留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯醇和超高分子量聚乙烯纤维对全珊瑚混凝土动态力学性能影响与数值模拟

刘晋铭 张寿松 周亭 尹青 谢伟

刘晋铭, 张寿松, 周亭, 等. 聚乙烯醇和超高分子量聚乙烯纤维对全珊瑚混凝土动态力学性能影响与数值模拟[J]. 复合材料学报, 2023, 40(6): 3617-3629 doi: 10.13801/j.cnki.fhclxb.20220901.002
引用本文: 刘晋铭, 张寿松, 周亭, 等. 聚乙烯醇和超高分子量聚乙烯纤维对全珊瑚混凝土动态力学性能影响与数值模拟[J]. 复合材料学报, 2023, 40(6): 3617-3629 doi: 10.13801/j.cnki.fhclxb.20220901.002
LIU Jinming, ZHANG Shousong, ZHOU Ting, YIN Qing, XIE Wei. Influence of polyvinyl alcohol and ultrahigh molecular weight polyethylene fibers on dynamic mechanical properties of coral aggregate concrete and numerical simulation[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3617-3629. doi: 10.13801/j.cnki.fhclxb.20220901.002
Citation: LIU Jinming, ZHANG Shousong, ZHOU Ting, YIN Qing, XIE Wei. Influence of polyvinyl alcohol and ultrahigh molecular weight polyethylene fibers on dynamic mechanical properties of coral aggregate concrete and numerical simulation[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3617-3629. doi: 10.13801/j.cnki.fhclxb.20220901.002

聚乙烯醇和超高分子量聚乙烯纤维对全珊瑚混凝土动态力学性能影响与数值模拟

doi: 10.13801/j.cnki.fhclxb.20220901.002
基金项目: 国家自然科学基金(51709200)
详细信息
    通讯作者:

    谢伟,本科,高级工程师,硕士生导师,研究方向为结构工程 E-mail: xieweixiongqi@163.com

  • 中图分类号: TU528

Influence of polyvinyl alcohol and ultrahigh molecular weight polyethylene fibers on dynamic mechanical properties of coral aggregate concrete and numerical simulation

Funds: Natural Science Foundation of China (51709200)
  • 摘要: 随着海洋资源的不断开发利用,在岛礁上就地取材制备全珊瑚混凝土已经成为岛礁工程建设与防护的关键技术。为探究不同有机非金属纤维掺量对全珊瑚混凝土的力学性能的影响,使用分离式霍普金森压杆(SHPB)试验研究其动态力学性能并采用LS-DYNA软件对冲击过程进行数值模拟。结果表明:当有机纤维质量分数为1.2wt%时,全珊瑚混凝土的静态抗压强度可达到113 MPa,相比未掺纤维的珊瑚混凝土增长了约7.5%。动态试验下,在应变率为120 s−1时动态抗压强度可达到247 MPa,比未掺加纤维的试样提高约32.6%。全珊瑚混凝土的韧性指标也随着有机纤维掺量的增加而增大。此外,随着有机纤维掺量的增加,珊瑚混凝土试件在相同冲击条件下完整性越高。动态强度试验值与模拟值的误差7%在允许误差内。

     

  • 图  1  不同粒径珊瑚集料

    Figure  1.  Coral aggregates with different particle sizes

    图  2  混凝土试样

    Figure  2.  Concrete specimens

    图  3  50 mm直锥变截面分离式霍普金森压杆(SHPB)装置示意图

    Figure  3.  Split hopkinson pressure bar (SHPB) diagram of 50 mm straight cone variable cross-section

    v—Velocity

    图  4  典型的力平衡图

    Figure  4.  Dynamic force balance for a typical text

    图  5  应变率-时程曲线

    Figure  5.  Strain rate-time history curve

    t0—; t1

    图  6  PVA-UHMWPE/全珊瑚混凝土试件破坏形态

    Figure  6.  Failure modes of PVA-UHMWPE/coral aggregate concrete specimens

    图  7  PVA-UHMWPE/全珊瑚混凝土应力-应变曲线

    Figure  7.  Stress-strain curve of PVA-UHMWPE/coral aggregate concrete

    图  8  PVA-UHMWPE/全珊瑚混凝土动态压缩强度(a)和动态增长因子(b)随应变率的变化关系

    Figure  8.  Variation of dynamic compressive strength (a) and dynamic increase factor (b) with strain rate for PVA-UHMWPE/coral aggregate concrete

    图  9  混凝土韧性计算示意图

    Figure  9.  Schematic diagram of the calculation for toughness of concrete

    T—Toughness

    图  10  PVA-UHMWPE/全珊瑚混凝土韧性指标随纤维质量分数变化关系

    Figure  10.  Variation of toughness index of PVA-UHMWPE/coral aggregate concrete with the mass percent of organic fiber

    图  11  PVA-UHMWPE/全珊瑚混凝土有限元计算模型

    Figure  11.  Finite element calculation model of PVA-UHMWPE/coral aggregate concrete

    图  12  PVA-UHMWPE/全珊瑚混凝土应力-应变试验与模拟曲线

    Figure  12.  Stress-strain test and simulation curves of PVA-UHMWPE/coral aggregate concrete

    13  PVA-UHMWPE/全珊瑚混凝土不同应变率下破坏形态的数值模拟与实验结果

    13.  Numerical and experimental results of failure modes for PVA-UHMWPE/coral aggregate concretes under different strain rates

    表  1  目标混凝土配合比

    Table  1.   Mixing ratio of designed concrete

    Cement/
    (kg·m−3)
    Micro-silica/
    (kg·m−3)
    Slag/
    (kg·m−3)
    Cenos-phere/
    (kg·m−3)
    A1/
    (kg·m−3)
    A2/
    (kg·m−3)
    A3/
    (kg·m−3)
    Fiber mass
    percent/wt%
    Mixed water/
    (kg·m−3)
    Water reducing
    agent/(kg·m−3)
    567230140632406401200, 0.6, 1.22202.2
    Notes: A1—Coral fine sand (0.075-0.3 mm); A2—Coral medium sand (0.3-0.6 mm); A3—Coral coarse sand (0.6-1.18 mm).
    下载: 导出CSV

    表  2  不同纤维质量分数的PVA-UHMWPE/全珊瑚混凝土的力学参数

    Table  2.   Mechanical parameters of PVA-UHMWPE/coral aggregate concrete with different fiber mass percent

    Fiber
    mass fraction/wt%
    fcs/MPaEs/GPaStrain rate/s−1fDDynamic compressive
    strength/MPa
    Dynamic peak
    strain/10−3
    0105.3135.7853.61.22128.565.6
    69.41.44152.895.7
    126.91.78187.046.4
    0.6108.2636.2163.71.36147.165.3
    105.51.76191.065.4
    140.91.84199.706.1
    1.2113.2437.5669.81.39157.495.3
    101.61.86210.446.7
    137.12.19247.996.9
    Notes: fcs—Static compressive strength; Es—Static modulus of elasticity; fD—Dynamic increase factor.
    下载: 导出CSV

    表  3  PVA-UHMWPE/全珊瑚混凝土的HJC本构模型参数

    Table  3.   HJC model parameters for PVA-UHMWPE/coral aggregate concrete

    $ \rho $/(kg·m−3)Es/GPaABCNSf, maxfcs/MPa
    220035.780.791.600.0070.617105.31
    T/MPaS0εf, minPc/MPaUcPl/GPaUlD1
    6.3610.0135.100.0010.80.110.04
    D2K1/GPaK2/GPaK3/GPa
    1.085171208
    Notes: ρ—Density; Es—Elastic modulus; A, B, N, C, Sf, max—Strength parameter; fcs—Static compressive strength; T—Tensile strength; S0—Reference strain rate; εf, min—Minimum plastic strain; Pc—Crushing pressure; Uc—Crushing volumetric strain; Pl—Locking pressure; Ul—Volumetric strain at the locking pressure Pl; D1, D2—Damage constants; K1, K2, K3—Pressure constants.
    下载: 导出CSV

    表  4  PVA-UHMWPE/全珊瑚混凝土试验值与数值模拟值对比

    Table  4.   Comparison of experimental and numerical simulation values for PVA-UHMWPE/coral aggregate concretes

    Fiber mass fraction/wt%Strain rate/s−1Compressive strength/MPaAbsolute value of error/MPa
    Test valueSimulation value
    0 53.6 128.56 122.24 6.32
    69.4 152.89 159.66 6.77
    126.9 187.04 169.42 17.62
    0.6 63.7 147.16 153.13 5.97
    105.5 191.06 180.77 10.29
    140.9 199.70 197.83 1.87
    1.2 69.8 157.49 164.60 7.11
    101.6 210.44 198.62 11.82
    137.1 247.99 247.39 0.60
    下载: 导出CSV
  • [1] 岳承军, 余红发, 麻海燕, 等. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16):2697-2703. doi: 10.11896/cldb.18070094

    YUE Chengjun, YU Hongfa, MA Haiyan, et al. Experimental study on dynamic impact properties of coral aggregate seawater concrete[J]. Materials Reports,2019,33(16):2697-2703(in Chinese). doi: 10.11896/cldb.18070094
    [2] NARVER D L. Good concrete made with coral and water[J]. Civil Engineering,1964,24:654-858.
    [3] DEMPSEY G. Coral and salt water as concrete materials[J]. Journal of ACI,1951,23:157-166.
    [4] EHLERT R. Coral concrete at bikini atoll[J]. Concrete International,1991,13(1):19-24.
    [5] ARUMUGAM R A, RAMAMURTHY K. Study of compressive strength characteristics of coral aggregate concrete[J]. Magazine of Concrete Research,1996,48(176):141-148. doi: 10.1680/macr.1996.48.176.141
    [6] 陈飞翔, 张国志, 丁沙, 等. 珊瑚砂混凝土性能试验研究[J]. 混凝土与水泥制品, 2016(7):16-21. doi: 10.3969/j.issn.1000-4637.2016.07.004

    CHEN Feixiang, ZHANG Guozhi, DING Sha, et al. Experimental study on properties of coral sand concrete[J]. China Concrete and Cement Products,2016(7):16-21(in Chinese). doi: 10.3969/j.issn.1000-4637.2016.07.004
    [7] 糜人杰, 余红发, 麻海燕, 等. 全珊瑚骨料海水混凝土力学性能试验研究[J]. 海洋工程, 2016, 34(4):47-54. doi: 10.16483/j.issn.1005-9865.2016.04.007

    MI Renjie, YU Hongfa, MA Haiyan, et al. Study on the mechanical property of coral concrete[J]. The Ocean Engineering,2016,34(4):47-54(in Chinese). doi: 10.16483/j.issn.1005-9865.2016.04.007
    [8] WU Z Y, ZHANG J H, YU H F, et al. 3D mesoscopic investi-gation of the specimen aspect-ratio effect on the compres-sive behavior of coral aggregate concrete[J]. Composites Part B: Engineering,2020,198:108025. doi: 10.1016/j.compositesb.2020.108025
    [9] LI M, HAO H, SHI Y C, et al. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests[J]. Construction and Building Materials,2018,161:84-93. doi: 10.1016/j.conbuildmat.2017.11.069
    [10] 巩位, 余红发, 麻海燕, 等. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22):3732-3737. doi: 10.11896/cldb.18100082

    GONG Wei, YU Hongfa, MA Haiyan, et al. Mix proportion design and evaluation approach of coral aggregate seawater concrete[J]. Materials Reports,2019,33(22):3732-3737(in Chinese). doi: 10.11896/cldb.18100082
    [11] 岳承军, 余红发, 麻海燕, 等. 全珊瑚海水混凝土冲击压缩性能试验研究与数值模拟[J]. 建筑材料学报, 2021, 24(2):283-290. doi: 10.3969/j.issn.1007-9629.2021.02.008

    YUE Chengjun, YU Hongfa, MA Haiyan, et al. Experimental study and simulation of impact compression of coral aggregate seawater concrete[J]. Journal of Building Materials,2021,24(2):283-290(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.02.008
    [12] 达波, 余红发, 麻海燕, 等. C60全珊瑚海水钢筋混凝土梁的抗弯性能研究[J]. 东南大学学报(自然科学版), 2019, 49(4):727-735.

    DA Bo, YU Hongfa, MA Haiyan, et al. Flexural behavior of C60 coral aggregate reinforced concrete beam[J]. Journal of Southeast University (Natural Science Edition),2019,49(4):727-735(in Chinese).
    [13] 余红发, 达波, 麻海燕, 等. 全珊瑚海水混凝土及其梁柱构件的力学性能与耐久性[J]. 建筑材料学报, 2019, 22(6):993-998. doi: 10.3969/j.issn.1007-9629.2019.06.023

    YU Hongfa, DA Bo, MA Haiyan, et al. Mechanical behavior and durability of coral aggregate seawater concrete and its beam-column member[J]. Journal of Building Materials,2019,22(6):993-998(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.06.023
    [14] 邓雪莲, 黄盛, 刘存鹏. 剑麻纤维增强珊瑚混凝土抗压和抗剪强度试验研究[J]. 安徽建筑, 2017, 24(2):197-199. doi: 10.16330/j.cnki.1007-7359.2017.02.078

    DENG Xuelian, HUANG Sheng, LIU Cunpeng. Experimental study on compressive and shear strength of sisal fiber reinforced coral concrete[J]. Anhui Architecture,2017,24(2):197-199(in Chinese). doi: 10.16330/j.cnki.1007-7359.2017.02.078
    [15] 王磊, 熊祖菁, 刘存鹏, 等. 掺入聚丙烯纤维珊瑚混凝土的力学性能研究[J]. 混凝土, 2014(7):96-99. doi: 10.3969/j.issn.1002-3550.2014.07.026

    WANG Lei, XIONG Zujing, LIU Cunpeng, et al. Mechanical property tests of coral concrete with polypropylene fiber[J]. Concrete,2014(7):96-99(in Chinese). doi: 10.3969/j.issn.1002-3550.2014.07.026
    [16] 崔艺博, 郑云, 饶兰. 玄武岩纤维珊瑚混凝土力学性能试验研究[J]. 混凝土, 2020(12):74-76. doi: 10.3969/j.issn.1002-3550.2020.12.016

    CUI Yibo, ZHENG Yun, RAO Lan. Experimental study on mechanical properties of basalt fiber coral concrete[J]. Concrete,2020(12):74-76(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.12.016
    [17] 杜修力, 窦国钦, 李亮, 等. 纤维高强混凝土的动态力学性能试验研究[J]. 工程力学, 2011, 28(4):138-144, 150.

    DU Xiuli, DOU Guoqin, LI Liang, et al. Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J]. Engineering Mechanics,2011,28(4):138-144, 150(in Chinese).
    [18] 张玉武, 晏麓晖, 李凌锋. UHMWPE纤维混凝土动态压缩力学性能研究[J]. 振动与冲击, 2017, 36(8):92-96. doi: 10.13465/j.cnki.jvs.2017.08.015

    ZHANG Yuwu, YAN Luhui, LI Lingfeng. Dynamic compression mechanical properties of UHMWPE fiber reinforced concrete[J]. Journal of Vibration and Shock,2017,36(8):92-96(in Chinese). doi: 10.13465/j.cnki.jvs.2017.08.015
    [19] SOE K T, ZHANG Y X, ZHANG L C. Impact resistance of hybrid-fiber engineered cementitious composite panels[J]. Composite Structures,2013,104:320-330. doi: 10.1016/j.compstruct.2013.01.029
    [20] ZHANG J, MAALEI M, QUEK S T. Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact[J]. Journal of Materials in Civil Engineering, 2007, 19(10): 855-863.
    [21] MAALEI M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dyna-mic tensile loading and projectile impact[J]. Journal of Materials in Civil Engineering,2005,17(2):143-152. doi: 10.1061/(ASCE)0899-1561(2005)17:2(143)
    [22] LI Q H, XIN Z, XU S L, et al. Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials,2016,125:490-500. doi: 10.1016/j.conbuildmat.2016.08.066
    [23] ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences,2012:49105-49112.
    [24] HAO Y F, HAO H, LI Z X. Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties[J]. International Journal of Protective Structures,2010,1(1):145-168. doi: 10.1260/2041-4196.1.1.145
    [25] HAO Y, HAO H, LI Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering,2013,60(60):82-106.
    [26] XIA K, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system-A review[J]. Journal of Rock Mecha-nics and Geotechnical Engineering,2015,7(1):27-59. doi: 10.1016/j.jrmge.2014.07.008
    [27] 刘曙光, 赵晓明, 张菊, 等. 聚乙烯醇纤维增强水泥基复合材料在长期浸泡作用下抗硫酸盐侵蚀性能[J]. 复合材料学报, 2013, 30(6):60-66. doi: 10.3969/j.issn.1000-3851.2013.06.009

    LIU Shuguang, ZHAO Xiaoming, ZHANG Ju, et al. Resistance of polyvinyl alcohol fiber reinforced cementitious composites to sulfate attack under long-term immersion[J]. Acta Materiae Compositae Sinica,2013,30(6):60-66(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.009
    [28] BEEBY A W, NARAYANAN R S. Designers' guide to eurocode 2: Design of concrete structures: Designers' guide to EN 1992-1-1 and EN 1992-1-2 eurocode 2: Design of concrete structures design of concrete structures general rules and rules for buildings and structural fire design[M]. London: Thomas Telford Publishing, 2005.
    [29] 张华, 郜余伟, 李飞, 等. 高应变率下聚丙烯纤维混凝土动态力学性能和本构模型[J]. 中南大学学报(自然科学版), 2013, 44(8):3464-3473.

    ZHANG Hua, GAO Yuwei, LI Fei, et al. Mechanical study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate[J]. Journal of Central South University (Science and Technology),2013,44(8):3464-3473(in Chinese).
    [30] 戎志丹, 王亚利, 焦茂鹏, 等. 超高性能混凝土的冲击压缩性能及损伤演变规律[J]. 硅酸盐学报, 2021, 49(11):2322-2330. doi: 10.14062/j.issn.0454-5648.20210311

    RONG Zhidan, WANG Yali, JIAO Maopeng, et al. Impact compression performance and damage evolution of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society,2021,49(11):2322-2330(in Chinese). doi: 10.14062/j.issn.0454-5648.20210311
    [31] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Proceedings 14th International Symposium on Ballistics. Quebec: The Conference Publishing Committee, 1993: 591-600.
    [32] 张凤国, 李恩征. 混凝土撞击损伤模型参数的确定方法[J]. 弹道学报, 2001(4):12-16, 23. doi: 10.3969/j.issn.1004-499X.2001.04.003

    ZHANG Fengguo, LI Enzheng. A method to determine the parameters of the model for concrete impact and damage[J]. Journal of Ballistics,2001(4):12-16, 23(in Chinese). doi: 10.3969/j.issn.1004-499X.2001.04.003
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  156
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-08-22
  • 录用日期:  2022-08-25
  • 网络出版日期:  2022-09-02
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回