留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微米级ZnS-Qds@聚硅氧烷核壳型光扩散杂化微球制备与应用

罗培栋 赵程 罗秋萍 张强 颜妃妃

罗培栋, 赵程, 罗秋萍, 等. 微米级ZnS-Qds@聚硅氧烷核壳型光扩散杂化微球制备与应用[J]. 复合材料学报, 2022, 40(0): 1-8
引用本文: 罗培栋, 赵程, 罗秋萍, 等. 微米级ZnS-Qds@聚硅氧烷核壳型光扩散杂化微球制备与应用[J]. 复合材料学报, 2022, 40(0): 1-8
Peidong LUO, Cheng ZHAO, Qiuping LUO, Qiang ZHANG, Feifei YAN. Preparation and application of micron-sized ZnS-Qds@ polysiloxane core-shell light diffusion hybrid microspheres[J]. Acta Materiae Compositae Sinica.
Citation: Peidong LUO, Cheng ZHAO, Qiuping LUO, Qiang ZHANG, Feifei YAN. Preparation and application of micron-sized ZnS-Qds@ polysiloxane core-shell light diffusion hybrid microspheres[J]. Acta Materiae Compositae Sinica.

微米级ZnS-Qds@聚硅氧烷核壳型光扩散杂化微球制备与应用

详细信息
    通讯作者:

    罗培栋,硕士,副高级工程师,研究方向为光学薄膜方向  E-mail: lpd@dxc-chem.com

  • 中图分类号: TB332

Preparation and application of micron-sized ZnS-Qds@ polysiloxane core-shell light diffusion hybrid microspheres

  • 摘要: 在液晶背光模组中通常使用扩散膜来提高光的散射效果,提高光的利用率。光散射粒子是影响光散射材料透光率和雾度的主要因素。有机硅微球由于热稳定性好,尺寸稳定性佳,粒径和折射率可以通过反应调控的特点,作为光扩散粒子应用于光扩散材料具有十分广阔的应用前景。本文通过在溶胶-凝胶法制备的聚硅氧烷微球上面沉淀一层被巯基聚硅氧烷包裹的硫化锌量子点(ZnS-Qds),制得微米级ZnS-Qds@聚硅氧烷核壳型光扩散杂化微球,并制备了添加不同质量分数的杂化微球的光扩散膜。采用TEM、透射电镜映射分析、荧光光度计等测试手段对所制备的杂化材料进行了表征,并对用该杂化粒子制备得到的光扩散膜进行了光学性能测试。结果表明,ZnS-Qds@聚硅氧烷光扩散杂化微球具有核壳结构,平均粒径约 3.6 μm,壳层平均厚度为87.4 nm,平均粒径为2 nm的ZnS-Qds均匀地分散在壳层中。将该粒子添加到丙烯酸树脂中并涂覆在 PET 膜上以制成光扩散膜,实验结果表明,当杂化粒子添加量从0%增加到20%时,光扩散膜的雾度从1.67%提高到91.11%,而光扩散膜的透光率仅从90.10%降低到 82.57%。

     

  • 图  1  硫化锌量子点(ZnS-Qds)@聚硅氧烷光扩散杂化微球的合成路线

    Figure  1.  Synthesis route of ZnS quantum dot (ZnS-Qds)@polysiloxane light-diffusion hybrid microspheres

    图  2  光扩散膜及光扩散原理

    Figure  2.  Optical diffusers and light diffusing strategy

    图  3  聚硅氧烷微球的SEM图

    Figure  3.  SEM of polysiloxane microspheres

    图  4  ZnS-Qds @聚硅氧烷光扩散杂化微球的TEM图

    Figure  4.  TEM of ZnS-Qds @polysiloxane light-diffusion hybrid microspheres

    图  6  ZnS-Qds @聚硅氧烷光扩散杂化微球HRTEM图

    Figure  6.  HRTEM of ZnS-Qds@polysiloxane light-diffusion hybrid microspheres

    图  5  ZnS-Qds @聚硅氧烷光扩散杂化微球的透射电镜映射分析

    Figure  5.  TEM-mapping analysis of ZnS-Qds @polysiloxane light-diffusion hybrid microsphere

    图  7  ZnS-Qds@聚硅氧烷光扩散杂化微球的XPS全谱图(a)和S 2 p的高分辨XPS光谱图(b)

    Figure  7.  XPS survey spectrum (a) and high-resolution spectrum (b) of ZnS-Qds@polysiloxane light-diffusion hybrid microspheres

    图  8  ZnS-Qds@聚硅氧烷光扩散杂化微球的粒径分布

    Figure  8.  Particle size distribution of ZnS-Qds@polysiloxane light-diffusion hybrid microspheres

    图  9  ZnS-Qds @聚硅氧烷光扩散杂化微球的荧光激发和发射光谱

    Figure  9.  Fluorescence excitation and emission spectra of ZnS-Qds@polysiloxane light-diffusion hybrid microspheres

    图  10  聚硅氧烷、ZnS-Qds @聚硅氧烷杂化微球TG 图

    Figure  10.  TG curve of polysiloxane microspheres and ZnS-Qds @polysiloxane hybrid microspheres

    图  11  聚硅氧烷、ZnS-Qds @聚硅氧烷杂化微球DTA 图

    Figure  11.  DTA curve of polysiloxane microspheres and ZnS-Qds @polysiloxane hybrid microspheres

    图  12  (a)聚硅氧球微球在乙醇中的分散图;(b) ZnS-Qds @聚硅氧烷杂化微球在乙醇中的分散图

    Figure  12.  (a) Dispersion of polysiloxane microspheres in ethanol; (b) Dispersion of ZnS-Qds @polysiloxane hybrid microspheres in ethanol

    表  1  聚硅氧烷、ZnS-Qds @聚硅氧烷杂化微球失重温度比较

    Table  1.   Comparison of decomposition temperature between polysiloxane microspheres and ZnS-Qds @polysiloxane hybrid microspheres

    ParticlesDecomposition Temperature/℃
    5wt%10wt%15wt%20wt%
    Polysiloxane 305 622 721 >1000
    ZnS-Qds @polysiloxane 268 372 534 842
    下载: 导出CSV

    表  2  聚硅氧烷、ZnS-Qds @聚硅氧烷杂化微球不同添加量所制备的膜的光学性能

    Table  2.   Optical properties of polysiloxane microspheres and ZnS-Qds @polysiloxane hybrid microspheres prepared by different addition amounts

    NumberParticlesMass fraction/wt%Transmittance/%Haze/%
    1/090.101.67
    2Polysiloxane389.5825.84
    3Polysiloxane689.3358.24
    4Polysiloxane1089.1066.95
    5Polysiloxane1588.5677.42
    6Polysiloxane2088.5481.24
    7ZnS-Qds @polysiloxane388.2731.51
    8ZnS-Qds @polysiloxane687.9670.38
    9ZnS-Qds @polysiloxane1086.2585.15
    10ZnS-Qds @polysiloxane1585.9887.83
    11ZnS-Qds @polysiloxane2082.5791.11
    下载: 导出CSV
  • [1] NISHIZAWA M, SEKIYA K, KAWAKAMI T, et al. Synthesis and optical property analysis of novel anisotropic light diffusing film[J]. Bulletin of the Chemical Society of Japan,2012,85(7):839-841. doi: 10.1246/bcsj.20110379
    [2] 王乐, 吴弼卿, 李晚艳. 光学薄膜对LED出光效率影响的研究进展[J]. 材料科学与工程学报, 2011, 29(4):647-654.

    WANG L, WU B Q, LI W Y. Research progress on the effect of optical film on the luminous efficiency of LED[J]. Journal of Materials Science and Engineering,2011,29(4):647-654(in Chinese).
    [3] FIRMANSYAH D A, KIM S Q, LEE K S. Micro-structure-controlled aeroso-gel synthesis of ZnO quantum dots dispersed in SiO2 nanospheres[J]. Langmuir,2012,28(5):2890-2896. doi: 10.1021/la203730a
    [4] 雷帅. 有机硅微球与光散射材料的制备及其结构性能研究[J]. 深圳大学, 2019:51-53.

    LEI S. Preparation and structural properties of organosilicon microspheres and light-scattering materials[J]. Shenzhen Univer-sity,2019:51-53(in Chinese).
    [5] CALVO M E, MÍGUEZ H. Flexible, Adhesive, and Biocompatible Bragg Mirrors Based on Polydimethylsiloxane Infiltrated Nanoparticle Multilayers[J]. Chem. Mater.,2010,22(13):3909-3915. doi: 10.1021/cm1001016
    [6] SÁNCHEZ O, CALVO M E, MÍGUEZ H. Versatility and multifunctionality of highly reflecting Bragg mirrors based on nanoparticle Multilayers[J]. Journal of Materials Chemistry,2010,20(38):8240. doi: 10.1039/c0jm01508c
    [7] 钟熙. 水热法制备光扩散杂化微球及其在光扩散膜中的应用[J]. 江苏:东南大学化学化工学院, 2018:1-35.

    ZHONG X. Preparation of photodiffusion hybrid microspheres by hydrothermal method and its application in photodiffusion films[J]. Jiangsu:School of Chemistry and Chemical Engineering, Southeast University,2018:1-35(in Chinese).
    [8] BU X B, LI D X, ZHANG Z W, et al. Facile fabrication of ZrO2@PMMA@polysiloxane nanohybrids and their application for light diffusing films[J]. Micro & Nano Letters,2019,14(4):349-352.
    [9] LEE K S, JEON B, CHA S W. Development of a multilayered optical diffusion sheet using microcellular foaming technology[J]. Polym-Plast Technol,2011,50(1):102-111. doi: 10.1080/03602559.2010.531418
    [10] ASTM D1003-2013, Standard test method for haze and luminous transmittance of transparent plastics[S].
    [11] WANG H, XIE K, YOU Y, et al. Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/N-rGO Heterostructures for Efficient Li–CO2 Batteries[J]. Advanced Energy Materials,2019,9(34):1901806. doi: 10.1002/aenm.201901806
    [12] NAUMKIN A V, Kraut A V, GAARENSTROOM S W, NIST X-ray Photoelectron Spectroscopy Database, NIST, Stand. Ref. Database 20, Version 4.1, 2012.
    [13] MOON H, LEE C M, LEE W, et al. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications.[J]. Advanced materials (Deerfield Beach, Fla. ),2019,31(34):1804294. doi: 10.1002/adma.201804294
    [14] 李云凤, 倪志华, 柯轶. 巯基乙胺为稳定剂制备水溶性荧光量子点的合成探究[J]. 山东化工, 2020, 49(8):45-47. doi: 10.3969/j.issn.1008-021X.2020.08.015

    LI Y F, NI Z H, KE Y. Synthesis of water-soluble fluorescent quantum dots using mercaptoethylamine as stabilizer[J]. Shandong Chemical Industry,2020,49(8):45-47(in Chinese). doi: 10.3969/j.issn.1008-021X.2020.08.015
    [15] 江波, 黄麒, 卢强, 等. MPA稳定的CdTe量子点合成及Cu2+检测应用[J]. 中国药科大学学报, 2017, 48(3):311-316. doi: 10.11665/j.issn.1000-5048.20170310

    JIANG B, HUANG Q, LU Q, et al. Synthesis and Cu2+ detection of CdTe quantum dots stabilized by MPA[J]. Journal of China Pharmaceutical University,2017,48(3):311-316(in Chinese). doi: 10.11665/j.issn.1000-5048.20170310
    [16] 张小波, 宋宏伟, 于立新, 等. 退火对ZnS纳米晶结构相变及发光的影响[J]. 发光学报, 2004, 1:67-71. doi: 10.3321/j.issn:1000-7032.2004.01.014

    ZHANG X B SONG H W, YU L X, et al. Effect of annealing on phase transformation and luminescence of ZnS nanocrystals[J]. Chinese Journal of Luminescence,2004,1:67-71(in Chinese). doi: 10.3321/j.issn:1000-7032.2004.01.014
    [17] 张丹, 宋溪明, 梁福鑫, 等. 核壳结构PAM-ZnS纳米杂化微球的制备研究[J]. 高等学校化学学报, 2005(11):202-204+10.

    ZHANG D, SONG X M, LIANG F X, et al. Preparation of pam-ZNs nanohybrid micro-spheres with core-shell structure[J]. Chemical Journal of Chinese Universities,2005(11):202-204+10(in Chinese).
    [18] 陈平清, 王春晓, 张小风. Mn掺杂ZnS纳米晶的制备及发光性能研究[J]. 化工时刊, 2021, 35(1):1-8.

    CHEN P Q, WANG C X, ZHANG X F. Preparation and luminescence properties of Mn doped ZnS nanocrystals[J]. Chemical Industry Times,2021,35(1):1-8(in Chinese).
    [19] 杜继红, 张冰, 孙明烨. CuInS2/ZnS核/壳量子点的制备及其光致发光器件[J]. 科技与创新, 2019(05):32-34.

    DU J H, ZHANG B, SUN M Y. Fabrication of CuInS2/ZnS core/shell quantum dots and their photoluminescence devices[J]. Science and Technology Innovation,2019(05):32-34(in Chinese).
    [20] 宁平凡, 刘宏伟, 牛萍娟, 等. SiO2钝化提高CdSe/ZnS量子点的发光稳定性[J]. 发光学报, 2018, 39(2): 109-114.

    NING P F, LIU H W, NIU P J, et al. Chinese Journal of Luminescence, 2018, 39(2): 109-114 (in Chinese).
    [21] 胡金刚. LCD背光模组用新型抗老化光扩散膜的设计、制备及性能研究[J]. 江苏:东南大学化学化工学院, 2015:39-40.

    HU J G. Design, preparation and properties of a novel anti-aging light diffusion film for LCD backlight module[J]. Jiangsu:School of Chemistry and Chemical Engineering, Southeast University,2015:39-40(in Chinese).
    [22] 周维祥. 塑料测试技术[J]. 北京:化学工业出版社, 1997:320.

    ZHOU W X. Plastics Testing Technology[J]. Beijing:Chemical Industry Press,1997:320(in Chinese).
    [23] SREENIVASULU B, RAMA S B, VENKATRAMANA R S, et al. Synthesis and lumine luminescence properties of chemically synthesized ZnS nanomaterials[J]. Ferroelectrics,2021,577(1):91-98. doi: 10.1080/00150193.2021.1916353
    [24] KULYK B, KAPUSTIANYK V, TSYBULSKYY V, et al. Optical properties of ZnO/PMMA nanocomposite films[J]. Journal of Alloys and Compounds,2010,502(1):24-27. doi: 10.1016/j.jallcom.2010.04.162
    [25] MANJUNATHA K B, DILEEP R, UMESH G, et al. All optical nonlinear and switching characteristics of a novel ruthenium complex[J]. Optical Materials,2014,36(6):1054-1059. doi: 10.1016/j.optmat.2014.01.029
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 录用日期:  2022-05-01
  • 修回日期:  2022-04-20
  • 网络出版日期:  2022-05-30

目录

    /

    返回文章
    返回