留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对位芳纶纤维界面改性技术研究进展

李杉杉 尚诗杰 王娜娜 乔子航 周存

李杉杉, 尚诗杰, 王娜娜, 等. 对位芳纶纤维界面改性技术研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 李杉杉, 尚诗杰, 王娜娜, 等. 对位芳纶纤维界面改性技术研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
LI Shanshan, SHANG Shijie, WANG Nana, et al. Research progress on interfacial modification technology of para-aramid fiber[J]. Acta Materiae Compositae Sinica.
Citation: LI Shanshan, SHANG Shijie, WANG Nana, et al. Research progress on interfacial modification technology of para-aramid fiber[J]. Acta Materiae Compositae Sinica.

对位芳纶纤维界面改性技术研究进展

详细信息
    通讯作者:

    周存,工学博士,研究员,博士生导师,研究方向为纺织助剂、纤维改性与界面处理技术。 E-mail: zhoucun@tiangong.edu.cn

  • 中图分类号: TQ342+.72, TB332

Research progress on interfacial modification technology of para-aramid fiber

  • 摘要: 芳纶纤维作为一种新兴的高性能纤维,具有多种优异独特的性能,在先进复合材料、防护用品、高性能结构材料等领域具有广泛的应用。芳纶的表面惰性导致其复合材料的界面粘结性能不良,为满足高性能芳纶复合材料的开发应用,芳纶纤维表面改性研究方兴未艾。本文综述了近年来芳纶表面改性技术的发展现状与研究进展,讨论了不同表面改性技术对芳纶及其复合材料界面性能的影响,对不同改性方法的改性效果的及其工业化前景进行了比较,对目前芳纶表面改性技术存在主要的问题进行了分析,并从产业化角度探讨了未来芳纶纤维及其复合材料界面处理技术可能的发展方向。

     

  • 图  1  对位芳纶分子内部结构示意图

    Figure  1.  Internal structure diagram of para-aramid molecule

    图  2  芳纶Ⅲ 分子结构

    Figure  2.  Molecular structure of aramid III

    图  3  Glycidyl-POSS结构示意图

    Figure  3.  Glycidyl-POSS in Reference

    图  4  芳纶纤维表面接枝TDI改性示意图

    Figure  4.  Aramid fiber surface grafting TDI modification schematic diagram

    图  5  PBIA纤维结构示意图

    Figure  5.  Structure diagram of PBIA fiber

    图  6  异氰酸酯基与芳纶反应式

    Figure  6.  Reaction of isocyanate group with aramid fiber

    图  7  多巴胺自聚合过程

    Figure  7.  Dopamine self-polymerization process

    图  8  涂覆剂PPTA-ECH的合成路线

    Figure  8.  Synthetic route of coating agent PPTA-ECH

    图  9  羟基和乙烯官能团芳香族聚酰胺的合成路线

    Figure  9.  Synthesis route of aromatic polyamides with hydroxyl and ethylene functional groups

    表  1  对位芳纶与间位芳纶对比

    Table  1.   Comparison of para-aramid and meta-aramid fibers

    Chemical name poly-p-phenylene diamine terephthalamide poly(m-phenylene isophthalamide)
    Molecular formula
    Performance characteristics It has high strength, high modulus, excellent heat resistance, impact resistance and fatigue resistance. It is called ' bulletproof fiber '. The tensile strength is 6 times that of steel wire, the tensile modulus is 2 ~ 3 times that of steel wire, and the density is only 1 / 5 of steel wire. It has low rigidity and high elongation. As a fabric, it has better comfort and handle than para-aramid fiber. It has excellent electrical insulation and radiation resistance. It can be made into insulation paper with breakdown voltage of 20 kV / mm.
    Industrial chain Composite materials, rope and cable, safety protection field, bulletproof materials, rubber reinforcement [9-11] Honeycomb composite materials, electrical insulation materials, high temperature filter materials, plastics [12, 13]
    下载: 导出CSV

    表  2  芳纶纤维改性方法原理及特点

    Table  2.   Principle and characteristics of aramid fiber modification method

    MethodsPrinciplePros and consIndustrialization prospect
    High energy physics methodsIt provides high energy to form free radical active centers on the surface of fibers, and then introduces polar groups on the surface of fibers, which can also improve the roughness of the fiber surface, enhance the wettability and bonding performance.It is environmental and has a significant modification effect, which improves the performance of composite materials. But it has certain damage to the fiber strength and poses radiation risks.It requires high equipment requirements, high cost investment, and is difficult to put into practical production.
    Chemical methodsIt introduces active groups into the surface of fibers through chemical reactions, improving reactivity.It has many influencing factors, poor reproducibility, environmental pollution and safety risks, and can cause certain damage to the mechanical properties of fibers.Chemical methods have safety hazards, high production costs, and are less commonly used.
    Physical methodsGum dippingIt is to immerse a fabric or fiber into a glue solution, so that the fabric or fiber is attached to a glue film, in order to improve the adhesion between the fabric and rubberThe physical method does not damage the structure of the fiber itself and has a certain enhancing effect on the mechanical properties of the fiber. It is easy to operate and has good reproducibility.Gum dipping is relatively mature and suitable for specific processes, especially for bonding with rubber; The implementation difficulty of coating process is high, and the quality controllability is poor; Sizing has universality and great development potential, and the research and development of high-performance sizing agents is challenging
    CoatingCoating is to coat polymer on the surface of fibers to improve interfacial bonding strength
    SizingSizing is an important part of the weaving process. After sizing, the sizing agent forms a dense film on the surface of the fiber to improve the reactivity, wettability and bonding properties of the fiber surface.
    下载: 导出CSV
  • [1] PATADIYA J, CHOUGALE P V, NAEBE M, et al. Recent advancement in surface modification of aramid fiber assisted by supercritical carbon dioxide[J]. Polymers for Advanced Technologies, 2023, 34(12): 3748-3758. doi: 10.1002/pat.6163
    [2] HE A, XING T, LIANG Z, et al. Advanced Aramid Fibrous Materials: Fundamentals, Advances, and Beyond[J]. Advanced Fiber Materials, 2024, 6(1): 3-35. doi: 10.1007/s42765-023-00332-1
    [3] XUE R, CHANG Y, LIU F. Fabrication and performance evaluation of aramid laminated fabrics incorporated with silica composite aerogel for protective clothing[J]. Ceramics International, 2024, 50(7): 10348-10354. doi: 10.1016/j.ceramint.2023.12.346
    [4] SUN X, GAO S, WANG J, et al. TiO2 modified para-aramid nanofiber composite separator for thermal runaway prevention and shuttle effect mitigation of lithium-sulfur batteries[J]. Microporous and Mesoporous Materials. 2024, 366.
    [5] JI H, WANG X, TANG N, et al. Ballistic perforation of aramid laminates: Projectile nose shape sensitivity[J]. Composite Structures, 2024, 330: 117807. doi: 10.1016/j.compstruct.2023.117807
    [6] 张玮, 刘姝瑞, 张明宇, 等. 芳纶纤维的发展现状及应用[J]. 纺织科学与工程学报, 2024, 41(1): 86-94. doi: 10.3969/j.issn.2096-5184.2024.01.014

    ZHANG W, LIU S R, ZHANG M Y, et al. Development status and application of aramid fiber[J]. Journal of Textile Science and Engineering, 2024, 41(1): 86-94(in Chinese). doi: 10.3969/j.issn.2096-5184.2024.01.014
    [7] SIKKEMA D J. Chapter 4: Rigid-chain polymers: Aromatic polyamides, heterocyclic rigid rod polymers, and polyesters[J]. Advanced industrial and engineering polymer research, 2022, 5(2): 80-89. doi: 10.1016/j.aiepr.2022.03.003
    [8] DHARMAVARAPU P, M. B. S S R. Aramid fibre as potential reinforcement for polymer matrix composites: a review[J]. Emergent Materials, 2022, 5(5): 1561-1578. doi: 10.1007/s42247-021-00246-x
    [9] MELIANDE N M, OLIVEIRA M S, PEREIRA A C, et al. Ballistic properties of curaua-aramid laminated hybrid composites for military helmet[J]. Journal of Materials Research and Technology, 2023, 25: 3943-3956. doi: 10.1016/j.jmrt.2023.06.200
    [10] XUE R, CHANG Y, LIU F. Fabrication and performance evaluation of aramid laminated fabrics incorporated with silica composite aerogel for protective clothing[J]. Ceramics International, 2024, 50(7): 10348-10354. doi: 10.1016/j.ceramint.2023.12.346
    [11] DONG T, ZHAO Z, ZHENG B, et al. Response and damage mechanism of carbon/aramid intra-ply hybrid weft-knitted reinforced composites under low-velocity impact[J]. Thin-Walled Structures, 2024, 196: 111495. doi: 10.1016/j.tws.2023.111495
    [12] 刘浩洋, 吕超雨, 石姗姗, 等. 芳纶纤维增韧碳纤维增强环氧树脂复合材料-铝蜂窝夹芯结构界面性能和增韧机制[J]. 复合材料学报, 2022, 39(2): 559-567.

    LIU H Y, LV C Y, SHI S S, et al. Interfacial toughening and toughening mechanism of aramid staple fiber to carbon fiber reinforced epoxy resin composite-aluminum honeycomb sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 559-567(in Chinese).
    [13] 夏思禹, 李岩, 付昆昆, 等. 基于芯条胶粘弹性本构的芳纶纸蜂窝拉伸孔格形态研究[J]. 复合材料学报, 2023, 42: 1-13.

    XIA S Y, LI Y, FU K K, et al. Study on stretched aramid honeycomb cell structure based on the viscoelastic constitutive model of adhesive[J]. Acta Materiae Compositae Sinica, 2023, 42): 1-13 (in Chinese).
    [14] 中芳: "双纶驱动"打造高性能芳纶及复合材料研发生产基地[J]. 高科技纤维与应用. 2023, 48(04): 89.

    AF China: ‘Double fiber drive ’ creates a high-performance aramid and composite material R & D and production base[J]. Hi-Tech Fiber and Application. 2023, 48(04): 89(in Chinese).
    [15] URSACHE T, CERBU C, HADR A. Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review[J]. Polymers, 2024, 16(1): 127.
    [16] ZHANG H, ZHANG M, LI J, et al. Aramid nanofiber-based functional composite materials: Preparations, applications and perspectives[J]. Composites Part B: Engineering, 2024, 271: 111151. doi: 10.1016/j.compositesb.2023.111151
    [17] ZHANG B, JIA L, TIAN M, et al. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review[J]. European Polymer Journal, 2021, 147: 110352. doi: 10.1016/j.eurpolymj.2021.110352
    [18] 鲁春蕊. 基于界面润湿理论的CF/PEEK复合材料界面改性设计与性能研究[D]. 哈尔滨工业大学, 2019.

    LU C R. Interfacial modification design and performance research of CF/PEEK composite based on the interfacial wettability theory. Harbin Institute of Technology, 2019(in Chinese).
    [19] BAI T, WANG D, YAN J, et al. Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites[J]. Composites Science and Technology, 2021, 213: 108951. doi: 10.1016/j.compscitech.2021.108951
    [20] XU J, MA B, ZHOU S, et al. Wetting model of rough solid surfaces and the effect of aggregate properties on epoxy resin binder-aggregate interface wetting[J]. Construction and Building Materials, 2023, 394: 132251. doi: 10.1016/j.conbuildmat.2023.132251
    [21] EPALLE A, CATHERIN M, COBIAN M, et al. Application of the Lattice-Boltzmann method to wetting on anisotropic textured surfaces: Characterization of the liquid-solid interface[J]. Journal of Colloid and Interface Science, 2023, 652: 362-368. doi: 10.1016/j.jcis.2023.07.207
    [22] MAMOLO S U, SODANO H A. Interfacial reinforcement of carbon fiber composites through a chlorinated aramid nanofiber interphase[J]. Composites Science and Technology, 2024, 245: 110351. doi: 10.1016/j.compscitech.2023.110351
    [23] 刘清清, 郭荣辉. 芳纶纤维的改性研究进展[J]. 纺织科学与工程学报, 2020, 37(3): 86-93.

    LIU Q Q, GUO R H. Research progress of modification of aramid fiber[J]. Journal of Textile Science and Engineering, 2020, 37(3): 86-93(in Chinese).
    [24] 姜云平, 王芳, 罗之祥. 加工工艺对芳纶帘线性能的影响[J]. 轮胎工业, 2022, 42(7): 432-435. doi: 10.12135/j.issn.1006-8171.2022.07.0432

    JIANG Y P, WANG F, LUO Z X. Effect of processing process on properties of aramid coro[J]. Tire Industry, 2022, 42(7): 432-435(in Chinese). doi: 10.12135/j.issn.1006-8171.2022.07.0432
    [25] PALOLA S, VUORINEN J, NOORDERMEER J W M, et al. Development in Additive Methods in Aramid Fiber Surface Modification to Increase Fiber-Matrix Adhesion: A Review[J]. Coatings, 2020, 10(6): 556. doi: 10.3390/coatings10060556
    [26] 蒋磊, 徐任信, 吴书广, 等. 聚氨酯上浆剂处理PBO纤维复合材料的界面性能[J]. 材料工程, 2024, 52(4): 155-163.

    JIANG L, XU R X, WU S G, et al. Interface properties of composites from PBO fibers modified by polyurethane sizing agent[J]. Journal of Materials Engineering, 2024, 52(4): 155-163(in Chinese).
    [27] 王乐. 一种生物基上浆剂的制备及应用[J]. 聚酯工业, 2024, 37(3): 15-18. doi: 10.3969/j.issn.1008-8261.2024.03.005

    WANG L. Preparation and application of a bio based sizing agent[J]. Polyester Industry, 2024, 37(3): 15-18(in Chinese). doi: 10.3969/j.issn.1008-8261.2024.03.005
    [28] IBATULLINA A, KRASINA I, ANTONOVA M, et al. Structural and chemical changes of aramid fibers modified by low temperature plasma[J]. Journal of physics. Conference series, 2020, 1588(1): 12020. doi: 10.1088/1742-6596/1588/1/012020
    [29] XU T, QI Z, YIN Q, et al. Effects of Air Plasma Modification on Aramid Fiber Surface and Its Composite Interface and Mechanical Properties[J]. Polymers, 2022, 14(22): 4892. doi: 10.3390/polym14224892
    [30] 余荣禄, 张藕生. 对位芳纶表面改性及其复合材料性能研究[J]. 合成纤维工业, 2022, 45(3): 45-49. doi: 10.3969/j.issn.1001-0041.2022.03.009

    YU R L, ZHANG O S. Surface modification of para-aramid fiber and properties of composites thereof[J]. China Synthetic Fiber Industry, 2022, 45(3): 45-49 (in Chinese). doi: 10.3969/j.issn.1001-0041.2022.03.009
    [31] FAN W, TIAN H, WANG H, et al. Enhanced interfacial adhesion of aramid fiber III reinforced epoxy composites via low temperature plasma treatment[J]. Polymer Testing, 2018, 72: 147-156. doi: 10.1016/j.polymertesting.2018.10.003
    [32] 武昊岩, 谢光银. 低温等离子体改性芳纶1414的研究[J]. 合成纤维, 2020, 49(3): 18-22.

    WU H Y, XIE G Y. Study on para-aromatic polyamide fiber modified by low temperature plasma[J]. Synthetic Fiber in China, 2020, 49(3): 18-22(in Chinese).
    [33] XUE J, XU H, LI L, et al. Plasma etching-assisted polymerizable deep eutectic solvents for efficient construction of aramid fiber surface coatings enhancing aramid fiber/natural rubber interfacial bonding properties[J]. Progress in Organic Coatings, 2024, 190: 108385. doi: 10.1016/j.porgcoat.2024.108385
    [34] HE A, XING T, LIANG Z, et al. Advanced Aramid Fibrous Materials: Fundamentals, Advances, and Beyond[J]. 2023, 6: 3–35.
    [35] XIE F, XING L, LIU L, et al. Surface ammonification of the mutual-irradiated aramid fibers in 1, 4-dichlorobutane for improving interfacial properties with epoxy resin[J]. Journal of Applied Polymer Science, 2017, 134(23): 136084991.
    [36] JIA C, ZHANG R, YUAN C, et al. Surface modification of aramid fibers by amino functionalized silane grafting to improve interfacial property of aramid fibers reinforced composite[J]. Polymer Composites, 2020, 41(5): 2046-2053. doi: 10.1002/pc.25519
    [37] XING L X, LIU L, HE M, et al. Effect of Different Graft Polymerization Systems on Surface Modification of Aramid Fibers with Γ-Ray Radiation[J]. Advanced Materials Research, 2013, 658: 80-84. doi: 10.4028/www.scientific.net/AMR.658.80
    [38] 谢非, 刘丽, 贾楚源, 等. γ射线辐照处理对芳纶纤维F-3A结构和性能的影响[J]. 化学与黏合, 2018, 40(5): 311-314.

    XIE F, LIU L, JIA C Y, et al. Effect of irradiation with γ-Ray on the structure and properties of aramid fiber F-3A[J]. Chemistry and Adhesion, 2018, 40(5): 311-314(in Chinese).
    [39] XING L, LIU L, HUANG Y, et al. Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation[J]. Composites Part B: Engineering, 2015, 69: 50-57. doi: 10.1016/j.compositesb.2014.09.027
    [40] 孙振华, 马建伟. 用于芳纶纤维化学镀银的表面改性研究进展[J]. 产业用纺织品, 2019, 37(10): 1-6. doi: 10.3969/j.issn.1004-7093.2019.10.001

    SUN Z H, MA J W. Research progress on surface modification for electroless silver plating of aramid fibers[J]. Technical Textiles, 2019, 37(10): 1-6(in Chinese). doi: 10.3969/j.issn.1004-7093.2019.10.001
    [41] 梁起睿, 叶金蕊, 颜丙越, 等. 芳纶纤维与树脂基体改性对复合材料剪切性能的影响[J]. 高分子材料科学与工程. 2024.

    LIANG Q R, YE J R, YAN B Y, et al. Effect of modification of aramid fiber and resin matrix on shear properties of composites[J]. Polymer Materials Science & Engineering. 2024(in Chinese).
    [42] LI C, SHI M, XING W, et al. Mechanical properties of modified aramid three-dimensional braided composites[J]. Polymers for Advanced Technologies, 2024, 35(1): e6197. doi: 10.1002/pat.6197
    [43] 季家友. 芳纶Ⅲ表面改性及其与环氧复合体系的结构与性能研究[D]. 武汉理工大学, 2012.

    JI J Y. Effects of modification on aramid fibers and properties and structures of aramid/epoxy resin composites performance[D]. Wuhan University of Technology, 2012(in Chinese).
    [44] DENG T, ZHANG G, DAI F, et al. Mild surface modification of para-aramid fiber by dilute sulfuric acid under microwave irradiation[J]. Textile Research Journal, 2017, 87(7): 799-806. doi: 10.1177/0040517516639831
    [45] LIN G, WANG H, BOQUAN Y, et al. Combined treatments of fiber surface etching/silane-coupling for enhanced mechanical strength of aramid fiber-reinforced rubber blends[J]. Materials Chemistry and Physics, 2020, 255: 123486. doi: 10.1016/j.matchemphys.2020.123486
    [46] 李雅泊, 曹宁宁, 郑玉婴, 等. 表面改性芳纶纤维/R-PET复合材料的制备及性能[J]. 材料工程, 2018, 46(6): 113-119. doi: 10.11868/j.issn.1001-4381.2016.001290

    LI Y B, CAO N N, ZHENG Y Y, et al. Preparation and properties of composites of R-PET and surface modified aramid fiber[J]. Journal of Materials Engineering, 2018, 46(6): 113-119(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.001290
    [47] MISHRA K, PANDEY G, SINGH R P. Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement[J]. Polymer Testing, 2017, 62: 210-218. doi: 10.1016/j.polymertesting.2017.06.031
    [48] 李杨. 高性能芳纶纤维的表面修饰及特性对复合材料性能影响的研究[D]. 贵州大学, 2020.

    LI Y. Study on the effect of surface modification and properties of high performance aramid fiber on the properties of composites [D]. Guizhou University, 2020(in Chinese).
    [49] 陈铄, 杜怡君, 全晓曦, 等. 低温等离子体刻蚀和接枝对芳纶复合材料力学性能的影响[J]. 绝缘材料. 2023.

    CHEN S, DU Y J, QUAN X X, et al. Effect of DBD plasma etching and grafting on mechanical properties of aramid/epoxy composites[J]. Insulating Materials. 2023(in Chinese).
    [50] HAN Y, TADA K, OSAWA K, et al. Surface modification of aramid fiber with acrylic acid assisted by supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2023, 192: 105787. doi: 10.1016/j.supflu.2022.105787
    [51] 罗林宗, 熊玉竹, 吴胜学. 芳纶纤维表面钠离子化及接枝改性研究[J]. 化工新型材料, 2021, 49(10): 119-123.

    LUO L Z, XIONG Y Z, WU S X. Study on sodium ionization and grafting treatment of the aramid fiber surface[J]. New Chemical Materials, 2021, 49(10): 119-123(in Chinese).
    [52] CHENG Z, CHEN C, HUANG J, et al. Nondestructive grafting of PEI on aramid fiber surface through the coordination of Fe (Ⅲ) to enhance composite interfacial properties[J]. Applied Surface Science, 2017, 401: 323-332. doi: 10.1016/j.apsusc.2017.01.051
    [53] LYU J, LIU B, HUANG X, et al. Protonated benzimidazole segment induced interfacial limited linear grafting in aramid fiber/epoxy resin interface towards strong and tough composites[J]. Polymer, 2023, 282: 126147. doi: 10.1016/j.polymer.2023.126147
    [54] LYU J, CHEN Y, LIU M, et al. Latent active unit triggered crosslinking inside aramid fiber with improved transverse connection and composite properties[J]. Composites Science and Technology, 2023, 241: 110104. doi: 10.1016/j.compscitech.2023.110104
    [55] 冯雨琛. 硅烷偶联剂改性Kevlar纤维-水泥基材料性能研究[D]. 北京建筑大学, 2022.

    FENG Y C. Study on Properties of kevlar fiber-cement based material modified by silane coupling agent[D]. Beijing University of Civil Engineering and Architecture, 2022(in Chinese).
    [56] 李智鹏. 国产芳纶Ⅲ/聚三唑树脂复合材料的制备及界面研究[D]. 华东理工大学, 2014.

    LI Z P. Interface research and fabrication of aramid fiber Ⅲ/polytriazole matrix composite[D]. East China University of Science and Technology, 2014(in Chinese).
    [57] 李翠玉, 王林心, 宋佳佳, 等. 等离子体-硅烷偶联剂改性芳纶纬平针织复合材料的力学性能研究[J]. 产业用纺织品, 2022, 40(5): 44-50.

    LI C Y, WANG L X, SONG J J, et al. Study on mechanical properties of plasma-silane coupling agent modified aramide weft planin-knitted composites[J]. Technical Textiles, 2022, 40(5): 44-50(in Chinese).
    [58] ZHANG S, SHI Z, CUI P, et al. Surface modification of aramid fibers with CaCl2 treatment and secondary functionalization of silane coupling agents[J]. Journal of Applied Polymer Science, 2020, 137(39): 49159. doi: 10.1002/app.49159
    [59] SONG J, LV F, RUAN H, et al. Enabling highly tensile insulating aramid-epoxy composites via interface co-valent bonding[J]. Composites Science and Technology, 2023, 242: 110217. doi: 10.1016/j.compscitech.2023.110217
    [60] ZHAO W, ZHANG W, LIU Y, et al. Fe3+ ions induced rapid co-deposition of polydopamine-polyethyleneimine for monovalent selective cation exchange membrane fabrication[J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 300: 121802. doi: 10.1016/j.seppur.2022.121802
    [61] 闫智敬, 马少华, 付坤, 等. 芳纶表面改性及其与丁腈橡胶复合材料的性能研究[J]. 材料导报, 2016, 30(20): 116-121,143.

    YAN Z J, MA S H, FU K, et al. Study on surface modification of poly-p-phenylene terephthamide fiber and properties of its NBR composites[J]. Materials Reports, 2016, 30(20): 116-121,143(in Chinese).
    [62] 戚婉姝, 王方琦. 芳纶织物表面处理对其与橡胶粘合性能的影响[J]. 特种橡胶制品, 2022, 43(3): 32-35.

    QI W S, WANG F Q. Effect of surface treatment of aramid fabric on its adhesive to rubber[J]. Special Purpose Rubber Products, 2022, 43(3): 32-35(in Chinese).
    [63] 史博, 邹华, 张继阳, 等. 芳纶帘线与胶料的粘合性能研究[J]. 橡胶工业, 2023, 70(5): 336-341.

    SHI B, ZOU H, ZHANG J Y, et al. Adhesive properties between aramid cord and compound[J]. China Rubber Industry, 2023, 70(5): 336-341(in Chinese).
    [64] ZHANG B, SHAO X, TIAN M, et al. Mussel-inspired environmentally friendly dipping system for aramid fiber and its interfacial adhesive mechanism with rubber[J]. Polymer, 2022, 238: 124414. doi: 10.1016/j.polymer.2021.124414
    [65] HUANG W, TIAN C, ZHAO H, et al. Largely improved interfacial adhesion and fatigue life of aramid fiber/polymer composites by developing GO enhanced eco-friendly dip-coating system[J]. Composites Part A: Applied Science and Manufacturing, 2023, 175: 107813. doi: 10.1016/j.compositesa.2023.107813
    [66] 翟振强, 李英哲, 黄伟, 等. 芳纶纳米纤维强化浸渍处理芳纶纤维及其橡胶复合材料的界面黏合性能[J]. 复合材料学报, 2022, 39(9): 4327-4336.

    ZHAI Z Q, LI Y Z, HUANG W, et al. Aramid nanofiber reinforce dipping of fibers and its effect on the interfacial adhesive properties of aramid fiber to rubber[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4327-4336(in Chinese).
    [67] ZHANG B, LIU S, YIN L, et al. Nanoscale analysis of the interface of dip layer/rubber in fiber/rubber composites[J]. Polymer, 2022, 262: 125472. doi: 10.1016/j.polymer.2022.125472
    [68] HUANG W, TIAN C, ZHAO H, et al. Largely improved interfacial adhesion and fatigue life of aramid fiber/polymer composites by developing GO enhanced eco-friendly dip-coating system[J]. Composites Part A: Applied Science and Manufacturing, 2023, 175: 107813. doi: 10.1016/j.compositesa.2023.107813
    [69] 李沙沙. 对位芳纶化学改性及其性能研究[D]. 鲁东大学, 2015.

    LI S S. Chemical modification and research on properties of PPTA[D]. Ludong University, 2015(in Chinese).
    [70] 胡锦澜. 多巴胺及二次改性增强芳纶纤维/环氧树脂界面性能研究[D]. 中北大学, 2023.

    HU J L. Study on the interfacial properties of aramid fiber/epoxy resin reinforced by dopamine and secondary modification[D]. North University of China, 2023(in Chinese).
    [71] NASSER J, LIN J, STEINKE K, et al. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings[J]. Composites science and technology, 2019, 174: 125-133. doi: 10.1016/j.compscitech.2019.02.025
    [72] 李婷. 高强芳纶表面改性及其增强复合材料性能研究[D]. 东华大学, 2022.

    LI T. Study on surface modification of high strength aramid fiber and properties of aramid reinforced composites[D]. Donghua University, 2022(in Chinese).
    [73] ZUO L, LI K, REN D, et al. Surface modification of aramid fiber by crystalline polyarylene ether nitrile sizing for improving interfacial adhesion with polyarylene ether nitrile[J]. Composites Part B: Engineering, 2021, 217: 108917. doi: 10.1016/j.compositesb.2021.108917
    [74] 李智鹏, 扈艳红, 杜磊, 等. 国产芳纶上浆剂对聚三唑复合材料力学性能的影响[J]. 表面技术, 2014, (4): 17-23,42.

    LI Z P, HU Y H, DU L, et al. Effect of domestic aramid fiber sizing agents on mechanical properties of polytriazole composites[J]. Surface Technology, 2014, (4): 17-23,42(in Chinese).
    [75] 叶俊, 邱藤, 李效玉, 等. 一种反应型螯合芳纶油剂及其制备方法[P].

    YE J, QIU T, LI X Y, et al. A reactive chelating aramid oil agent and its preparation method[P](in Chinese).
    [76] 黄振振, 耿志, 虢忠仁, 等. 水溶性上浆剂改性芳纶增强环氧复合材料界面研究[J]. 材料开发与应用, 2018, 33(3): 33-38.

    HUANG Z Z, GENG Z, GUO Z R, et al. Surface modification of aramid fiber by water-soluble sizing agent and its effect on the interface of aramid and epoxy composites[J]. Development and Application of Materials, 2018, 33(3): 33-38(in Chinese).
    [77] QIN M, KONG H, ZHANG K, et al. Simple Synthesis of Hydroxyl and Ethylene Functionalized Aromatic Polyamides as Sizing Agents to Improve Adhesion Properties of Aramid Fiber/Vinyl Epoxy Composites[J]. Polymers, 2017, 9(12): 143.
  • 加载中
计量
  • 文章访问数:  90
  • HTML全文浏览量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-17
  • 修回日期:  2024-05-25
  • 录用日期:  2024-05-31
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回