留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维复合材料结构锂离子电池研究综述

张峻滔 王亚震 李晖 马心旗 宗文波 籍天戚 吴海宏

张峻滔, 王亚震, 李晖, 等. 碳纤维复合材料结构锂离子电池研究综述[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 张峻滔, 王亚震, 李晖, 等. 碳纤维复合材料结构锂离子电池研究综述[J]. 复合材料学报, 2022, 40(0): 1-11
Juntao ZHANG, Yazhen WANG, Hui LI, Xinqi MA, Wenbo ZONG, Tianqi JI, Haihong WU. Study review on structure lithium-ion batteries of carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica.
Citation: Juntao ZHANG, Yazhen WANG, Hui LI, Xinqi MA, Wenbo ZONG, Tianqi JI, Haihong WU. Study review on structure lithium-ion batteries of carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica.

碳纤维复合材料结构锂离子电池研究综述

基金项目: 国家自然科学基金委-河南省联合基金重点项目(U1604253);国家重点研发计划(2016 YFB0101602)
详细信息
    作者简介:

    李晖,男,博士,副教授,硕士生/博士生导师,研究方向为多功能碳纤维复合材料的研究 E-mail: lihui@mail.neu.edu.cn

    通讯作者:

    吴海宏,博士,教授,硕士生/博士生导师,研究方向为碳纤维复合材料结构-功能一体化 E-mail: hhwu@haut.edu.cn

  • 中图分类号: TB332

Study review on structure lithium-ion batteries of carbon fiber reinforced composites

Funds: National Natural Science Foundation of China-Henan Province Joint Fund Key Project(No.U1604253);Supported by the National Key Research and Development Program of China(No.2016 YFB0101602)
  • 摘要: 碳纤维复合材料结构锂离子电池是将结构件和储能系统相结合,在保持碳纤维力学性能的同时,赋予其优异的储能性能,使动力电池组在减重的同时简化结构设计,提高能量效率和结构效率。在低碳经济的大环境下,碳纤维复合材料结构锂离子电池作为一种新型储能器件引起了国内外学者的极大关注。本文综述了嵌入集成式结构电池和多功能复合材料结构电池的工作原理、制备工艺以及储能性能等基础问题的研究现状,提出了全碳纤维固态结构电池的概念及其设计原型。同时简要介绍了现阶段碳纤维复合材料结构锂离子电池最具代表性的应用,并展望了其在航空航天和交通运输等领域的应用价值。

     

  • 图  1  碳纤维复合材料结构锂离子电池与传统电池组对比[12]

    Figure  1.  Carbon fiber composite structure lithium-ion batteries compared with traditional battery packs[12]

    图  2  结构效率和能量效率概念图

    Figure  2.  Conceptual diagram of structural efficiency and energy efficiency

    图  3  EISB的应用为无人机续航带来的增益效果[41]

    Figure  3.  EISBs provides a gain effect for the endurance of the drone[41]

    图  4  基于海洋运输工具设计的三种EISB[42]

    Figure  4.  Three EISBs based on marine transport designs[42]

    图  5  以1 C倍率充放电时SB外部的静水压力对芯部电池能量密度的影响[42]

    Figure  5.  Effect of hydrostatic pressure outside SB on the energy density of the core battery when charging and discharging at 1 C magnification[42]

    图  6  引入聚合物铆钉结构的EISB[43]

    Figure  6.  Introduction of EISB with polymer rivet structure[43]

    图  7  集成聚合物锂离子电池的SB弯曲测试[45]

    Figure  7.  SB bending test for integrated polymer lithium-ion batteries[45]

    图  8  MCSB的两种形式

    Figure  8.  Two forms of MCSB

    图  9  IMS65碳纤维在不同速率下的锂化曲线[51]

    Figure  9.  Lithification curve of IMS65 carbon fiber at different rates[51]

    图  10  层状结构MCSB的制造过程[55]

    Figure  10.  The manufacturing process of MCSB with layered structure[55]

    图  11  全碳纤维固态SB模型

    Figure  11.  All-carbon solidity structure batteries model

    图  12  C字梁客舱门框模型(左);驱动舱门的电子元器件(右)[70]

    Figure  12.  Model of C-beam cabin door frame (left); the electronic components that drive the hatch (right) [70]

    图  13  STORAGE项目针对沃尔沃车型研发的电动行李箱盖板[72]

    Figure  13.  STORAGE project developed an electric luggage cover for Volvo models[72]

    图  14  Tesla Model S和BMW i3新能源汽车重量分解(以粗体字表示采用SB替代的部分)[74]

    Figure  14.  Tesla Model S and BMW i3 new energy vehicle weight decomposition (The components highlighted with bold text corresponds to parts that potentially can be replaced with SB). [74]

  • [1] 曹金亮, 陈修强, 张春光, 等. 锂电池最新研究进展[J]. 电源技术, 2013, 37(8): 1460-1463. doi: 10.3969/j.issn.1002-087X.2013.08.052

    CAO Jin-liang, CHEN Xiu-qiang, ZHANG Chun-guang, LI Hong. Latest research progress of lithium batteries. [J]. Chinese Journal of Power Sources, 2013, 37(8): 1460-1463. (in Chinese) doi: 10.3969/j.issn.1002-087X.2013.08.052
    [2] 张文枭, 左杏薇, 曲丽君, 张学记, 苗锦雷. 基于导电纤维的柔性电子器件研究进展[J/OL]. 复合材料学报: 1-23[2022-05-22].DOI: 10.13801/j.cnki.fhclxb.20220511.002.

    ZHANG Wenxiao, ZUO Xingwei, QU Lijun, ZHANG Xueji, MIAO Jinlei. Research progress of flexible electronic devices based on conductive fibers [J/OL]. Acta Materiae Compositae Sinica: 1-23[2022-0522]. DOI:10.13801/j.cnki.fhclxb.20220511.002.(in Chinese)
    [3] YU Y, ZHANG B, FENG M, et al. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites[J]. Composites Science and Technology,2017,147:62-70. doi: 10.1016/j.compscitech.2017.04.031
    [4] REDDY M V, MAUGER A, JULIEN C M, et al. Brief history of early lithium-battery development[J]. Materials,2020,13(8):1884. doi: 10.3390/ma13081884
    [5] PERVEZ S A, CAMBAZ M A, THANGADURAI V, et al. Interface in solid-state lithium battery: challenges, progress, and outlook[J]. ACS applied materials & interfaces,2019,11(25):22029-22050.
    [6] HU Y S. Batteries: getting solid[J]. Nature Energy,2016,1(4):1-2.
    [7] 曹连胜, 赵超, 金欣, 王闻宇. 基于离子选择性迁移策略的动力/储能电池隔膜的研究进展[J]. 复合材料学报, 2021, 38(7):2025-2037. doi: 10.13801/j.cnki.fhclxb.20210114.002

    CAO Liansheng, ZHAO Chao, JIN Xin, WANG Wenyu. Research progress of power/energy storage battery separator based on selective ion migration strategy[J]. Acta Materiae Compositae Sinica,2021,38(7):2025-2037(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210114.002
    [8] 张红涛, 胡昊, 顾波, 张恒源. 聚偏氟乙烯-沸石复合锂电隔膜的制备及性能[J]. 复合材料学报, 2017, 34(3):625-631. doi: 10.13801/j.cnki.fhclxb.20160612.002

    ZHANG Hongtao, HU Hao, GU Bo, ZHANG Hengyuan. Preparation and performances of PVDF-zeolite composite separator for lithium-ion batteries[J]. Acta Materiae Compositae Sinica,2017,34(3):625-631(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160612.002
    [9] FERREIRA A D B L, NÓVOA P R O, MARQUES A T. Multifunctional material systems: a state-of-the-art review[J]. Composite Structures,2016,151:3-35. doi: 10.1016/j.compstruct.2016.01.028
    [10] DANZI F, SALGADO R M, OLIVEIRA J E, et al. Structural Batteries: A Review[J]. Molecules,2021,26(8):2203. doi: 10.3390/molecules26082203
    [11] YANG H. A Review of Structural Batteries Implementations and Applications// 2020 IEEE Transportation Electrification Conference & Expo (ITEC)[J]. IEEE,2020:223-228.
    [12] ASP L E, GREENHALGH E S. Structural power composites[J]. Composites science and technology,2014,101:41-61. doi: 10.1016/j.compscitech.2014.06.020
    [13] ASP L E. Multifunctional composite materials for energy storage in structural load paths[J]. Plastics, rubber and composites,2013,42(4):144-149. doi: 10.1179/1743289811Y.0000000043
    [14] ROBERTS S C, AGLIETTI G S. Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries[J]. Acta Astronautica,2010,67(3-4):424-439. doi: 10.1016/j.actaastro.2010.03.004
    [15] EKSTEDT S, WYSOCKI M, ASP L E. Structural batteries made from fibre reinforced composites[J]. Plastics, rubber and composites,2010,39(3-5):148-150.[11 doi: 10.1179/174328910X12647080902259
    [16] CHUNG D D L, WANG S. Carbon fiber polymer-matrix structural composite as a semiconductor and concept of optoelectronic and electronic devices made from it[J]. Smart materials and structures,1999,8(1):161. doi: 10.1088/0964-1726/8/1/018
    [17] LUO X, CHUNG D D L. Carbon-fiber/polymer-matrix composites as capacitors[J]. Composites Science and Technology,2001,61(6):885-888. doi: 10.1016/S0266-3538(00)00166-4
    [18] WETZEL E D, O'BRIEN D J, SNYDER J F, et al. Multifunctional structural power and energy composites for US army applications[R]. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD WEAPONS AND MATERIALS RESEARCH DIRECTORATE, 2006.
    [19] 王朝阳, 杨向涛, 徐祥博, 张金纳, 朱世杰, 吴海宏, 仝立勇. 结构储能碳纤维复合材料设计及其在无人机上的应用[J]. 航空制造技术, 2020, 63(18):84-90+101. doi: 10.16080/j.issn1671-833x.2020.18.084

    WANG Chaoyang, YANG Xiangtao, XU Xiangbo, ZHANG Jinna, ZHU Shijie, WU Haihong, TONG Liyong. Structural Energy Storage Carbon Fiber Composite Design and Application in Drone[J]. Aeronautical Manufacturing Technology,2020,63(18):84-90+101(in Chinese). doi: 10.16080/j.issn1671-833x.2020.18.084
    [20] 杨向涛, 王朝阳, 张金纳, 朱世杰, 郭海伟, 吴海宏, 仝立勇. 超薄碳纤维复合材料结构电池制备及其性能评价[J]. 复合材料科学与工程, 2021(7):39-47. doi: 10.19936/j.cnki.2096-8000.20210728.007

    YANG Xiang-tao, WANG Chao-yang, ZHANG Jin-na, ZHU Shi-jie, GUO Hai-wei, WU Hai-hong, TONG Li-yong. Preparation and performance evaluation of ultra-thin carbon fiber composite structure battery[J]. Composites Science and Engineering,2021(7):39-47(in Chinese). doi: 10.19936/j.cnki.2096-8000.20210728.007
    [21] ATTAR P, GALOS J, BEST A S, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries[J]. Composite Structures,2020,237:111937. doi: 10.1016/j.compstruct.2020.111937
    [22] GALOS J, FREDRIKSSON C, DAS R. Multifunctional sandwich panel design with lithium-ion polymer batteries[J]. Journal of Sandwich Structures & Materials,2021,23(8):3794-3813.
    [23] QU S, DAI Y, ZHANG D, et al. Carbon nanotube film based multifunctional composite materials: an overview[J]. Functional Composites and Structures,2020,2(2):022002. doi: 10.1088/2631-6331/ab9752
    [24] 丁颖慧, 祁国成, 张博明. 结构储电碳纤维复合材料研究进展[J]. 复合材料学报, 2021, 38(1):16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006

    DING Yinghui , QI Guocheng, ZHANG Boming. Recent progress in carbon fiber reinforced composites for electricity storage[J]. Acta Materiae Compositae Sinica,2021,38(1):16-24(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200921.006
    [25] POPE M A, AKSAY I A. Structural design of cathodes for Li-S batteries[J]. Advanced Energy Materials,2015,5(16):1500124. doi: 10.1002/aenm.201500124
    [26] XU J, JOHANNISSON W, JOHANSEN M, et al. Characterization of the adhesive properties between structural battery electrolytes and carbon fibers[J]. Composites Science and Technology,2020,188:107962. doi: 10.1016/j.compscitech.2019.107962
    [27] ASP L E, BOUTON K, CARLSTEDT D, et al. A structural battery and its multifunctional performance[J]. Advanced Energy and Sustainability Research,2021,2(3):2000093. doi: 10.1002/aesr.202000093
    [28] SAKAI M. A Reaction Model for Li Deposition at the Positive Electrode of the Braga-Goodenough Li-S Battery[J]. Journal of The Electrochemical Society,2020,167(16):160540. doi: 10.1149/1945-7111/abcf53
    [29] TU V, ASP L E, SHIRSHOVA N, et al. Performance of bicontinuous structural electrolytes[J]. Multifunctional Materials,2020,3(2):025001. doi: 10.1088/2399-7532/ab8d9b
    [30] ASP L E. Multifunctional composite materials for energy storage in structural load paths[J]. Plastics, rubber and composites,2013,42(4):144-149. doi: 10.1179/1743289811Y.0000000043
    [31] QIN F, PENG H X. Ferromagnetic microwires enabled multifunctional composite materials[J]. Progress in Materials Science,2013,58(2):183-259. doi: 10.1016/j.pmatsci.2012.06.001
    [32] ROBERTS S C, AGLIETTI G S. Multifunctional Power Structures for Spacecraft Applications[C]//57th International Astronautical Congress. 2006: C2. 5.01.
    [33] PEREIRA T, GUO Z, NIEH S, et al. Embedding thin-film lithium energy cells in structural composites[J]. Composites Science and Technology,2008,68(7-8):1935-1941. doi: 10.1016/j.compscitech.2008.02.019
    [34] HAHN H T. Energy storage structural composites: a review[J]. Journal of composite Materials,2009,43(5):549. doi: 10.1177/0021998308097682
    [35] ASTM I. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials[J]. ASTM D790-07, 2007.
    [36] STANDARD A. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates[J]. ASTM D7137/D7137 M. West Conshohocken, PA: American Society for Testing and Materials, 2007.
    [37] ASTM. Standard test method for shear strength of plastics by punch tool[J]. D732-10, 2010.
    [38] SHUART M J. Failure of compression-loaded multidirectional composite laminates[J]. AIAA journal,1989,27(9):1274-1279. doi: 10.2514/3.10255
    [39] THOMAS J P, QIDWAI M A. Mechanical design and performance of composite multifunctional materials[J]. Acta materialia,2004,52(8):2155-2164. doi: 10.1016/j.actamat.2004.01.007
    [40] GALOS J, KHATIBI A A, MOURITZ A P. Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries[J]. Composite Structures,2019,220:677-686. doi: 10.1016/j.compstruct.2019.04.013
    [41] THOMAS J P, QIDWAI M A. The design and application of multifunctional structure-battery materials systems[J]. Jom,2005,57(3):18. doi: 10.1007/s11837-005-0228-5
    [42] THOMAS J P, POGUE III W R, PHAM G T, et al. Flexure and pressure-loading effects on the performance of structure–battery composite beams[J]. Journal of Composite Materials,2019,53(20):2863-2874. doi: 10.1177/0021998318810856
    [43] LADPLI P, NARDARI R, KOPSAFTOPOULOS F, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources,2019,414:517-529. doi: 10.1016/j.jpowsour.2018.12.051
    [44] PATTARAKUNNAN K, GALOS J, DAS R, et al. Tensile properties of multifunctional composites embedded with lithium-ion polymer batteries[J]. Composites Part A:Applied Science and Manufacturing,2020,136:105966. doi: 10.1016/j.compositesa.2020.105966
    [45] GALOS J, BEST A S, MOURITZ A P. Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads[J]. Materials & Design,2020,185:108228.
    [46] CARLSON T. Multifunctional composite materials: Design, manufacture and experimental characterisation[D]. Luleå tekniska universitet, 2013.
    [47] JOHANNISSON W, ZENKERT D, LINDBERGH G. Model of a structural battery and its potential for system level mass savings[J]. Multifunctional Materials,2019,2(3):035002. doi: 10.1088/2399-7532/ab3bdd
    [48] MOYER K, MENG C, MARSHALL B, et al. Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats[J]. Energy Storage Materials,2020,24:676-681. doi: 10.1016/j.ensm.2019.08.003
    [49] XU J, VARNA J. Matrix and interface cracking in cross-ply composite structural battery under combined electrochemical and mechanical loading[J]. Composites Science and Technology,2020,186:107891. doi: 10.1016/j.compscitech.2019.107891
    [50] 李仲明, 李斌, 冯东, 曾天标. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(2):513-527. doi: 10.13801/j.cnki.fhclxb.20210708.002

    LI Zhongming , LI Bin , FENG Dong, ZENG Tianbiao. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica,2022,39(2):513-527(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210708.002
    [51] KJELL M H, JACQUES E, ZENKERT D, et al. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of the Electrochemical Society,2011,158(12):A1455. doi: 10.1149/2.053112jes
    [52] FREDI G, JESCHKE S, BOULAOUED A, et al. Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes[J]. Multifunctional Materials,2018,1(1):015003. doi: 10.1088/2399-7532/aab707
    [53] HAGBERG J, MAPLES H A, ALVIM K S P, et al. Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries[J]. Composites Science and Technology,2018,162:235-243. doi: 10.1016/j.compscitech.2018.04.041
    [54] LEIJONMARCK S, CARLSON T, LINDBERGH G, et al. Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries[J]. Composites Science and Technology,2013,89:149-157. doi: 10.1016/j.compscitech.2013.09.026
    [55] MOYER K, MENG C, MARSHALL B, et al. Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats[J]. Energy Storage Materials,2020,24:676-681. doi: 10.1016/j.ensm.2019.08.003
    [56] WAN J, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology,2019,14(7):705-711. doi: 10.1038/s41565-019-0465-3
    [57] ZHAO Y, ZHAO D, ZHANG T, et al. Preparation and multifunctional performance of carbon fiber-reinforced plastic composites for laminated structural batteries[J]. Polymer Composites,2020,41(8):3023-3033. doi: 10.1002/pc.25594
    [58] TORQUATO S, HYUN S, DONEV A. Optimal design of manufacturable three-dimensional composites with multifunctional characteristics[J]. Journal of Applied Physics,2003,94(9):5748-5755. doi: 10.1063/1.1611631
    [59] GIENGER E B, NGUYEN P A T, CHIN W, et al. Microstructure and multifunctional properties of liquid+ polymer bicomponent structural electrolytes: Epoxy gels and porous monoliths[J]. Journal of Applied Polymer Science, 2015, 132(42).
    [60] RHAZAOUI K, CAI Q, ADJIMAN C S, et al. Towards the 3 D modeling of the effective conductivity of solid oxide fuel cell electrodes: I. Model development[J]. Chemical Engineering Science,2013,99:161-170. doi: 10.1016/j.ces.2013.05.030
    [61] BERINGER I R, WALTER M, SNYDER J F, et al. Multifunctional structural polymer electrolytes via interpenetrating truss structures[J]. Multifunctional Materials,2018,1(1):015005. doi: 10.1088/2399-7532/aaee16
    [62] 曹邵文, 周国庆, 蔡琦琳, 叶庆, 庞昊强, 吴玺. 太阳能电池综述: 材料、政策驱动机制及应用前景[J/OL]. 复合材料学报: 1-13[2022-05-22].DOI: 10.13801/j.cnki.fhclxb.20220302.001.

    CAO Shaowen, ZHOU Guoqing, CAI Qilin, YE Qing, PANG Haoqiang, WU Xi, A review of solar cells: materials, policy-driven mechanisms and application prospects[J/OL]. Acta Materiae Compositae Sinica: 1-13[2022-05-22]. DOI:10.13801/j.cnki.fhclxb.20220302.001.(in Chinese)
    [63] 陶积柏, 朱大雷, 董丰路, 黎昱, 张玉生, 张国旗. 航天器用支架复合材料轻量化研究[J]. 复合材料学报, 2016, 33(5):1020-1025. doi: 10.13801/j.cnki.fhclxb.20151225.004

    TAO JB, ZHU DL, DONG FL, LI Y, ZHANG YS, ZHANG GQ. Research on lightweight composites of stent for spacecrafts[J]. Acta Materiae Compositae Sinica,2016,33(5):1020-1025(in Chinese). doi: 10.13801/j.cnki.fhclxb.20151225.004
    [64] SKY C. Clean sky[J]. European Union Funding for Research and Innovation, 2018.
    [65] BRUNET M, AUBRY S, LAFAGE R. The clean sky programme: environmental benefits at aircraft level[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. 2015: 2390.
    [66] Ameduri S, Concilio A, Dimino I, et al. AIRGREEN2-Clean Sky 2 Programme: Adaptive Wing Technology Maturation, Challenges and Perspectives[C]//Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018, 51944: V001T04A023.
    [67] Lerro A, Battipede M, Gili P, et al. The clean sky 2 midas project-an innovative modular, digital and integrated air data system for fly-by-wire applications[C]//2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2019: 714-719.
    [68] LAFAGE R, AUBRY S. The Clean Sky Technology Evaluator: review and results of the environmental impact assessment at mission level[C]//16 th AIAA aviation technology, integration, and operations conference. 2016: 3745.
    [69] BLACHA M, FINK A, EGLIN P, et al. Clean Sky 2: Exploring new rotorcraft high speed configurations[C]//43rd European Rotorcraft Forum. Milan, 2017.
    [70] GREENHALGH E S, SHAFFER M S P, KUCERNAK A R, et al. Future challenges and industrial adoption strategies for structural supercapacitors[J]. Proceedings of the ICCM22, Melbourne, Australia,2019:11-16.
    [71] NGUYEN S N, MILLEREUX A, POUYAT A, et al. Structural power performance requirements for future aircraft integration[C]//Proceedings of the 22 nd International Conference on Composite Materials. 2019: 3902-3913.
    [72] GREENHALGH E. Structural power composites for hybrid vehicles (STORAGE)[C]//ECCM15–15th European Conference on Composite Materials, Venice, Italy. 2012: 24-28.
    [73] JOHANNISSON W, ZENKERT D, LINDBERGH G. Model of a structural battery and its potential for system level mass savings[J]. Multifunctional Materials,2019,2(3):035002. doi: 10.1088/2399-7532/ab3bdd
    [74] CARLSTEDT D, ASP L E. Performance analysis framework for structural battery composites in electric vehicles[J]. Composites Part B:Engineering,2020,186:107822. doi: 10.1016/j.compositesb.2020.107822
  • 加载中
计量
  • 文章访问数:  128
  • HTML全文浏览量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 录用日期:  2022-05-31
  • 修回日期:  2022-05-22
  • 网络出版日期:  2022-06-17

目录

    /

    返回文章
    返回