinate

    图  4  Mini复合材料细观损伤模型

    Figure  4.  Mini composite model of microscopic damages

    图  5  基体裂纹间距演变规律

    Figure  5.  Evolution behavior of matrix crack spacing

    图  6  纤维和基体的应力分布

    Figure  6.  Stress distribution of fiber and matrix

    图  7  界面全部脱粘时的应力图

    Figure  7.  Stress diagram upon interface is completely debonded

    L—Matrix crack spacing; Ld—Interface sliding length

    图  8  2D-C/SiC复合材料拉伸试件形状和基本尺寸

    Figure  8.  Shape and basic dimensions of tensile specimen of 2D-C/SiC composites

    R—Radius

    图  9  2D-C/SiC复合材料纵向拉伸应力-应变曲线的试验值与预测值

    Figure  9.  Experimental and predicted longitudinal stress-strain curves of 2D-C/SiC composites

    图  10  2D-C/SiC复合材料横向应变-应力曲线及其预测值

    Figure  10.  Tested and predicted transverse strain-stress curves of 2D-C/SiC composites

    图  11  2D-C/SiC复合材料泊松比演化的试验曲线及其预测值

    Figure  11.  Tested and predicted evolution curves of Poisson's ratio of 2D-C/SiC composites

    图  12  2D-C/SiC复合材料最终裂纹间距和开裂指数对横向应变的影响

    Figure  12.  Effects of ultimate crack spacing and cracking exponent on transverse strain of 2D-C/SiC composites

    图  13  2D-C/SiC复合材料界面滑移应力、开裂指数和最终裂纹间距对泊松比曲线的影响

    Figure  13.  Effects of interface sliding stress, cracking exponent and final crack spacing on Poisson's ratio curves of 2D-C/SiC composites

    表  1  2D-C/SiC复合材料模型基本参数

    Table  1.   Basic parameters of 2D-C/SiC composites model

    ParameterValue
    Longitudinal modulus of fiber $ {E}_{1\mathrm{f}} $/GPa230
    Transverse modulus of fiber $ {E}_{2\mathrm{f}} $/GPa14
    Matrix modulus $ {E}_{\mathrm{m}} $/GPa350
    Fiber volume fraction $ {V}_{\mathrm{f}} $/vol%40
    Matrix volume fraction $ {V}_{\mathrm{m}} $/vol%60
    Fiber volume fraction in bundle $ {V}_{\mathrm{f}\mathrm{b}} $/vol%70
    Matrix volume fraction in bundle $ {V}_{\mathrm{m}\mathrm{b}} $/vol%30
    Axial Poisson's ratio of fiber $ {\nu }_{1\mathrm{f}} $20
    Transverse Poisson's ratio of fiber $ {\nu }_{2\mathrm{f}} $0.07
    Matrix Poisson's ratio $ {\nu }_{\mathrm{m}} $0.2
    CTE of matrix $ {\alpha }_{\mathrm{m}} $/$ {(10}^{-6}\;{\mathrm{K}}^{-1}) $4.6
    Axial CTE of fiber $ {\alpha }_{1\mathrm{f}} $/$ {(10}^{-6}\;{\mathrm{K}}^{-1}) $0
    Transverse CTE of fiber $ {\alpha }_{2\mathrm{f}} $/$ {(10}^{-6}\;{\mathrm{K}}^{-1}) $8.8
    Interface sliding stress $ \tau $/MPa15
    Final crack spacing $ {L}_{\mathrm{u}} $/μm180
    Initial crack spacing $ {L}_{0} $/μm2000
    Reference stress of matrix cracking $ {\sigma }_{\mathrm{R}} $/MPa46
    Minimum cracking stress $ {\sigma }^{*} $/MPa256
    Cracking exponent $ m $2.1
    Note: CTE—Coefficient of thermal expansion.
    下载: 导出CSV

    表  2  2D-C/SiC复合材料试件尺寸和拉伸试验结果

    Table  2.   Specimen size and tensile test results of 2D-C/SiC composites

    No.Width
    /mm
    Thickness
    /mm
    Modulus
    /GPa
    Strength
    /MPa
    L1 10.10 3.70 80.29 177.80
    L2 10.12 3.68 99.86 232.20
    L3 10.28 3.64 91.63 218.76
    L4 10.14 3.66 117.42 231.48
    L5 10.16 3.64 112.70 251.36
    L6 10.22 3.62 126.83 256.80
    L7 10.08 3.68 106.10 205.75
    L8 10.12 3.66 91.49 233.00
    Average 103.29 225.89
    下载: 导出CSV
  • [1] 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003, 1:24-32. doi: 10.3969/j.issn.1671-833X.2003.10.012

    ZHANG Litong, CHENG Laifei, XU Yongdong. Progress in research work of new CMC-SiC[J]. Aeronautical Manufacturing Technology,2003,1:24-32(in Chinese). doi: 10.3969/j.issn.1671-833X.2003.10.012
    [2] 何柏林, 孙佳. 碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用[J]. 硅酸盐通报, 2009, 28(6):1197-1202, 1207. doi: 10.16552/j.cnki.issn1001-1625.2009.06.025

    HE Bolin, SUN Jia. Progress and application of carbon fibers reinforced silicon carbide ceramic matrix composites[J]. Bulletin of The Chinese Ceramic Society,2009,28(6):1197-1202, 1207(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2009.06.025
    [3] WILKINS P H, LYNCH S P, THOLE K A, et al. Effect of a ceramic matrix composite surface on film cooling[J]. Journal of Turbomachinery,2022,144(8):081014. doi: 10.1115/1.4053842
    [4] 蔡兴瑞, 万逸飞, 李翰超, 等. 连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测[J]. 材料导报, 2023, 37(13):1-12.

    CAI Xingrui, WAN Yifei, LI Hanchao, et al. Digital modeling of the natural microstructures and evaluation of the overall anisotropic moduli of ceramic matrix composites toughened by continuous SiC fiber bundles[J]. Materials Reports,2023,37(13):1-12(in Chinese).
    [5] 李俊, 矫桂琼, 王波, 等. 二维编织C/SiC复合材料非线性损伤本构模型与应用[J]. 复合材料学报, 2013, 30(1):165-171. doi: 10.13801/j.cnki.fhclxb.2013.01.034

    LI Jun, JIAO Guiqiong, WANG Bo, et al. A non-linear damage constitutive model for 2D woven C/SiC composite material and its application[J]. Acta Materiae Compositae Sinica,2013,30(1):165-171(in Chinese). doi: 10.13801/j.cnki.fhclxb.2013.01.034
    [6] BASTE S. Inelastic behaviour of ceramic-matrix composites[J]. Composites Science and Technology,2001,61(15):2285-2297. doi: 10.1016/S0266-3538(01)00122-1
    [7] 杨成鹏, 矫桂琼. 界面对纤维增强陶瓷基复合材料拉伸性能的影响[J]. 复合材料学报, 2010, 27(3):116-121. doi: 10.13801/j.cnki.fhclxb.2010.03.020

    YANG Chengpeng, JIAO Guiqiong. Effects of interface on tensile properties of fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2010,27(3):116-121(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.03.020
    [8] NARDONE V C, PREWO K M. Tensile performance of carbon-fibre-reinforced glass[J] Journal of Materials Science, 1988, 23(1): 168-180.
    [9] SORENSEN B F, TALREJA R, SORENSEN O T. Micromechanical analysis of damage mechanisms in ceramic matrix composites during mechanical and thermal cycling[J]. Composites,1993,24(2):129-140. doi: 10.1016/0010-4361(93)90009-W
    [10] 梅辉, 成来飞, 张立同, 等. 2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征[J]. 硅酸盐学报, 2007, 35(2):137-143. doi: 10.3321/j.issn:0454-5648.2007.02.002

    MEI Hui, CHENG Laifei, ZHANG Litong, et al. Damage evolution and microstructural characterization of a cross-woven C/SiC composite under tensile loading[J]. Journal of The Chinese Ceramic Society,2007,35(2):137-143(in Chinese). doi: 10.3321/j.issn:0454-5648.2007.02.002
    [11] 杨成鹏, 矫桂琼, 王波. 2D-C/SiC复合材料的单轴拉伸力学行为及其强度[J]. 力学学报, 2011, 43(2):137-143.

    YANG Chengpeng, JIAO Guiqiong, WANG Bo. Uniaxial tensile stress-strain behavior and strength of plain woven C/SiC composite[J]. Chinese Journal of Theoretical and Applied Mechanics,2011,43(2):137-143(in Chinese).
    [12] VANSWIJGENHOVEN E, WEVERS M, BIEST O V D. The transverse strain response of cross-plied fibre-reinforced ceramic-matrix composites[J]. Composites Science and Technology,1999,59(10):1469-1481. doi: 10.1016/S0266-3538(98)00186-9
    [13] CADDOCK B D, EVANS K E. Microporous materials with negative Poisson's ratios: I. Microstructure and mechanical properties[J]. Journal of Physics D: Applied Physics,1989,22(12):1877-1882. doi: 10.1088/0022-3727/22/12/012
    [14] ALDERSON K L, FITZGERALD A, EVANS K E. The strain dependent indentation resilience of auxetic microporous polyethylene[J]. Journal of Materials Science,2000,35(16):4039-4047. doi: 10.1023/A:1004830103411
    [15] HABIB F A, TAYLOR R A J, COOKE R G, et al. Fatigue damage in SiC/CAS composites[J]. Composites,1993,24(2):157-165. doi: 10.1016/0010-4361(93)90012-W
    [16] HARRIS B, HABIB F A, COOKE R G. Matrix cracking and the mechanical behaviour of SiC-CAS composites[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,1992,437(1899):109-131.
    [17] CAMUS G, GUILLAUMAT L, BASTE S. Development of damage in a 2D woven C/SiC composite under mechanical loading: I. Mechanical characterization[J]. Composites Science and Technology,1996,56(12):1363-1372. doi: 10.1016/S0266-3538(96)00094-2
    [18] 郭洪宝, 洪智亮, 李开元, 等. 2D-C/SiC复合材料轴向加载泊松效应[J]. 材料工程, 2021, 49(8):178-183. doi: 10.11868/j.issn.1001-4381.2019.001217

    GUO Hongbao, HONG Zhiliang, LI Kaiyuan, et al. Poisson effects of 2D-C/SiC composite under axial loading conditions[J]. Journals of Materials Engineering,2021,49(8):178-183(in Chinese). doi: 10.11868/j.issn.1001-4381.2019.001217
    [19] VEDULA M, PANGBORN R N, QUEENEY R A. Fibre anisotropic thermal expansion and residual thermal stress in a graphite/aluminium composite[J]. Composites,1988,19(1):55-60. doi: 10.1016/0010-4361(88)90544-7
    [20] KASTRITSEAS C, SMITH P A, YEOMANS J A. Thermal shock fracture in cross-ply fibre-reinforced ceramicmatrix composites[J]. Philosophical Magazine,2010,90(31-32):4209-4226. doi: 10.1080/14786431003785621
    [21] YANG C P, ZHANG L, WANG B, et al. Tensile behavior of 2D-C/SiC composites at elevated temperatures: Experiment and modeling[J]. Journal of the European Ceramic Society,2017,37(4):1281-1290. doi: 10.1016/j.jeurceramsoc.2016.11.011
    [22] KASTRITSEAS C, SMITH P A, YEOMANS J A. Thermal shock fracture in unidirectional fibre-reinforced ceramic-matrix composites[J]. Composites Science and Technology,2005,65(11):1880-1890.
    [23] RAN Z G, YAN Y, LI J F, et al. Determination of thermal expansion coefficients for unidirectional fiber-reinforced composites[J]. Chinese Journal of Aeronautics,2014,27(5):1180-1187. doi: 10.1016/j.cja.2014.03.010
    [24] HSUEH C H. Crack-wake interfacial debonding criteria for fiber-reinforced ceramic composites[J]. Acta Materialia,1996,44(6):2211-2216. doi: 10.1016/1359-6454(95)00369-X
    [25] AHN B K, CURTIN W A. Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites[J]. Journal of the Mechanics and Physics of Solids,1997,45(2):177-209. doi: 10.1016/S0022-5096(96)00081-6
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  985
  • HTML全文浏览量:  388
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 修回日期:  2022-08-23
  • 录用日期:  2022-09-05
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回