六方氮化硼-立方氮化硼/环氧树脂复合材料的制备与热物性能

Preparation and thermophysical properties of hexagonal boron nitride-cubic boron nitride/epoxy composites

  • 摘要: 环氧树脂(EP)高分子复合材料具有较低的热导率,其绝缘器件因散热及耐热性较差长期使用会出现故障和失效等隐患。通过向EP中添加微米氮化硼(BN)来制备具有高耐热性、高热导率的复合绝缘材料,并研究了复合材料的导热性能和耐热性能。结果表明:在六方氮化硼(hBN)质量分数为30wt%时,复合材料的热导率为0.444 W/(m·K),是纯EP的2.3倍。使用KH560改性hBN制备的复合材料,在填料质量分数为30wt%时,复合材料的热导率为0.456 W/(m·K),比未改性略有提高。而对于hBN-cBN/EP热压复合材料,在填料质量分数为30wt%时,其面内热导率为1.32 W/(m·K),远大于法向热导率。通过混掺制备了两种粒径(1、5~10 μm)的hBN/EP复合材料,结果表明:填料混掺能明显提高材料的耐热性,通过向hBN/EP复合材料中添加1 μm和10 μm两种不同粒径的立方氮化硼(cBN)制备复合材料及其热压复合材料,结果表明:加入cBN和热压都能提高复合材料的耐热性能。

     

    Abstract: Epoxy resin (EP) has low thermal conductivity, and EP-based insulate equipments will failure due to their poor heat dissipation and heat re-sistance in long-term use. A composite insulating material with high heat resistance and high thermal conductivity was prepared by adding micron boron nitride (BN) to EP, and the thermal conductivity and heat resistance of the composite material were studied. The results show that when the mass fraction of hexagonal boron nitride (hBN) is 30wt%, the thermal conductivity of the composite is 0.444 W/(m·K), which is 2.3 times that of pure EP. When the filler mass fraction is 30wt%, the thermal conductivity of the composite mater-ial prepared by using KH560 modified hBN is 0.456 W/(m·K), which is slightly higher than that of the unmodified material. For the hBN-cBN/EP hot-pressed composite material, when the filler mass fraction is 30wt%, the in-plane thermal conductivity is 1.32 W/(m·K), which is much greater than the normal thermal conductivity. The hBN/EP composite materials with two particle sizes (1, 5-10 μm) were prepared by blending. The results show that filler blending can significantly improve the heat resistance of the material. Two cubic boron nitride (cBN) with two particle sizes (1, 5-10 μm) were added to prepare composite materials and their hot-pressed composite materials. The results show that the addition of cBN and hot-pressing can improve the heat resistance of the composite materials.

     

/

返回文章
返回