留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿竹结构多孔聚醚砜基碳纤维复合材料

许培俊 韩磊 王临江 郭新良 刘荣海 高尚林

许培俊, 韩磊, 王临江, 等. 仿竹结构多孔聚醚砜基碳纤维复合材料[J]. 复合材料学报, 2023, 40(4): 2049-2055. doi: 10.13801/j.cnki.fhclxb.20220525.002
引用本文: 许培俊, 韩磊, 王临江, 等. 仿竹结构多孔聚醚砜基碳纤维复合材料[J]. 复合材料学报, 2023, 40(4): 2049-2055. doi: 10.13801/j.cnki.fhclxb.20220525.002
XU Peijun, HAN Lei, WANG Linjiang, et al. Bamboo structure like carbon fiber reinforced porous polyethersulfone matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2049-2055. doi: 10.13801/j.cnki.fhclxb.20220525.002
Citation: XU Peijun, HAN Lei, WANG Linjiang, et al. Bamboo structure like carbon fiber reinforced porous polyethersulfone matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2049-2055. doi: 10.13801/j.cnki.fhclxb.20220525.002

仿竹结构多孔聚醚砜基碳纤维复合材料

doi: 10.13801/j.cnki.fhclxb.20220525.002
基金项目: 国家自然科学基金面上项目(51978072);陕西省重点研发计划项目(2022 GY-371);长安大学中央高校基本科研业务费专项资金资助(300102312404)
详细信息
    通讯作者:

    许培俊,博士,教授,博士生导师,研究方向为聚合物基复合材料 E-mail: xupeijun@chd.edu.cn

  • 中图分类号: TB332

Bamboo structure like carbon fiber reinforced porous polyethersulfone matrix composites

Funds: National Natural Science Foundation of China (51978072); Key Research and Development Program of Shanxi Province (2022 GY-371); Fundamental Research Funds for the Central Universities of Chang'an University (300102312404)
  • 摘要: 竹子是以竹纤维为增强体、木质素为基体所构成的天然复合材料,其竹纤维赋予了竹材高强度的特点,多孔木质素结构赋予了竹材轻质、高韧性的特点。本文通过模仿竹子的结构特征,采用液相浸渍法和浸没沉淀相转化法在碳纤维表面沉积多孔聚醚砜聚合物,制备出兼具轻质、高韧性、高强度特点的仿竹结构多孔聚醚砜基碳纤维复合材料(CF/foam PES)。研究结果表明:与传统密实结构的聚醚砜基碳纤维复合材料(CF/condense PES)相比,本文制备出的聚醚砜基碳纤维复合材料的海绵状多孔聚醚砜结构降低了复合材料的表观密度,且CF/foam PES的比强度相对于CF/condense PES提高了234.5%,比模量提高了192.6%;多孔聚醚砜使CF/foam PES具有优异的吸能性能。

     

  • 图  1  仿竹结构多孔聚醚砜基碳纤维复合材料(CF/foam PES)微观形貌:(a) 20000倍下CF/foam PES的断面图;(b) 2500倍下CF/foam PES的断面图

    Figure  1.  Microstructure of carbon fiber reinforced bamboo structure porous polyethersulfone matrix composites (CF/foam PES): (a) Section of CF/foam PES for 20000×; (b) Section of CF/foam PES for 2500×

    图  2  CF/foam PES和传统密实结构的聚醚砜基碳纤维复合材料(CF/condense PES)在材料拉伸性能空间图中所处的位置:(a) 拉伸强度-密度;(b) 拉伸模量-密度;(c) 比强度-密度;(d) 比模量-密度

    Figure  2.  Position of CF/foam PES and traditional carbon fiber reinforced dense polyethersulfone matrix composites (CF/condense PES) in the space diagram of tensile properties of materials: (a) Tensile strength-density; (b) Tensile modulus-density; (c) Specific strength-density; (d) Specific modulus-density

    PP—Polypropylene; PE—Polyethylene; PC—Polycarbonate; PA—Polyamide; PEEK—Poly(ether-ether-ketone); GFRP—Glass-fiber reinforced plastic; CFRP—Carbon-fiber reinforced plastic; PET—Polyethylene terephthalate; PS—Polystyrene; PMMA—Polymethyl methacrylate; PTFE—Polytetrafluoroethylene; EVA—Ethylene-vinyl acetate copolymer

    图  3  拉伸曲线及断裂机制示意图:(a) CF/foam PES及CF/condense PES的应力-应变曲线;(b) CF/foam PES的拉伸断面示意图;(c) CF/condense PES的拉伸断面示意图

    Figure  3.  Drawing curve and fracture mechanism diagram: (a) Stress-strain curves of CF/foam PES and CF/condense PES; (b) Drawing section of CF/foam PES; (c) Drawing section diagram of CF/condense PES

    图  4  CF/foam PES的DMA图谱

    Figure  4.  DMA map of CF/foam PES

    图  5  CF/foam PES、CF/condense PES及Film-PES的损耗因子和界面阻尼

    Figure  5.  Loss factors and interface damping of CF/foam PES, CF/condense PES, Film-PES

    表  1  CF/foam PES和CF/condense PES的力学性能

    Table  1.   Mechanical properties of CF/foam PES and CF/condense PES

    SampleApparent density/
    (g·cm−3)
    Tensile strength/
    MPa
    Tensile modulus/
    MPa
    Specific strength/
    (m2·s−2)
    Specific modulus/
    (m2·s−2)
    CF/condense PES1.409240.28054.9170.5 5716.7
    CF/foam PES0.419239.07009.2570.4(234.5%↑)16728.4(192.6%↑)
    下载: 导出CSV
  • [1] ZHAO N, WANG Z, CAI C, et al. Bioinspired materials: From low to high dimensional structure[J]. Advanced Materials,2014,26(41):6994-7017. doi: 10.1002/adma.201401718
    [2] AIZENBERG J, WEAVER J C, THANAWALA M S, et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale[J]. Science,2005,309(5732):275-278. doi: 10.1126/science.1112255
    [3] 黄盛霞. 竹材的构造与力学行为的关系[D]. 合肥: 安徽农业大学, 2007.

    HUANG Shengxia. The relation between structural properties and mechanical behavior of bamboo[D]. Hefei: Anhui Agricultural University, 2007(in Chinese).
    [4] HABIBI M K, SAMAEI A T, GHESHLAGHI B, et al. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: Underlying mechanisms[J]. Acta Biomaterialia,2015,16:178-186. doi: 10.1016/j.actbio.2015.01.038
    [5] 于文吉, 江泽慧, 叶克林. 竹材特性研究及其进展[J]. 世界林业研究, 2002, 15(2):50-55. doi: 10.3969/j.issn.1001-4241.2002.02.008

    YU Wenji, JIANG Zehui, YE Kelin. Characteristics research of bamboo and its development[J]. World Forestry Research,2002,15(2):50-55(in Chinese). doi: 10.3969/j.issn.1001-4241.2002.02.008
    [6] CHIU H, YOUNG W. Characteristic study of bamboo fibers in preforming[J]. Journal of Composite Materials,2020,54(25):3871-3882. doi: 10.1177/0021998320923144
    [7] WANG X, REN H, ZHANG B, et al. Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance[J]. Journal of the Royal Society Interface,2012,9(70):988-996. doi: 10.1098/rsif.2011.0462
    [8] OBATAYA E, KITIN P, YAMAUCHI H. Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure[J]. Wood Science and Technology,2007,41(5):385-400. doi: 10.1007/s00226-007-0127-8
    [9] LONG L, WANG Z, CHEN K. Analysis of the hollow structure with functionally gradient materials of moso bamboo[J]. Journal of Wood Science,2015,61(6):569-577. doi: 10.1007/s10086-015-1504-9
    [10] RAY A K, MONDAL S, DAS S K, et al. Bamboo—A functionally graded composite-correlation between microstructure and mechanical strength[J]. Journal of Materials Science,2005,40(19):5249-5253. doi: 10.1007/s10853-005-4419-9
    [11] HASSOUNE-RHABBOUR B, POUSSINES L, NASSIET V. Development of an adhesion test for characterizing the interface fiber/polymer matrix[J]. Key Engineering Materials,2012,498:210-218. doi: 10.4028/www.scientific.net/KEM.498.210
    [12] FURUNO R, TAKATUJI Y, KUBO K, et al. Improvement of the adhesive strength of the leadframe and epoxy resin by forming organic molecules-metal composite interface[J]. Electronics and Communications in Japan,2017,100(1):67-71. doi: 10.1002/ecj.11924
    [13] CUI J, QIN Z, MASIC A, et al. Multiscale structural insights of load bearing bamboo: A computational modeling approach[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,107:103743. doi: 10.1016/j.jmbbm.2020.103743
    [14] DAS T K, GHOSH P, DAS N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review[J]. Advanced Composites and Hybrid Materials,2019,2(2):214-233. doi: 10.1007/s42114-018-0072-z
    [15] XIE W, CHENG H F, CHU Z Y, et al. Effect of FSS on microwave absorbing properties of hollow-porous carbon fiber composites[J]. Materials & Design,2009,30(4):1201-1204. doi: 10.1016/j.matdes.2008.06.018
    [16] XU L, LI X, NI L, et al. Ablation behavior of functional gradient ceramic coating for porous carbon-bonded carbon fiber composites[J]. Corrosion Science,2018,142:145-152. doi: 10.1016/j.corsci.2018.07.025
    [17] 李希鹏, 王树立, 张俭. 仿生多孔膜材料研究进展[J]. 科学通报, 2021, 66(10):1220-1232. doi: 10.1360/TB-2020-1334

    LI Xipeng, WANG Shuli, ZHANG Jian, et al. Progress in bio-inspired porous membranes[J]. Chinese Science Bulletin,2021,66(10):1220-1232(in Chinese). doi: 10.1360/TB-2020-1334
    [18] GOKMEN M T, PREZ F. Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications[J]. Progress in Polymer Science,2012,37(3):365-405. doi: 10.1016/j.progpolymsci.2011.07.006
    [19] 许培俊, 王临江, 张毅. 仿竹结构单丝玻璃纤维增强多孔聚醚砜基复合材料[J]. 复合材料学报, 2021, 38(4):1302-1312.

    XU Peijun, WANG Linjiang, ZHANG Yi, et al. Bamboo like porous polyethersulfone matrix monofilament glass fiber composite[J]. Acta Materiae Compositae Sinica,2021,38(4):1302-1312(in Chinese).
    [20] HUANG J, ZHANG K, WANG K, et al. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties[J]. Journal of Membrane Science,2012,423:362-370.
    [21] ZHANG M, ZHANG A, ZHU B, et al. Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process[J]. Journal of Membrane Science,2008,319(1-2):169-175. doi: 10.1016/j.memsci.2008.03.029
    [22] HUANG L, LI X, REN Y, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell[J]. RSC Advances,2017,7(34):20824-20832. doi: 10.1039/C7RA01014A
    [23] MATSUYAMA H, TAKIDA Y, MAKI T, et al. Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation[J]. Polymer,2002,43(19):5243-5248. doi: 10.1016/S0032-3861(02)00409-3
    [24] JUNG H S, PARK Y, NAH C W, et al. Evaluation of the mechanical properties of polyether sulfone-toughened epoxy resin for carbon fiber composites[J]. Fibers and Polymers,2021,22(1):184-195. doi: 10.1007/s12221-021-9261-4
    [25] CUI S, CUI C, XIE J, et al. Carbon fibers coated with graphene reinforced TiAl alloy composite with high strength and toughness[J]. Scientific Reports,2018,8(1):1-8.
    [26] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第1部分: 总则: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of China. Plastics—Determination of tensile properties—Part 1: General principles: GB/T 1040.1—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
    [27] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第5部分: 单向纤维增强复合材料的试验条件: GB/T 1040.5—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of China. Plastics—Determination of tensile properties—Part 5: Test conditions for unidirectional fiber-reinforced plastic composites: GB/T 1040.5—2008[S]. Beijing: Standards Press ofChina, 2008(in Chinese).
    [28] 赵晓勇, 曾一鸣, 施艳荞, 等. 相转化法制备超滤和微滤膜的孔结构控制[J]. 功能高分子学报, 2002, 15(4):487-495. doi: 10.3969/j.issn.1008-9357.2002.04.022

    ZHAO Xiaoyong, ZENG Yiming, SHI Yanqian, et al. Control of the pore structure of ultrafiltration and microfiltration membranes produced by phase inversion method[J]. Journal of Functional Polymers,2002,15(4):487-495(in Chinese). doi: 10.3969/j.issn.1008-9357.2002.04.022
    [29] SARASUA J, POUYET J. Dynamic mechanical behavior and interphase adhesion of thermoplastic (PEEK, PES) short fiber composites[J]. Journal of Thermoplastic Composite Materials,1998,11(1):2-21. doi: 10.1177/089270579801100101
    [30] DONG S, GAUVIN R. Application of dynamic mechanical analysis for the study of the interfacial region in carbon fiber/epoxy composite materials[J]. Polymer Composites,1993,14(5):414-420. doi: 10.1002/pc.750140508
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  892
  • HTML全文浏览量:  366
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-05-04
  • 录用日期:  2022-05-13
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回