留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尺寸效应对YSZ热障涂层热传导和离子扩散的影响

陈宇慧 姜鹏洋 孙家祥 张百强 宋俊 吴学红

陈宇慧, 姜鹏洋, 孙家祥, 等. 尺寸效应对YSZ热障涂层热传导和离子扩散的影响[J]. 复合材料学报, 2023, 40(6): 3594-3600. doi: 10.13801/j.cnki.fhclxb.20220831.001
引用本文: 陈宇慧, 姜鹏洋, 孙家祥, 等. 尺寸效应对YSZ热障涂层热传导和离子扩散的影响[J]. 复合材料学报, 2023, 40(6): 3594-3600. doi: 10.13801/j.cnki.fhclxb.20220831.001
CHEN Yuhui, JIANG Pengyang, SUN Jiaxiang, et al. Size effect on heat transfer and ions distribution in yttria-stabilized zirconia[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3594-3600. doi: 10.13801/j.cnki.fhclxb.20220831.001
Citation: CHEN Yuhui, JIANG Pengyang, SUN Jiaxiang, et al. Size effect on heat transfer and ions distribution in yttria-stabilized zirconia[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3594-3600. doi: 10.13801/j.cnki.fhclxb.20220831.001

尺寸效应对YSZ热障涂层热传导和离子扩散的影响

doi: 10.13801/j.cnki.fhclxb.20220831.001
基金项目: 国家自然科学基金(51705474);河南省科技攻关项目(212102210299)
详细信息
    通讯作者:

    陈宇慧,博士,副教授,硕士生导师,研究方向为先进复合材料的制备与热物理性能多尺度研究研究 E-mail: chenyh@zzuli.edu.cn

  • 中图分类号: TB332

Size effect on heat transfer and ions distribution in yttria-stabilized zirconia

Funds: National Natural Science Foundation of China (51705474);Project of Science and Technology Tackling Key Problems in Henan Province (212102210299)
  • 摘要: 8mol%Y2O3稳定ZrO2(8mol%Yttria-stabilized zirconia,8YSZ)作为热障涂层被广泛应用于燃气轮机和航空发动机,以减少热气体和金属部件之间的传热。但随着服役温度的提升,对其热性能的研究很难进行。采用非平衡分子动力学模拟的方法研究了模型尺寸效应对8YSZ热导率和离子扩散的影响,探讨了服役条件下YSZ的离子扩散及热输运行为。以立方8YSZ(c-8YSZ)作为研究对象,模拟服役温度为1273~1473 K时,分别计算了模型横截面积为4a×4a、5a×5a、6a×6a (a为晶格常数)的热导率,发现横截面积对计算结果影响较小。选取横截面积为5a×5a时,对比了5a、15a、25a、35a、45a、50a、55a、60a、65a不同结构长度模型的热导率计算结果,进行尺寸效应研究,确定5a×5a×60a为模型最佳尺寸。同时揭示了1273~1473 K下c-8YSZ热输运机制,发现c-8YSZ与四方8YSZ(t-8YSZ)存在不同的声子散射,发现增强声子散射能够有效抑制YSZ服役状态下的热输运能力,为提高热障涂层在高温服役状态下的隔热性能提供了理论依据。

     

  • 图  1  8mol%Y2O3稳定ZrO2(8 YSZ)模型系统热浴示意图

    Figure  1.  Model system heat bath diagram on 8mol%Y2O3-stabilized ZrO2 (8 YSZ)

    Lx—Model length; z—Direction of heat flux

    图  2  8YSZ热导率随模型结构长度的变化关系(a为晶格常数)

    Figure  2.  Effect of model structure length on calculated thermal conductivity of 8YSZ (a is the lattice constant)

    Δ—Relative error between calculated and standard values of thermal conductivity

    图  3  8YSZ在1473 K下不同模型中O2−的均方位移(MSD)

    Figure  3.  Mean square displacement (MSD) of O2− ions in different models at 1473 K for 8YSZ

    图  4  8YSZ在1473 K下不同温度中O2−的MSD

    Figure  4.  MSD of O2− ions in different temperatures at 1473 K for 8YSZ

    图  5  8YSZ在不同温度下O2−的MSD

    Figure  5.  MSD of 8YSZ O2− ions at different temperatures

    图  6  高温下立方8YSZ(c-8YSZ)模拟的热导率、实验和文献中四方YSZ (t-YSZ)模拟的热导率

    Figure  6.  Thermal conductivity of cubic 8YSZ (c-8YSZ) simulations at high temperatures, experimental and tetragonal YSZ (t-YSZ) simulations in the literature

    表  1  分子动力学中所采用的势函数参数

    Table  1.   Potential functions used in molecular dynamics

    Interatomic interactions/i-jAij/eVρij/nmCij/(eV·nm6)
    Zr4+-O2− 985.869 0.0376 0
    Y3+-O2− 1325.60 0.0349 0
    O2−-O2− 22764.3 0.0149 2.789×10−5
    Notes: Aij, ρij and Cij—Buckingham potential parameters.
    下载: 导出CSV
  • [1] CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bull,2012,37:891-898. doi: 10.1557/mrs.2012.232
    [2] PASTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials,2016,15(8):804-809. doi: 10.1038/nmat4687
    [3] DAROLIA R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews,2013,58(6):315-348. doi: 10.1179/1743280413Y.0000000019
    [4] 吴秀刚, 李晨希. 大气等离子喷涂热障涂层的失效机制及研究进展[J]. 材料保护, 2013, 46(10):48-51.

    WU Xiugang, LI Chenxi. Failure mechanism and research progress of atmospheric plasma sprayed thermal barrier coatings[J]. Journal of Materials Protection,2013,46(10):48-51(in Chinese).
    [5] 张而耕, 陈强, 黄彪, 等. 热障涂层材料制备及失效机制的研究进展[J]. 陶瓷学报, 2016, 37(1):5-10.

    ZHANG Ergeng, CHEN Qiang, HUANG Biao, et al. Research progress and performance of thermal barrier coatings[J]. Journal of Ceramics,2016,37(1):5-10(in Chinese).
    [6] EIRINI G. Nanoparticle growth, coalescence, and phase change in the gas-phase by molecular dynamics[J]. Current Opinion in Chemical Engineering,2019,23:155-163. doi: 10.1016/j.coche.2019.04.001
    [7] FUYUKI S, TSUNEYASU O, FUMIO T, et al. Molecular dynamics studies of yttria stabilized zirconia. I. Structure and oxygen diffusion[J]. Journal of Physical Society of Japan,1992,61(8):2848-2857. doi: 10.1143/JPSJ.61.2848
    [8] TAKEO T, HITOSHI K, TOORU A. Molecular dynamics study on lattice vibration and heat capacity of yttria-stabilized zirconia[J]. Solid State Ionics,1999,118:349-353. doi: 10.1016/S0167-2738(98)00424-X
    [9] 文玉华, 朱如曾, 周富信, 等. 分子动力学模拟的主要技术[J]. 力学进展, 2003, 33(1):65-73. doi: 10.3321/j.issn:1000-0992.2003.01.008

    WEN Yuhua, ZHU Ruzeng, ZHOU Fuxin, et al. An overview on molecular simulation[J]. Advances in Mechanics,2003,33(1):65-73(in Chinese). doi: 10.3321/j.issn:1000-0992.2003.01.008
    [10] 赵梦甜, 龙芸, 王玉璋. 基于分子动力学模拟的YSZ基热障涂层导热性能分析[J]. 陶瓷学报, 2019, 40(3):295-300. doi: 10.13957/j.cnki.tcxb.2019.03.004

    ZHAO Mengtian, LONG Yun, WANG Yuzhang. Thermal conductivity of yttria-stabilized zirconia-based thermal barrier coatings by molecular dynamics simulation[J]. Journal of Ceramics,2019,40(3):295-300(in Chinese). doi: 10.13957/j.cnki.tcxb.2019.03.004
    [11] MATTHEW J K, WEI L. Finite-size effects on the molecular dynamics simulation of fast-ion conductors: A case study of lithium garnet oxide Li7La3Zr2O12[J]. Solid State Ionics,2016,289:143-149. doi: 10.1016/j.ssi.2016.03.002
    [12] VLADIMIR V S, MARKKU J L, AATTO L. Molecular dynamics simulation of oxygen diffusion in cubic yttria-stabilized zirconia: Effects of temperature and composition[J]. Solid State Ionics,2014,266:29-35. doi: 10.1016/j.ssi.2014.08.003
    [13] XIE X, KUMAR R V, SUNB J, et al. Structure and conductivity of yttria-stabilized zirconia co-doped with Gd2O3: A combined experimental and molecular dynamics study[J]. Journal of Power Sources,2010,195:5660-5665. doi: 10.1016/j.jpowsour.2010.03.054
    [14] PERUMAL T P, SRIDHAR V, MURTHY K P N, et al. Molecular dynamics simulations of oxygen ion diffusionin yttria-stabilized zirconia[J]. Physica A,2002,309:35-44. doi: 10.1016/S0378-4371(02)00595-2
    [15] LI Z, XIONG S Y, SIEVERS C, et al. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids[J]. The Journal of Chemical Physics,2019,151:234105. doi: 10.1063/1.5132543
    [16] SIZOV V V, LAMPINEN M J, LAAKSONEN A. Molecular dynamics simulation of oxygen diffusion in cubic yttria stabilized zirconia: Effects of temperature and composition[J]. Solid Stable Ionics,2014,266:29-35.
    [17] TUNG K L, CHANG K S, HSIUNG C C, et al. Molecular dynamics simulation of the complex dopant effect on the super-ionic conduction and microstructure of zirconia-based solid electrolytes[J]. Separation and Purification Technology,2010,73(1):13-19. doi: 10.1016/j.seppur.2009.07.026
    [18] DWIVEDI A, CORMACK, A N. A computer simulation study of the defect structure of calcia-stabilized zirconia[J]. Philosophical Magazine A,1990,61(1):1-22.
    [19] LEWIS G V, CATLOW C R A. Potential models for ionic oxides[J]. Journal of Physics C: Solid State Physics,1985,18:1149-1161. doi: 10.1088/0022-3719/18/6/010
    [20] KILO M, TAYLOR M A, ARGIRUSIS C, et al. Modeling of cation diffusion in oxygen ion conductors using molecular dynamics[J]. Solid State Ionics,2004,175:823-827. doi: 10.1016/j.ssi.2004.09.059
    [21] FAN W, WANG Z Z, CHE J W, et al. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications[J]. Journal of the European Ceramic Society,2018,38:4502-4511. doi: 10.1016/j.jeurceramsoc.2018.06.002
    [22] WANG X Z, PILLA S, CHE J W, et al. Investigation of thermal transport behavior in YSZ and LZ/YSZ coupled system between 1273 and 1473 K using molecular dynamics simulation[J]. Journal of Molecular Liquids,2017,244:464-468. doi: 10.1016/j.molliq.2017.09.001
    [23] GOH W F, YOON T L, KHAN S A. Molecular dynamics simulation of thermodynamic and thermal transport properties of strontium Titanate with improved potential parameters[J]. Computational Materials Science,2012,60:123-129. doi: 10.1016/j.commatsci.2012.03.027
    [24] DU A B, WAN C L, QU Z X, et al. Thermal conductivity of monazite-type REPO4 (RE=La, Ce, Nd, Sm, Eu, Gd)[J]. Journal of the American Ceramic Society,2009,92(11):2687-2692. doi: 10.1111/j.1551-2916.2009.03244.x
    [25] ZHAO S, SHAO C, ZAHIRI S, et al. Thermal transport in nanoporous yttria-stabilized zirconia by molecular dynamics simulation[J]. Journal of Shanghai Jiaotong University (Science),2018,23(1):38-44. doi: 10.1007/s12204-018-1907-z
    [26] WANG Z Z, BAI Y, FAN W, et al. Effect of Sc substitution on thermophysical properties of tetragonal ScYSZ: Molecular dynamics simulation[J]. Computational Materials Science,2020,174:109478. doi: 10.1016/j.commatsci.2019.109478
    [27] WANG Y, WANG X, WANG X, et al. Effect of CeO2 on the microstructure and properties of plasma-sprayed Al2O3-ZrO2 ceramic coatings[J]. Journal of Materials Engineering and Performance,2020,29(10):6390-6401. doi: 10.1007/s11665-020-05147-4
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  323
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 修回日期:  2022-08-16
  • 录用日期:  2022-08-18
  • 网络出版日期:  2022-08-31
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回