Influence of polyvinyl alcohol and ultrahigh molecular weight polyethylene fibers on dynamic mechanical properties of coral aggregate concrete and numerical simulation
-
摘要: 随着海洋资源的不断开发利用,在岛礁上就地取材制备全珊瑚混凝土已经成为岛礁工程建设与防护的关键技术。为探究不同有机非金属纤维掺量对全珊瑚混凝土的力学性能的影响,使用分离式霍普金森压杆(SHPB)试验研究其动态力学性能并采用LS-DYNA软件对冲击过程进行数值模拟。结果表明:当有机纤维质量分数为1.2wt%时,全珊瑚混凝土的静态抗压强度可达到113 MPa,相比未掺纤维的珊瑚混凝土增长了约7.5%。动态试验下,在应变率为120 s−1时动态抗压强度可达到247 MPa,比未掺加纤维的试样提高约32.6%。全珊瑚混凝土的韧性指标也随着有机纤维掺量的增加而增大。此外,随着有机纤维掺量的增加,珊瑚混凝土试件在相同冲击条件下完整性越高。动态强度试验值与模拟值的误差7%在允许误差内。Abstract: With the continuous exploitation of marine resources, the preparation of in-situ all-coral concrete on islands and reefs has become a key technology for the construction and protection of island projects. In order to investigate the effect of different organic non-metallic fiber admixture on the mechanical properties of all-coral concrete, the dynamic mechanical properties were investigated by using the Split Hopkinson Pressure bar (SHPB) test and the impact process was numerically simulated by LS-DYNA. The results show that the static compressive strength of all-coral concrete can reach 113 MPa when the organic fiber mass percent is 1.2wt%, which is an increase of about 7.5% compared with the coral concrete without fiber dosing. Under the dynamic test, the dynamic compressive strength can reach 247 MPa at a strain rate of 120 s−1, which is about 32.6% higher than that of the specimens without fiber admixture. The toughness index of all-coral concrete also increases with the increase of organic fiber admixture. In addition, the integrity of coral concrete specimens increases under the same impact conditions with the increase of organic fiber admixture. The error between dynamic strength test values and simulated values is 7% to be within the allowable error.
-
Key words:
- organic fiber /
- coral concrete /
- SHPB /
- compressive strength /
- strain rate
-
表 1 目标混凝土配合比
Table 1. Mixing ratio of designed concrete
Cement/
(kg·m−3)Micro-silica/
(kg·m−3)Slag/
(kg·m−3)Cenos-phere/
(kg·m−3)A1/
(kg·m−3)A2/
(kg·m−3)A3/
(kg·m−3)Fiber mass
percent/wt%Mixed water/
(kg·m−3)Water reducing
agent/(kg·m−3)567 230 140 63 240 640 120 0, 0.6, 1.2 220 2.2 Notes: A1—Coral fine sand (0.075-0.3 mm); A2—Coral medium sand (0.3-0.6 mm); A3—Coral coarse sand (0.6-1.18 mm). 表 2 不同纤维质量分数的PVA-UHMWPE/全珊瑚混凝土的力学参数
Table 2. Mechanical parameters of PVA-UHMWPE/coral aggregate concrete with different fiber mass percent
Fiber
mass fraction/wt%fcs/MPa Es/GPa Strain rate/s−1 fD Dynamic compressive
strength/MPaDynamic peak
strain/10−30 105.31 35.78 53.6 1.22 128.56 5.6 69.4 1.44 152.89 5.7 126.9 1.78 187.04 6.4 0.6 108.26 36.21 63.7 1.36 147.16 5.3 105.5 1.76 191.06 5.4 140.9 1.84 199.70 6.1 1.2 113.24 37.56 69.8 1.39 157.49 5.3 101.6 1.86 210.44 6.7 137.1 2.19 247.99 6.9 Notes: fcs—Static compressive strength; Es—Static modulus of elasticity; fD—Dynamic increase factor. 表 3 PVA-UHMWPE/全珊瑚混凝土的HJC本构模型参数
Table 3. HJC model parameters for PVA-UHMWPE/coral aggregate concrete
$ \rho $/(kg·m−3) Es/GPa A B C N Sf, max fcs/MPa 2200 35.78 0.79 1.60 0.007 0.61 7 105.31 T/MPa S0 εf, min Pc/MPa Uc Pl/GPa Ul D1 6.36 1 0.01 35.10 0.001 0.8 0.11 0.04 D2 K1/GPa K2/GPa K3/GPa 1.0 85 171 208 Notes: ρ—Density; Es—Elastic modulus; A, B, N, C, Sf, max—Strength parameter; fcs—Static compressive strength; T—Tensile strength; S0—Reference strain rate; εf, min—Minimum plastic strain; Pc—Crushing pressure; Uc—Crushing volumetric strain; Pl—Locking pressure; Ul—Volumetric strain at the locking pressure Pl; D1, D2—Damage constants; K1, K2, K3—Pressure constants. 表 4 PVA-UHMWPE/全珊瑚混凝土试验值与数值模拟值对比
Table 4. Comparison of experimental and numerical simulation values for PVA-UHMWPE/coral aggregate concretes
Fiber mass fraction/wt% Strain rate/s−1 Compressive strength/MPa Absolute value of error/MPa Test value Simulation value 0 53.6 128.56 122.24 6.32 69.4 152.89 159.66 6.77 126.9 187.04 169.42 17.62 0.6 63.7 147.16 153.13 5.97 105.5 191.06 180.77 10.29 140.9 199.70 197.83 1.87 1.2 69.8 157.49 164.60 7.11 101.6 210.44 198.62 11.82 137.1 247.99 247.39 0.60 -
[1] 岳承军, 余红发, 麻海燕, 等. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16):2697-2703. doi: 10.11896/cldb.18070094YUE Chengjun, YU Hongfa, MA Haiyan, et al. Experimental study on dynamic impact properties of coral aggregate seawater concrete[J]. Materials Reports,2019,33(16):2697-2703(in Chinese). doi: 10.11896/cldb.18070094 [2] NARVER D L. Good concrete made with coral and water[J]. Civil Engineering,1964,24:654-858. [3] DEMPSEY G. Coral and salt water as concrete materials[J]. Journal of ACI,1951,23:157-166. [4] EHLERT R. Coral concrete at bikini atoll[J]. Concrete International,1991,13(1):19-24. [5] ARUMUGAM R A, RAMAMURTHY K. Study of compressive strength characteristics of coral aggregate concrete[J]. Magazine of Concrete Research,1996,48(176):141-148. doi: 10.1680/macr.1996.48.176.141 [6] 陈飞翔, 张国志, 丁沙, 等. 珊瑚砂混凝土性能试验研究[J]. 混凝土与水泥制品, 2016(7):16-21. doi: 10.3969/j.issn.1000-4637.2016.07.004CHEN Feixiang, ZHANG Guozhi, DING Sha, et al. Experimental study on properties of coral sand concrete[J]. China Concrete and Cement Products,2016(7):16-21(in Chinese). doi: 10.3969/j.issn.1000-4637.2016.07.004 [7] 糜人杰, 余红发, 麻海燕, 等. 全珊瑚骨料海水混凝土力学性能试验研究[J]. 海洋工程, 2016, 34(4):47-54. doi: 10.16483/j.issn.1005-9865.2016.04.007MI Renjie, YU Hongfa, MA Haiyan, et al. Study on the mechanical property of coral concrete[J]. The Ocean Engineering,2016,34(4):47-54(in Chinese). doi: 10.16483/j.issn.1005-9865.2016.04.007 [8] WU Z Y, ZHANG J H, YU H F, et al. 3D mesoscopic investi-gation of the specimen aspect-ratio effect on the compres-sive behavior of coral aggregate concrete[J]. Composites Part B: Engineering,2020,198:108025. doi: 10.1016/j.compositesb.2020.108025 [9] LI M, HAO H, SHI Y C, et al. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests[J]. Construction and Building Materials,2018,161:84-93. doi: 10.1016/j.conbuildmat.2017.11.069 [10] 巩位, 余红发, 麻海燕, 等. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22):3732-3737. doi: 10.11896/cldb.18100082GONG Wei, YU Hongfa, MA Haiyan, et al. Mix proportion design and evaluation approach of coral aggregate seawater concrete[J]. Materials Reports,2019,33(22):3732-3737(in Chinese). doi: 10.11896/cldb.18100082 [11] 岳承军, 余红发, 麻海燕, 等. 全珊瑚海水混凝土冲击压缩性能试验研究与数值模拟[J]. 建筑材料学报, 2021, 24(2):283-290. doi: 10.3969/j.issn.1007-9629.2021.02.008YUE Chengjun, YU Hongfa, MA Haiyan, et al. Experimental study and simulation of impact compression of coral aggregate seawater concrete[J]. Journal of Building Materials,2021,24(2):283-290(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.02.008 [12] 达波, 余红发, 麻海燕, 等. C60全珊瑚海水钢筋混凝土梁的抗弯性能研究[J]. 东南大学学报(自然科学版), 2019, 49(4):727-735.DA Bo, YU Hongfa, MA Haiyan, et al. Flexural behavior of C60 coral aggregate reinforced concrete beam[J]. Journal of Southeast University (Natural Science Edition),2019,49(4):727-735(in Chinese). [13] 余红发, 达波, 麻海燕, 等. 全珊瑚海水混凝土及其梁柱构件的力学性能与耐久性[J]. 建筑材料学报, 2019, 22(6):993-998. doi: 10.3969/j.issn.1007-9629.2019.06.023YU Hongfa, DA Bo, MA Haiyan, et al. Mechanical behavior and durability of coral aggregate seawater concrete and its beam-column member[J]. Journal of Building Materials,2019,22(6):993-998(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.06.023 [14] 邓雪莲, 黄盛, 刘存鹏. 剑麻纤维增强珊瑚混凝土抗压和抗剪强度试验研究[J]. 安徽建筑, 2017, 24(2):197-199. doi: 10.16330/j.cnki.1007-7359.2017.02.078DENG Xuelian, HUANG Sheng, LIU Cunpeng. Experimental study on compressive and shear strength of sisal fiber reinforced coral concrete[J]. Anhui Architecture,2017,24(2):197-199(in Chinese). doi: 10.16330/j.cnki.1007-7359.2017.02.078 [15] 王磊, 熊祖菁, 刘存鹏, 等. 掺入聚丙烯纤维珊瑚混凝土的力学性能研究[J]. 混凝土, 2014(7):96-99. doi: 10.3969/j.issn.1002-3550.2014.07.026WANG Lei, XIONG Zujing, LIU Cunpeng, et al. Mechanical property tests of coral concrete with polypropylene fiber[J]. Concrete,2014(7):96-99(in Chinese). doi: 10.3969/j.issn.1002-3550.2014.07.026 [16] 崔艺博, 郑云, 饶兰. 玄武岩纤维珊瑚混凝土力学性能试验研究[J]. 混凝土, 2020(12):74-76. doi: 10.3969/j.issn.1002-3550.2020.12.016CUI Yibo, ZHENG Yun, RAO Lan. Experimental study on mechanical properties of basalt fiber coral concrete[J]. Concrete,2020(12):74-76(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.12.016 [17] 杜修力, 窦国钦, 李亮, 等. 纤维高强混凝土的动态力学性能试验研究[J]. 工程力学, 2011, 28(4):138-144, 150.DU Xiuli, DOU Guoqin, LI Liang, et al. Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J]. Engineering Mechanics,2011,28(4):138-144, 150(in Chinese). [18] 张玉武, 晏麓晖, 李凌锋. UHMWPE纤维混凝土动态压缩力学性能研究[J]. 振动与冲击, 2017, 36(8):92-96. doi: 10.13465/j.cnki.jvs.2017.08.015ZHANG Yuwu, YAN Luhui, LI Lingfeng. Dynamic compression mechanical properties of UHMWPE fiber reinforced concrete[J]. Journal of Vibration and Shock,2017,36(8):92-96(in Chinese). doi: 10.13465/j.cnki.jvs.2017.08.015 [19] SOE K T, ZHANG Y X, ZHANG L C. Impact resistance of hybrid-fiber engineered cementitious composite panels[J]. Composite Structures,2013,104:320-330. doi: 10.1016/j.compstruct.2013.01.029 [20] ZHANG J, MAALEI M, QUEK S T. Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact[J]. Journal of Materials in Civil Engineering, 2007, 19(10): 855-863. [21] MAALEI M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dyna-mic tensile loading and projectile impact[J]. Journal of Materials in Civil Engineering,2005,17(2):143-152. doi: 10.1061/(ASCE)0899-1561(2005)17:2(143) [22] LI Q H, XIN Z, XU S L, et al. Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials,2016,125:490-500. doi: 10.1016/j.conbuildmat.2016.08.066 [23] ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences,2012:49105-49112. [24] HAO Y F, HAO H, LI Z X. Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties[J]. International Journal of Protective Structures,2010,1(1):145-168. doi: 10.1260/2041-4196.1.1.145 [25] HAO Y, HAO H, LI Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering,2013,60(60):82-106. [26] XIA K, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system-A review[J]. Journal of Rock Mecha-nics and Geotechnical Engineering,2015,7(1):27-59. doi: 10.1016/j.jrmge.2014.07.008 [27] 刘曙光, 赵晓明, 张菊, 等. 聚乙烯醇纤维增强水泥基复合材料在长期浸泡作用下抗硫酸盐侵蚀性能[J]. 复合材料学报, 2013, 30(6):60-66. doi: 10.3969/j.issn.1000-3851.2013.06.009LIU Shuguang, ZHAO Xiaoming, ZHANG Ju, et al. Resistance of polyvinyl alcohol fiber reinforced cementitious composites to sulfate attack under long-term immersion[J]. Acta Materiae Compositae Sinica,2013,30(6):60-66(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.009 [28] BEEBY A W, NARAYANAN R S. Designers' guide to eurocode 2: Design of concrete structures: Designers' guide to EN 1992-1-1 and EN 1992-1-2 eurocode 2: Design of concrete structures design of concrete structures general rules and rules for buildings and structural fire design[M]. London: Thomas Telford Publishing, 2005. [29] 张华, 郜余伟, 李飞, 等. 高应变率下聚丙烯纤维混凝土动态力学性能和本构模型[J]. 中南大学学报(自然科学版), 2013, 44(8):3464-3473.ZHANG Hua, GAO Yuwei, LI Fei, et al. Mechanical study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate[J]. Journal of Central South University (Science and Technology),2013,44(8):3464-3473(in Chinese). [30] 戎志丹, 王亚利, 焦茂鹏, 等. 超高性能混凝土的冲击压缩性能及损伤演变规律[J]. 硅酸盐学报, 2021, 49(11):2322-2330. doi: 10.14062/j.issn.0454-5648.20210311RONG Zhidan, WANG Yali, JIAO Maopeng, et al. Impact compression performance and damage evolution of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society,2021,49(11):2322-2330(in Chinese). doi: 10.14062/j.issn.0454-5648.20210311 [31] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Proceedings 14th International Symposium on Ballistics. Quebec: The Conference Publishing Committee, 1993: 591-600. [32] 张凤国, 李恩征. 混凝土撞击损伤模型参数的确定方法[J]. 弹道学报, 2001(4):12-16, 23. doi: 10.3969/j.issn.1004-499X.2001.04.003ZHANG Fengguo, LI Enzheng. A method to determine the parameters of the model for concrete impact and damage[J]. Journal of Ballistics,2001(4):12-16, 23(in Chinese). doi: 10.3969/j.issn.1004-499X.2001.04.003 -