留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻燃、抗熔滴一体化CNSs-BA/PET复合材料的制备及性能

肖云超 杨雅茹 陈建航 曹红 付建勋 孔文龙

肖云超, 杨雅茹, 陈建航, 等. 阻燃、抗熔滴一体化CNSs-BA/PET复合材料的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 肖云超, 杨雅茹, 陈建航, 等. 阻燃、抗熔滴一体化CNSs-BA/PET复合材料的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-11.
XIAO Yunchao, YANG Yaru, CHENG Jianhang, et al. Preparation and properties of CNSs-BA/PET composites integrated with flame retardancy and melt-drop resistance[J]. Acta Materiae Compositae Sinica.
Citation: XIAO Yunchao, YANG Yaru, CHENG Jianhang, et al. Preparation and properties of CNSs-BA/PET composites integrated with flame retardancy and melt-drop resistance[J]. Acta Materiae Compositae Sinica.

阻燃、抗熔滴一体化CNSs-BA/PET复合材料的制备及性能

基金项目: 浙江省自然科学基金(LQ22C100002);嘉兴市科技计划项目-青年科技人才专项(2023AY40034);嘉兴大学SRT计划项目(8517231012)。
详细信息
    通讯作者:

    杨雅茹,博士,讲师,硕士生导师,研究方向为阻燃材料 E-mail: yyr0515@zjxu.edu.cn

  • 中图分类号: TB332

Preparation and properties of CNSs-BA/PET composites integrated with flame retardancy and melt-drop resistance

Funds: Natural Science Foundation of Zhejiang Province (No. LQ22C100002); Jiaxing Science and Technology Program Project-Young Science and Technology Talents Special Project (No. 2023AY40034); Jiaxing University SRT Program Project (No. 8517231012)
  • 摘要: 聚对苯二甲酸乙二醇酯(PET)的易燃问题极大地威胁着人们的生命和财产安全,但通用阻燃剂无法兼顾其阻燃和抗熔滴需求。为同时改善PET的阻燃性和抗熔滴性,在碳纳米球(CNSs)表面接枝芳香席夫碱(BA)制备了一种新型的纳米碳基复合阻燃剂CNSs-BA,并将其通过熔融共混法引入PET中制备了复合材料。对CNSs-BA阻燃剂的形貌结构和热稳定性进行了表征,并研究了CNSs-BA/PET复合材料的阻燃性及其阻燃机制。结果表明:CNSs-BA为粒径50 nm左右的球状颗粒,热稳定性良好。当CNSs-BA添加量仅为2.0wt.%时,CNSs-BA/PET的LOI从PET的21.0%提高至28.1%,阻燃等级达到UL-94 V-0级,峰值热释放速率降低了46.3%。阻燃机制研究表明:CNSs-BA/PET表现出典型的凝聚相阻燃机制,CNSs-BA的引入可显著提高PET的成炭性,CNSs-BA/PET的高温残炭量较纯PET提高了55.4%,且其成炭量的实际值大于理论值。与纯PET相比,CNSs-BA阻燃剂的引入使PET熔融之后发生了高温交联,使得CNSs-BA/PET燃烧生成的炭层致密性、连续性和热稳定性均显著提高。

     

  • 图  1  碳纳米球(CNSs)-芳香席夫碱(BA)制备示意图

    Figure  1.  Schematic diagram of the preparation of carbon nanospheres (CNSs)- Schiff bases (BA)

    图  2  CNSs(a)和CNSs-BA(b)的SEM图和EDS能谱图

    Figure  2.  SEM and EDS images of CNSs (a) and CNSs-BA (b)

    图  3  CNSs和CNSs-BA的红外光谱

    Figure  3.  Infrared spectra of CNSs和CNSs-BA

    图  4  CNSs和CNSs-BA的TG(a)和DTG(b)曲线

    Figure  4.  TG(a) and DTG(b) curves of CNSs and CNSs-BA

    图  5  CNSs-BA/PET的热释放速率(a)和总热释放(b)曲线

    Figure  5.  Curves of heat release rate (HRR) and total heat release (THR) of CNSs-BA/PET

    图  6  CNSs、CNSs-BA以及PET、CNSs/PET、CNSs-BA/PET的TG(a)和DTG(b)曲线

    Figure  6.  TG (a) and DTG (b) curves of CNSs, CNSs-BA, PET, CNSs/PET and CNSs-BA/PET

    图  7  PET(a)、CNSs/PET(b)和CNSs-BA/PET(c)残炭的SEM图

    Figure  7.  SEM images of the char residues of PET(a), CNSs/PET(b)和CNSs-BA/PET(c)

    图  8  残炭的TG曲线

    Figure  8.  TG curves of the char residues

    图  9  PET、CNSs/PET和CNSs-BA/PET的TG-DSC曲线

    Figure  9.  TG-DSC curves of PET, CNSs/PET, and CNSs-BA/PET

    图  10  PET复合材料的抗拉强度(a)和断裂伸长率(b)

    Figure  10.  Tensile strength (a) and elongation at break (b) of PET composites

    表  1  LOI和UL 94垂直燃烧测试结果

    Table  1.   LOI and UL 94 vertical burning test results

    Samples Flame retardant content/wt.% LOI /% UL 94 Vertical combustion test results
    t1 /s t2 /s t3 /s Ignite cotton? Rate
    PET 21.0 Burn out Yes NR
    CNSs/PET 0.5 23.2 2.6 2.5 0 Yes V-2
    1.0 25.0 2.4 2.4 0 Yes V-2
    2.0 26.2 2.4 2.8 0 Yes V-2
    3.0 24.6 3.1 2.2 0 Yes V-2
    CNSs-BA/PET 0.5 24.0 1.5 2.3 0 Yes V-2
    1.0 26.9 1.2 2.1 0 Yes V-2
    2.0 28.1 0.5 2.2 0 No V-0
    3.0 27.5 0.6 1.9 0 No V-0
    Notes: t1-Afterglow time after the first application of flame, t2-Afterglow time after the second application of flame, t3-Afterglow time.
    下载: 导出CSV

    表  2  锥形量热仪测试数据

    Table  2.   Data of cone calorimeter test

    Samples FR content/wt.% TTI/s Time to pk-HRR/s pk-HRR/(kW·m−2) THR/(MJ·m−2)
    PET 0 47 104 810.45 150.27
    CNSs/PET 0.5 44 34 528.96 151.64
    1 34 34 503.44 148.03
    2 40 41 470.72 146.06
    3 30 29 501.49 143.19
    CNSs-BA/PET 0.5 35 39 485.54 146.54
    1 31 55 469.98 156.04
    2 34 39 433.90 146.54
    3 30 39 466.05 156.69
    Notes: TTI- Time to ignition, pk-HRR- Peak heat release rate, THR- Total heat release.
    下载: 导出CSV

    表  3  CNSs、CNSs-BA以及PET、CNSs/PET、CNSs-BA/PET在氮气气氛下的TG-DTG数据

    Table  3.   TG-DTG data of CNSs, CNSs-BA, PET, CNSs/PET and CNSs-BA/PET under nitrogen atmosphere

    Samples Tonset /℃ Tmax /℃ CR500℃ /% ∆CR500℃/%c
    exp.a/cal.b
    CNSs >800℃ - 96.88/- -
    CNSs-BA 476.4 - 94.92/- -
    PET 379.1 419.1 10.09/- -
    CNSs/PET 380.1 421.4 13.97/11.52 2.45
    CNSs-BA/PET 382.0 420.1 15.68/11.79 3.89
    Note: a CR500℃, exp. is the experimental value of char residue; b CR500℃, cal. is the calculated value of char residue; c ∆CR500℃ = CR500℃, exp. - CR500℃, cal.
    下载: 导出CSV

    表  4  PET、CNSs/PET和CNSs-BA/PET在空气气氛下的TG-DTG数据

    Table  4.   TG-DTG data of PET, CNSs/PET and CNSs-BA/PET under air atmosphere

    SamplesTonset/℃Tmax-1/Tmax-2/℃
    PET397.3433.4585.1
    CNSs/PET359.1438.4567.5
    CNSs-BA/PET391.0439.7563.3
    Notes: Tonset - initial weightlessness temperature, Tmax-1- Maximum weightlessness temperature in the first stage, Tmax-2- Maximum weightlessness temperature of the second stage.
    下载: 导出CSV

    表  5  PET、CNSs/PET和CNSs-BA/PET裂解产物

    Table  5.   Pyrolysis products of PET, CNSs/PET and CNSs-BA/PET

    Pyrolysis products which found only in PET Tetrahydropyran, 2,2-dimethylpropanal, 4,8,12-trimethyl-tridecanoic acid methyl ester, 2,2-dimethoxybutane, 2-methyl-1,5-hexadien-3-yne, 1,6-heptadiyne, p-xylene, decane, methyl benzoate, dodecylethyl ketone, 1-(3-methylphenyl), benzyl, (2-methyl-1-methylenepropylidene), 4-methylphenyl-1-pentyn-3 -ol phenol, dimethyl 1,3-benzenedicarboxylate, vinylmethyl terephthalate, diphenylacetylene, biphenyl-4-ylacetophenone, 1-(5,5-dimethyl-1,3-dioxocyclohexan-2-ylidene)-2-(N-ethylbenzothiazol-2-ylidene)-ethanes, phthalic acid, 4-formylphenyl ester, o-tertiaryl tricyclic [8.2.2.2(4,7)]hexadeca- 2,4,6,8,10,12,13,15-octene, 4-(diethylaminomethyl)-2,5-dimethylphenol
    Pyrolysis products which found only in CNSs/PET Phenol, 1,2-dihydro-indene, 1-(4-methylphenyl)-ethanone, stilbene, 1 H-cyclopropyl[l]phenanthrene, dihydro-p-terphenyl, 1-naphthol, fluorene-9-methanol, 2-ethyl-1,1'-biphenyl, 1,1-diphenylethene, 4-(2-benzoyl-5-phenyl-3-thienyl)-1,2-dihydrophenanthrene 2-phenylnaphthalenyl benzoate, 1,1-dihydro-2-phenylnaphthalenyl benzoate, 3-chlorobenzylnononyl, 1-(2,5-dimethylphenyl)ethanone, 1-(2,5-dimethylphenyl)ethanone, 1-(2,5-dimethylphenyl)ethanone, 1-(2,5-dimethylphenethyl) ethanone, 3-chlorobenzylnonyl, 1-(2,5-dimethylphenyl) acetone dimethyl-1 H-indene, diethylmalonic acid, 3-chlorobenzylnonyl ester, 1-(2,5-dimethylphenyl) ethanone
    Pyrolysis products which found only in CNSs-BA/PET 1,5-Hexadiyne, dimethylamine, nitrous oxide, 1,1'-(1,4-phenylene)bis-acetophenone, 2-methylindene, azobenzene, benzene, (1-methyl-2-cyclopropen-1-yl)-2-methylindene, stilbene, ethylketone, 1-(3,4-dimethylphenyl), ethylketone, 1-(4-methylphenyl), 1-ethenyl-4-methylbenzene, dibenzofuran, 2-naphthol, 4-hydroxy-1,2,3,4-tetrahydrophenanthrene, 9,10-dihydrophenanthrene, benzopropiophenone, fluorene, 4-vinylbiphenyl, 1,2,3,4-tetrahydrofil, 9,10-dihydrofil, fluorene, 4-vinylbiphenyl, 1,4-vinylbiphenyl. hydroxy-1,2,3,4-tetrahydrophenanthrene, 9,10-dihydrophenanthrene, phenylacetone, fluorene, 4-vinylbiphenyl, 1,3,5-cycloheptatriene, 2-phenylnaphthalene, 1-acrylbenzene, 2-methylnaphthalene, 4-(2-benzoyl-5-phenyl-3-thienyl)-methylbenzoic acid, 1,3-dimethyl-1 H-indene, tricyclohexen-8-ol, hexaethylcyclohexane, 9- phenyl-9-fluorenol, ethylene oxide, methoxyphenyltricyclohexadecen-5-ylmethanol, 4-benzylbiphenyl, tritylbenzene, 9-phenylanthracene, 3-(1-phenylethoxy)-3 H-isobenzofuran-1-one, 4-phenyl-3,4-dihydroisoquinoline, oxetane,-2-phenyl,-3-phenylethynyl, tetraphenyl, 1-[4-(2-phenylethenyl)phenyl]-ethanone, acenaphthene, 1,2 ,3,5-tetraisopropyl-cyclohexane, 6,9-dimethoxy-phenazine-1-carboxylic acid, [1,1'-biphenyl]-4-yl-phenylmethanone, 1,1':4',1''-3'-methyltriphenylene
    Pyrolysis products which found both in PET and CNSs/PET Acetophenone, benzoic acid, biphenyl, 2-methyl-1,1'-biphenyl, 1,1'-(1,4-phenylene)bisacetophenone, p-terphenyl
    Pyrolysis products which found both in PET and CNSs-BA/PET Styrene, acetophenone, benzoic acid, biphenyl, 2-ethyl-1,1'-biphenyl, benzophenone, 9 H-fluoren-9-one, p-terphenyl
    Pyrolysis products which found both in CNSs/PET and CNSs-BA/PET Benzene, biphenyl, acetophenone, naphthalene, toluene, phenanthrene, indene, 6,6-diphenylfulvene, p-terphenyl, methylstyrene, biphenylacetophenone, 4-ethylbiphenyl, diphenylmethane
    Pyrolysis products found in PET, CNS/PET and CNSs-BA/PET Acetophenone, benzoic acid, biphenyl, p-terphenyl
    下载: 导出CSV
  • [1] 中国化学纤维工业协会. 中国化纤行业发展规划研究(2021~2025) [M]. 北京: 中国纺织出版社, 2021.

    China Chemical Fiber Industry Association. Study on the Development Plan of China's Chemical Fiber Industry (2021~2025) [M]. Beijing: China Textile Press, 2021(in Chinese).
    [2] 刘天明, 赵东, 沈育才, 等. 热塑性聚酯弹性体复合材料的制备与阻燃性能[J]. 复合材料学报, 2024, 41(3): 1249-1258.

    LIU T M, ZHAO D, SHEN Y C, et al. Preparation and flame retardancy of thermoplastic polyester elastomer composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1249-1258(in Chinese).
    [3] NI Y P, WU W S, CHEN L, et al. How hydrogen bond interactions affect the flame retardancy and anti-dripping performances of PET[J]. Macromolecular Materials and Engineering, 2019, 305(1): 1900661.
    [4] SALMEIA K A, GOONEIE A, SIMONETTI P, et al. Comprehensive study on flame retardant polyesters from phosphorus additives[J]. Polymer Degradation and Stability, 2018, 155: 22-34. doi: 10.1016/j.polymdegradstab.2018.07.006
    [5] WANG C, WU L, DAI Y, et al. Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET[J]. Polymer Degradation and Stability, 2018, 154: 239-247. doi: 10.1016/j.polymdegradstab.2018.06.005
    [6] LI Z, FU T, GUO D M, et al. Trinity flame retardant with benzimidazole structure towards unsaturated polyester possessing high thermal stability, fire-safety and smoke suppression with in-depth insight into the smoke suppression mechanism[J]. Polymer, 2023, 275: 125928. doi: 10.1016/j.polymer.2023.125928
    [7] ZHAO H B, WANG Y Z Design and synthesis of PET-based copolyesters with flame-retardant and antidripping performance[J]. Macromolecular Rapid Communications, 2017, 38(23): 1700451.
    [8] CHEN L, ZHAO H, NI Y, et al. 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking[J]. Journal of Materials Chemistry A, 2019, 7: 17037-17045. doi: 10.1039/C9TA04187G
    [9] WU J N, CHEN L, FU T, et al. New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters[J]. Chemical Engineering Journal, 2018, 336: 622-632. doi: 10.1016/j.cej.2017.12.047
    [10] LIU B, LIU Q, PAN Y, et al. An impact-resistant and flame-retardant CNTs/STF/Kevlar composite with conductive property for safe wearable design[J]. Composites Part A: Applied Science and Manufacturing, 2023, 168: 107489. doi: 10.1016/j.compositesa.2023.107489
    [11] GUO Z, WANG Z, FANG Z. Fabrication of 9, 10-dihydro-9-oxa-10-phosphaphenanTHRene-10-oxide-decorated fullerene to improve the anti-oxidative and flame-retardant properties of polypropylene[J]. Composites Part B: Engineering, 2019, 183: 107672.
    [12] LIANG Q, PAN Y, LU T, et al. Study on the thermal stability and flame retardancy of nanocarbon black based layer-by-layer self-assembled coating modified flexible polyurethane foam[J]. Polymer-Plastics Technology and Materials, 2022, 5(8): 61.
    [13] YUAN B, SUN Y, CHEN X, et al. Poorly-/well-dispersed graphene: Abnormal influence on flammability and fire behavior of intumescent flame retardant[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 345-354. doi: 10.1016/j.compositesa.2018.03.022
    [14] 季亚明, 杨雅茹, 姚勇波等. 碳纳米球基氮-磷-硫复合阻燃剂的合成及其对环氧树脂的阻燃性能[J]. 材料研究学报, 2021, 35(12): 918-924.

    JI Y M, YANG Y R, YAO Y B, et al. Synthesis of carbon nanosphere-based nitrogen-phosphorus-sulfur composite flame retardants and their flame retardant properties on epoxy resin[J]. Journal of Materials Research, 2021, 35(12): 918-924 (in Chinese).
    [15] WANG X, KALALI E N, WAN J T, et al. Carbon-family materials for flame retardant polymeric materials[J]. Progress in Polymer Science, 2017, 69: 22-46. doi: 10.1016/j.progpolymsci.2017.02.001
    [16] LEE G W, KIM J, YOON J, et al. Structural characterization of carboxylated multi-walled carbon nanotubes[J]. Thin Solid Films, 2008, 516(17): 5781-5784. doi: 10.1016/j.tsf.2007.10.071
    [17] HUI Q C, YAN X L I,. TIAN W Z Combustion characteristics and flame retardant mechanism of warm-mixed flame-retardant asphalt based on cone calorimeter[J]. World of mining-surface & underground, 2022, 1: 74.
    [18] JIANG J, CHEN H, WANG Z, et al. Nitrogen-doped hierarchical porous carbon microsphere THRough KOH activation for supercapacitors[J]. Journal of Cold and Interface Science, 2015, 452: 54-61. doi: 10.1016/j.jcis.2015.04.012
    [19] ZHI Y, WANG X, QIAN L, et al. Adsorption charring flame retardant effect of phosphaphenanTHRene derivate intercalated micro-expanded graphite composite system in rigid polyurethane foams[J]. Polymer Degradation and Stability, 2023, 216: 110493. doi: 10.1016/j.polymdegradstab.2023.110493
    [20] TANG W, QIAN L, PROLONGO S G, et al. Small core of piperazine/silane aggregation initiate efficient charring flame retardant effect in polypropylene composites[J]. Polymer Degradation and Stability, 2023, 208: 110265. doi: 10.1016/j.polymdegradstab.2023.110265
    [21] ZHAO H B, CHEN L, YANG J C, et al. A novel flame-retardant-free copolyester: cross-linking towards self extinguishing and non-dripping[J]. Journal of Materials Chemistry, 2012, 22(37): 19849-19857. doi: 10.1039/c2jm34376b
    [22] COONEY J D, DAY M, WILES D M Thermal degradation of poly(ethylene terephthalate): A kinetic analysis of thermogravimetric data[J]. Journal of Applied Polymer Science, 1983, 28(9): 2887-2902.
    [23] DU Y, JIANG X, LV G, et al. TG-DSC and FTIR study on pyrolysis of irradiation cross-linked polyethylene[J]. Journal of Material Cycles and Waste Management, 2017, 19(4): 1400-1404. doi: 10.1007/s10163-016-0530-z
    [24] GHYSELS S, RATHNAYAKE D, MAZIARKA P, et al. Biochar stability scores from analytical pyrolysis (Py-GC-MS)[J]. Journal of analytical & applied pyrolysis, 2022, 161: 105412.
    [25] LIU H Y, XIN F, DU J Y, et al. The behavior and mechanism of tris-(3-dopo-propyl)-triazine trione flame retardant polyethylene terephthalate[J]. Journal of Applied Polymer Science, 2023, 140(29): 54069. doi: 10.1002/app.54069
  • 加载中
计量
  • 文章访问数:  35
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 修回日期:  2024-05-24
  • 录用日期:  2024-05-28
  • 网络出版日期:  2024-06-18

目录

    /

    返回文章
    返回