留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南方海洋环境下氟碳/聚氨酯涂层防护GFRP筋拉伸性能

鲍玖文 滕宴君 曹银龙 王文焕 王燕茹 张鹏

鲍玖文, 滕宴君, 曹银龙, 等. 南方海洋环境下氟碳/聚氨酯涂层防护GFRP筋拉伸性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 鲍玖文, 滕宴君, 曹银龙, 等. 南方海洋环境下氟碳/聚氨酯涂层防护GFRP筋拉伸性能[J]. 复合材料学报, 2024, 42(0): 1-11.
BAO Jiuwen, TENG Yanjun, CAO Yinlong, et al. Tensile performance of fluorocarbon/polyurethane-coated GFRP bars exposed to southern marine environment[J]. Acta Materiae Compositae Sinica.
Citation: BAO Jiuwen, TENG Yanjun, CAO Yinlong, et al. Tensile performance of fluorocarbon/polyurethane-coated GFRP bars exposed to southern marine environment[J]. Acta Materiae Compositae Sinica.

南方海洋环境下氟碳/聚氨酯涂层防护GFRP筋拉伸性能

基金项目: 国家自然科学基金(U2106219,52378247);山东省自然科学基金(ZR2021JQ17);山东省高等学校青创科技计划创新团队(2021KJ019);青岛市科技惠民示范专项(24-1-8-cspz-9-nsh)
详细信息
    通讯作者:

    张鹏,教授,博士生导师,主要研究方向为土木工程材料耐久性 E-mail: peng.zhang@qut.edu.cn

  • 中图分类号: TB332

Tensile performance of fluorocarbon/polyurethane-coated GFRP bars exposed to southern marine environment

Funds: National Natural Science Foundation of China (U2106219, 52378247); Natural Science Foundation of Shandong Province (ZR2021JQ17); Youth Innovation Team Development Plan of Shandong Province in China (2021KJ019); Demonstration Project of Benefiting People with Science and Technology of Qingdao, China (24-1-8-cspz-9-nsh)
  • 摘要: 传统金属材料在海洋环境下存在锈蚀问题,而纤维增强聚合物(FRP)筋材具有轻质高强、抗疲劳、耐腐蚀等优势,利用FRP筋替代钢筋已成为提高海洋混凝土结构耐久性的一种有效选择,但长期处于高紫外线、高盐和高湿等环境中,其树脂基体较为脆弱,材料化学结构易产生变化,造成FRP复合材料性能失效,从而降低其刚度和耐久性,利用涂层进行防护可有效提高FRP的抗老化和耐腐蚀能力。基于此,考虑高辐射、高盐和高湿的南方海洋环境因素,研究了紫外线老化及不同腐蚀介质(去离子水和真实海水)作用氟碳和聚氨酯涂层防护玻璃纤维增强复合材料(GFRP)筋材拉伸性能的退化规律,分析了不同暴露龄期(0、7、14、30、60 d)下两种涂层体系防护GFRP筋材的拉伸性能影响规律,并通过扫描电子显微镜(SEM)表征了腐蚀前后涂层的微观形貌及性能退化规律。结果表明:紫外线老化7 d后因涂层发生残余交联使GFRP筋拉伸强度提高了3%~5%,而之后涂层化学结构破坏与分子链断裂,紫外线老化60 d后其拉伸强度保留率为85%~90%;在去离子水和海水中浸泡60 d后,抗拉强度保留率范围分别为92%~95%、91%~93%;与聚氨酯涂层相比,氟碳涂层的耐久性相对优异,在相同劣化条件下具有更高的拉伸强度保留率,这是由于氟碳涂层具有优越的F-C键结构,氟原子紧密排列在聚合物碳链的周围起到了良好的保护作用,赋予含氟聚合物优异的耐久性。

     

  • 图  1  GFRP筋材涂覆前后的局部外观形貌

    Figure  1.  Local appearance of GFRP bars before and after coating

    图  2  GFRP筋材的紫外线老化试验

    Figure  2.  Ultraviolet radiation test of GFRP bars

    图  3  GFRP套筒试件及拉伸试验装置

    Figure  3.  GFRP sleeve specimens and the tensile testing device

    图  4  未涂覆涂层GFRP筋紫外线老化7 d前后的应力-应变曲线

    Figure  4.  Stress-strain curves of GFRP before and after 7 days of UV aging

    图  5  不同紫外线老化龄期下FC/PU涂层防护GFRP的应力-应变曲线

    Figure  5.  Stress-strain curves of FC/PU-coated protective GFRP under different UV aging ages

    图  6  不同紫外线老化龄期下FC/PU涂层防护GFRP的抗拉强度

    Figure  6.  Tensile strength of FC/PU coated protective GFRP under different UV aging ages

    图  7  不同紫外线老化龄期下GFRP弹性模量与断裂伸长率

    Figure  7.  Elastic modulus and breaking elongation of GFRP under different UV aging ages

    图  8  FC/PU涂层防护GFRP筋劣化机制

    Figure  8.  Degradation mechanism of FC/PU coating protected GFRP bar

    图  9  去离子水及海水环境下FC/PU涂层防护GFRP筋材应力-应变曲线

    Figure  9.  Stress strain curves of FC/PU-coated protective GFRP in DW and SW environments

    图  10  不同腐蚀浸泡龄期下FC/PU涂层防护GFRP筋材拉伸性能

    Figure  10.  Tensile properties of FC/PU-coated protective GFRP bars at different ages of corrosion immersion

    图  11  不同腐蚀浸泡龄期下FC/PU涂层防护GFRP筋弹性模量与断裂伸长率

    Figure  11.  Elastic modulus and breaking elongation of FC/PU-coated protective GFRP bars at different ages of corrosion immersion

    图  12  FC/PU涂层劣化前后SEM

    Figure  12.  SEM images of FC/PU coatings before and after degradation

    图  13  FC/PU涂层表面颗粒物XRD图谱

    Figure  13.  XRD of surface particulate of FC/PU coating

    表  1  实测玻璃纤维增强复合材料(GFRP)筋材基本性能指标

    Table  1.   Measured basic performance index of glass fiber reinforced Composite (GFRP) bars

    Performance index GFRP bars
    Tensile strength/MPa 714.30
    Elasticity modulus/GPa 50.08
    Breaking elongation/% 1.48
    下载: 导出CSV
  • [1] SHOKRIEH M M, BAYAT A. Effects of ultraviolet radiation on mechanical properties of glass/polyester composites[J]. Journal of Composite Materials, 2007, 41(20): 2443-2455. doi: 10.1177/0021998307075441
    [2] CABRAL-FONSECA S, CORREIA J R, RODRIGUES M P, et al. Artificial accelerated ageing of GFRP pultruded profiles made of polyester and vinylester resins: characterisation of physical-chemical and mechanical damage[J]. Strain, 2012, 48(2): 162-173. doi: 10.1111/j.1475-1305.2011.00810.x
    [3] 刘兴. FRP拉挤型材在海洋环境中的长期性能及预测方法研究[D]. 北京: 清华大学, 2023.

    LIU Xing. Study on long-term performance and prediction of pultruded FRP in marine environment [D]. Beijing: Tsinghua University, 2023. (in Chinese)
    [4] HARLE S M. Durability and long-term performance of fiber reinforced polymer (FRP) composites: A review[J]. Structures, 2024, 60: 105881. doi: 10.1016/j.istruc.2024.105881
    [5] 李茜, 李景育, 孙茂钧, 等. 三种涂层在模拟热带海洋大气环境中的性能退化研究[J]. 环境技术, 2023, 41(3): 11-16. doi: 10.3969/j.issn.1004-7204.2023.03.005

    LI Qian, LI Jingyu, SUN Maojun, et al. Performance degradation of three coatings in simulated tropical marine atmospheric environment[J]. Environmental Technology, 2023, 41(3): 11-16(in Chinese). doi: 10.3969/j.issn.1004-7204.2023.03.005
    [6] ALI S I, AHMAD S N. Tribo-corrosion behavior of Zn-Ni-Cu and Zn-Ni-Cu-TiB2 coated mild steel[J]. Arabian Journal of Chemistry, 2023, 16(5): 104648. doi: 10.1016/j.arabjc.2023.104648
    [7] AL-NEGHEIMISH A, HUSSAIN R R, ALHOZAIMY A, et al. Corrosion performance of hot-dip galvanized zinc-aluminum coated steel rebars in comparison to the conventional pure zinc coated rebars in concrete environment[J]. Construction and Building Materials, 2021, 274: 121921. doi: 10.1016/j.conbuildmat.2020.121921
    [8] KHANEGHAHI M H, NAJAFABADI E P, SHOAEI P, et al. Effect of intumescent paint coating on mechanical properties of FRP bars at elevated temperature[J]. Polymer testing, 2018, 71: 72-86. doi: 10.1016/j.polymertesting.2018.08.020
    [9] 胡涛. 水工混凝土表面氟碳纳米复合涂层的制备及防护耐久性研究[D]. 武汉: 长江科学院, 2017.

    HU Tao. Preparation and durability of fluorocarbon nanocomposite coating on hydraulic concrete surface[D]. Wuhan: Changjiang River Scientific Research Institute, 2017. (in Chinese)
    [10] 柴武, 王媛媛, 王广超, 等. FEVE氟碳涂料研究进展[J]. 化工新型材料, 2022, 50(S1): 126-129.

    CHAI Wu, WANG Yuanyuan, WANG Guangchao, et al. Research progress on fluorocarbon coating with FEVE[J]. New Chemical Materials, 2022, 50(S1): 126-129(in Chinese).
    [11] 吴士军. 海洋钢筋混凝土结构氟碳涂层防护效果研究[D]. 青岛: 青岛理工大学, 2014.

    WU Shijun. Study on the protective effect of fluorocarbon coating for marine reinforced concrete structure[D]. Qingdao: Qingdao University of Technology, 2014. (in Chinese)
    [12] 李伟华, 廖晓, 季涛, 等. 氟碳涂层对海洋环境下混凝土抗氯离子渗透性能的影响[J]. 表面技术, 2017, 46(12): 43-47.

    LI Weihua, LIAO Xiao, JI Tao, et al. Effects of fluorocarbon coating on resistance to chloride ion penetration of concrete in marine environment[J]. Surface Technology, 2017, 46(12): 43-47(in Chinese).
    [13] 朱晓明, 周学杰, 纪方奇, 等. 氟碳涂层体系在严酷自然环境中的腐蚀行为[J]. 涂料技术与文摘, 2012, 33(10): 32-39.

    ZHU Xiaoming, ZHOU Xuejie, JI Fangqi, et al. Anticorrosion performance of fluorocarbon coatings system in severe natural environment[J]. Coatings Technology & Abstracts, 2012, 33(10): 32-39(in Chinese).
    [14] 杨明达, 王来发, 吴永畅, 等. 盐分环境下水性混凝土防腐涂层失效规律对比研究[J]. 公路交通科技, 2024, 41(1): 44-53. doi: 10.3969/j.issn.1002-0268.2024.01.006

    YANG Mingda, WANG Laifa, WU Yongchang, et al. Comparative study on failure regularity of anti-corrosive coating for waterborne concrete in salinity environment[J]. Journal of Highway and Transportation Research and Development, 2024, 41(1): 44-53(in Chinese). doi: 10.3969/j.issn.1002-0268.2024.01.006
    [15] 於林锋. 防护涂层对混凝土力学性能和耐久性的影响[J]. 新型建筑材料, 2021, 48(11): 68-72.

    YU Lingfeng. Effect of protective coating on mechanical properties and durability of concrete[J]. New Building Materials, 2021, 48(11): 68-72(in Chinese).
    [16] 黄微波, 车凯圆, 吕平, 等. 聚氨酯涂层老化研究进展[J]. 聚氨酯工业, 2018, 33(6): 1-4. doi: 10.3969/j.issn.1005-1902.2018.06.001

    HUANG Weibo, CHE Kaiyuan, LYU Ping, et al. Research progress on aging of polyurethane coatings[J]. Polyurethane Industry, 2018, 33(6): 1-4(in Chinese). doi: 10.3969/j.issn.1005-1902.2018.06.001
    [17] ZHENG H, LIU L, MENG F, et al. Multifunctional superhydrophobic coatings fabricated from basalt scales on a fluorocarbon coating base[J]. Journal of Materials Science & Technology, 2021, 84: 86-96.
    [18] 张晨, 朱占勃, 赵景茂. 两种水性聚氨酯涂层在3种加速老化试验中的性能对比[J]. 表面技术, 2021, 50(10): 330-336.

    ZHANG Chen, ZHU Zhanbo, ZHAO Jingmao, et al. Property comparison of two water-based polyurethane coatings in three accelerated aging experiments[J]. Surface Technology, 2021, 50(10): 330-336(in Chinese).
    [19] LI G, YANG B, GUO C, et al. Time dependence and service life prediction of chloride resistance of concrete coatings[J]. Construction and Building Materials, 2015, 83: 19-25. doi: 10.1016/j.conbuildmat.2015.03.003
    [20] 朱永华, 姚敬华, 林仲玉, 等. 用人工加速老化法比较聚氨酯面漆和丙烯酸磁漆的性能[J]. 材料保护, 2005, (5): 57-59+79. doi: 10.3969/j.issn.1001-1560.2005.05.017

    ZHU Yonghua, YAO Jinghua, LIN Zhongyu, et al. Artificial accelerated aging (UV) method for performance comparison of organic coatings[J]. Material Protection, 2005, (5): 57-59+79(in Chinese). doi: 10.3969/j.issn.1001-1560.2005.05.017
    [21] TONG J, XIE S, MIAO J T, et al. Preparation of UV-cured polyurethane-urea acrylate coatings with high hardness and toughness[J]. Progress in Organic Coatings, 2024, 186: 107969. doi: 10.1016/j.porgcoat.2023.107969
    [22] 许斌, 刘强, 钱建才, 等. 含氟聚氨酯防护涂层体系在模拟海洋环境下的防护性能[J]. 表面技术, 2022, 51(9): 243-250+270.

    XU Bin, LIU Qiang, QIAN Jiancai, et al. Protective performance of fluoropolyurethane coating system in simulated marine environment[J]. Surface Technology, 2022, 51(9): 243-250+270(in Chinese).
    [23] 张洪彬, 师超, 郑南飞, 等. 丙烯酸聚氨酯涂层在高湿热海洋大气环境中的老化行为[J]. 材料保护, 2020, 53(5): 10-14.

    ZHANG Hongbin, SHI Chao, ZHENG Nanfei, et al. Aging behaviors of acrylic polyurethane coatings in marine atmosphere environment with high temperature and humidity[J]. Material Protection, 2020, 53(5): 10-14(in Chinese).
    [24] 马纪源, 郭辉, 张馨月, 等. 实海浸泡条件下聚氨酯涂层的失效行为[J]. 表面技术, 2023, 52(1): 178-186.

    MA Jiyuan, GUO Hui, ZHANG Xinyue, et al. Failure behavior of polyurethane coating immersed in real seawater[J]. Surface Technology, 2023, 52(1): 178-186(in Chinese).
    [25] GB/T 13096-2008. 拉挤玻璃纤维增强塑料杆力学性能实验方法[S]. 北京: 中国国家标准化管理委员会, 2008.

    GB/T 13096-2008. Test method for mechanical properties of pultruded glass fiber reinforced plastic rods [S]. Beijing: Standardization Administration of the People’s Republic of China, 2008. (in Chinese)
    [26] 许艾沿, 杜运兴, 潘柳景泰, 等. 海水海砂混凝土中混杂碳-玄武岩纤维筋拉伸性能退化机制及寿命预测[J]. 复合材料学报, 2024, 41: 1-11.

    XU Aiyan, DU Yunxing, PAN Liujingtai, et al. Degradation mechanism of tensile properties and life prediction of hybrid carbon/basalt fiber reinforced polymer bars in seawater sea-sand concrete[J]. Acta Materiae Compositae Sinica, 2024, 41: 1-11(in Chinese).
    [27] 陈宇豪, 刘福伟, 陈吉, 等. 酚醛环氧/环氧树脂复合涂层不同紫外线吸收剂含量时的抗老化性能[J]. 材料保护, 2015, 48(9): 41-44+8.

    CHEN Yuhao, LIU Fuwei, CHEN Ji, et al. Aging resistance of phenolic epoxy/epoxy composite coating with different UV absorber content[J]. Materials Protection, 2015, 48(9): 41-44+8(in Chinese).
    [28] 吕平, 李华灵, 黄微波. 有机防护涂层老化研究进展[J]. 材料导报, 2011, 25(7): 83-85.

    LYU Ping, LI Hualing, HUANG Weibo. New Progress of the research on organic protective coatings[J]. Materials Reports, 2011, 25(7): 83-85(in Chinese).
    [29] WU Y, QIAO S, WU J, et al. Fluorosilane emulsifying chlortrifluoroethylene ternary copolymerization design towards strong adhesion, anti-corrosion, fluorescent waterborne fluorocarbon coatings for tinplate substrate[J]. Applied Surface Science, 2024, 663: 160196. doi: 10.1016/j.apsusc.2024.160196
    [30] MOHAMMAD S A, SHINGDILWAR S, BANERJEE S, et al. Macromolecular engineering approach for the preparation of new architectures from fluorinated olefins and their applications[J]. Progress in Polymer Science, 2020, 106: 101255. doi: 10.1016/j.progpolymsci.2020.101255
    [31] 肖鑫, 秦灏. 常温固化氟碳涂料的研究进展[J]. 湖南工程学院学报(自然科学版), 2003, (1): 81-83.

    XIAO Xin, QIN Hao. Research progress on room temperature cured fluorocarbon coatings[J]. Journal of Hunan Institute of Engineering, 2003, (1): 81-83(in Chinese).
    [32] 张洪敏. 疏水/抗冲刷氟碳涂层的研究[D]. 南京: 南京航空航天大学, 2015.

    ZHANG Hongmin, Study on hydrophobic and anti-erosion behaviors of fluorocarbon coating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [33] 修林鹏. 真实海水环境下海水海砂混凝土内的FRP筋耐久性[D]. 大连: 大连理工大学, 2022.

    XIU Linpeng. The Durability of FRP bars covered with seawater and sea sand concrete in a real marine environment[D]. Dalian: Dalian University of Technology, 2022. (in Chinese)
    [34] 谭思蓉. 实验室加速模拟海洋浸泡环境下BFRP筋耐久性研究[D]. 广州: 广东工业大学, 2019.

    TAN Sirong. Study on the durability of BFRP bars by using an accelerating simulated marine immersion environment[D]. Guangzhou: Guangdong University of Technology, 2019. (in Chinese)
    [35] 林静. 喷涂聚脲防护涂层耐腐蚀性能及长期自然曝晒老化性能研究[D]. 青岛: 青岛理工大学, 2018.

    LIN Jing. Study on corrosion resistance and long term natural sun exposure of spray polyurea protective coating[D]. Qingdao: Qingdao University of Technology, 2018. (in Chinese)
    [36] 刘付胜聪, 肖汉宁, 李玉平, 等. 纳米TiO2和紫外线吸收剂对丙烯酸酯涂层抗光氧化性能的影响[J]. 功能材料, 2004, (4): 495-497+500. doi: 10.3321/j.issn:1001-9731.2004.04.033

    LIU Fushengcong, XIAO Hanning, LI Yuping, et al. The Effect of nano TiO2 and UV absorbers on the photooxidation resistance of acrylate coatings[J]. Functional Materials, 2004, (4): 495-497+500(in Chinese). doi: 10.3321/j.issn:1001-9731.2004.04.033
    [37] 刘攀. 桥梁钢结构防腐涂层的老化失效机制和寿命预测研究[D]. 西安: 长安大学, 2009.

    LIU Pan. Study on the aging failure mechanism and life prediction of steel bridge’s anti-corrosion coating [D]. Xi’an: Chang’an University, 2009. (in Chinese)
    [38] LU L, MA Z, LIU Q, et al. Pollutant-accelerated aging behaviors of fluorocarbon coating in tropical marine atmosphere[J]. Progress in Organic Coatings, 2020, 139: 105447(in Chinese). doi: 10.1016/j.porgcoat.2019.105447
    [39] 井晓菲. 海洋环境下混凝土结构用聚氨酯(脲)涂层性能研究[D]. 青岛: 青岛理工大学, 2019.

    JING Xiaofei. Study on properties of polyurethane(urea) coating for concrete structures in marine environment[D]. Qingdao: Qingdao University of Technology, 2019. (in Chinese)
    [40] 于雪艳, 陈正涛, 李旭朝, 等. 常温固化氟碳涂料耐老化性能研究[J]. 涂料工业, 2014, 44(2): 21-27. doi: 10.3969/j.issn.0253-4312.2014.02.005

    YU Xueyan, CHEN Zhengtao, LI Xuzhao, et al. Study on weather resistant performance of fluorocarbon coatings cured at room temperature[J]. Paint and Coatings Industry, 2014, 44(2): 21-27(in Chinese). doi: 10.3969/j.issn.0253-4312.2014.02.005
  • 加载中
计量
  • 文章访问数:  65
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 修回日期:  2024-07-14
  • 录用日期:  2024-07-31
  • 网络出版日期:  2024-08-08

目录

    /

    返回文章
    返回