留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuO/g-C3N4复合材料催化降解卡马西平的性能

周肖艳 罗雪梅 陈一夫 刘子维 邹长武 黄杨

周肖艳, 罗雪梅, 陈一夫, 等. CuO/g-C3N4复合材料催化降解卡马西平的性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 周肖艳, 罗雪梅, 陈一夫, 等. CuO/g-C3N4复合材料催化降解卡马西平的性能[J]. 复合材料学报, 2024, 42(0): 1-10.
ZHOU Xiaoyan, LUO Xuemei, CHEN Yifu, et al. Catalytic performance of CuO/g-C3N4 composites for carbamazepine degradation[J]. Acta Materiae Compositae Sinica.
Citation: ZHOU Xiaoyan, LUO Xuemei, CHEN Yifu, et al. Catalytic performance of CuO/g-C3N4 composites for carbamazepine degradation[J]. Acta Materiae Compositae Sinica.

CuO/g-C3N4复合材料催化降解卡马西平的性能

基金项目: 四川省科技厅重点研发项目(基金号: 2023YFS0374)
详细信息
    通讯作者:

    黄杨,博士,副教授,硕士生导师,研究方向:水污染处理技术 Email:huangyang@cuit.edu.cn

  • 中图分类号: X522;TB332

Catalytic performance of CuO/g-C3N4 composites for carbamazepine degradation

Funds: Key Research and Development Project of Science and Technology Department of Sichuan Province (No.2023YFS0374)
  • 摘要: 本研究采用煅烧法制备了CuO/g-C3N4复合材料,利用SEM-EDS、FT-IR、XRD、XPS分析其表面形貌、晶体结构以及元素价态等特征。选择卡马西平为目标污染物,探究CuO/g-C3N4复合材料应用于类芬顿体系的催化性能。试验结果显示,当卡马西平初始浓度为20 mg/L,在Cu的复合量7%,CuO/g-C3N4投加量2 g/L,H2O2投加量147 mmol/L的条件下,卡马西平的去除率最高,约为96.59%。该类Fenton体系不受溶液pH的限制,且CuO/g-C3N4材料具有较好的稳定性,五次重复实验后卡马西平的去除率仍高达94.23%。∙OH和1O2是催化过程的主要活性物种。CuO/g-C3N4与H2O2之间的电子交换导致Cu(II)/Cu(I)氧化还原过程的持续发生,进而分解H2O2产生大量的活性基团攻击CBZ分子,促进其降解。

     

  • 图  1  (a) CuO/g-C3N4材料的SEM图;(b) CuO/g-C3N4材料的EDS图

    Figure  1.  (a) Scanning Electron Microscope of CuO/g-C3N4 composites; (b) Energy Dispersive Spectrometer diagram of CuO/g-C3N4 composites

    图  2  (a) g-C3N4和CuO/g- C3N4的FT-IR谱图;(b) XRD谱图

    Figure  2.  (a) Fourier Transform Infrared Spectroscopy spectra; (b) X-ray Diffraction pattern of g-C3N4 and CuO/g-C3N4

    图  3  CuO/g-C3N4的XPS谱图

    Figure  3.  X-ray Photoelectron Spectroscopy pattern of CuO/g-C3N4

    图  4  Cu复合量对CBZ去除率的影响

    Figure  4.  The effect of Cu composite amount on the removal rate of CBZ

    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; H2O2 dosage: 147 mmol/L; solution pH: unadjusted; reaction time: 60 min)

    图  5  CuO/g-C3N4投加量对CBZ去除率的影响

    Figure  5.  The effect of CuO/g-C3N4 dosage on the removal rate of CBZ

    (Experimental condition: CBZ: 20 mg/L; H2O2 dosage: 147 mmol/L; solution pH: unadjusted; reaction time: 60 min)

    图  6  H2O2投加量对CBZ去除率的影响

    Figure  6.  The effect of H2O2 dosage on the removal rate of CBZ

    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; solution pH: unadjusted; reaction time: 60 min)

    图  7  溶液pH对CBZ去除率的影响

    Figure  7.  The effect of solution pH on the removal rate of CBZ

    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; H2O2 dosage: 147 mmol/L; reaction time: 60 min)

    图  8  CuO/g-C3N4复合材料的稳定性

    Figure  8.  Stability of CuO/g-C3N4 composites

    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; H2O2 dosage: 147 mmol/L; solution pH: unadjusted; reaction time: 60 min)

    图  9  (a) CuO/g-C3N4的降解动力学曲线;(b) CuO/g-C3N4的TOC测试浓度

    Figure  9.  (a) Kinetics of CBZ degradation of CuO/g-C3N4; (b) TOC concentration of CuO/g-C3N4

    图  10  CuO/g-C3N4的自由基淬灭实验

    Figure  10.  Free radical quenching experiment of CuO/g-C3N4

    图  11  (a) CBZ (b) CBZ水溶液 (c) H2O2、CBZ水溶液在CuO/g-C3N4上的模拟吸附位图

    Figure  11.  Simulated adsorption bitmap on CuO/g-C3N4 of (a) CBZ (b) CBZ aqueous solution (c) H2O2 and CBZ aqueous solution

  • [1] LIU J, GE S, SHAO P, et al. Occurrence and removal rate of typical pharmaceuticals and personal care products (PPCPs) in an urban wastewater treatment plant in Beijing, China[J]. Chemosphere, 2023, 339: 139644. doi: 10.1016/j.chemosphere.2023.139644
    [2] HUANG C, JIN B, HAN M, et al. The distribution of persistent, mobile and toxic (PMT) pharmaceuticals and personal care products monitored across Chinese water resources[J]. Journal of Hazardous Materials Letters, 2021, 2: 100026. doi: 10.1016/j.hazl.2021.100026
    [3] IMWENE K O, NGUMBA E, KAIRIGO P K. Emerging technologies for enhanced removal of residual antibiotics from source-separated urine and wastewaters: A review[J]. Journal of Environmental Management, 2022.
    [4] 谢咏柳, 黄河, 赵志伟, 等. 真空紫外/氯高级氧化法去除水中卡马西平试验研究[J]. 土木与环境工程学报, 2022, 44(3): 133-140.

    XIE Y L, HUANG J, ZHAO Z W, et al. Study on removal of carbamazepine from water by vacuum ultraviolet/chlorine advanced oxidation[J]. Journal of Civil and Environmental Engineering, 2022, 44(3): 133-140(in Chinese).
    [5] 陈爱侠, 田铮, 卫潇, 等. 一步法制备磁性多孔碳及高效吸附卡马西平[J]. 中国环境科学, 2022, 42(4): 1714-1725. doi: 10.3969/j.issn.1000-6923.2022.04.026

    CHEN A X, TIAN Z, WEI X, et al. One step preparation of biomass based magnetic porous carbon and efficient adsorption of CBZ[J]. Chinese Environmental Science, 2022, 42(4): 1714-1725(in Chinese). doi: 10.3969/j.issn.1000-6923.2022.04.026
    [6] 魏永, 郭子寅, 袁学锋, 等. Bi-SnO2电催化膜的制备及对饮用水中卡马西平的强化去除[J]. 中国环境科学, 2024, 44(5): 2543-2553. doi: 10.3969/j.issn.1000-6923.2024.05.017

    WEI Y, GUO Z Y, YUAN X F, et al. Fabrication of Bi-SnO2 electro-catalytic membrane for enhanced removal of carbamazepine in drinking water[J]. Chinese Environmental Science, 2024, 44(5): 2543-2553(in Chinese). doi: 10.3969/j.issn.1000-6923.2024.05.017
    [7] 石建惠, 石家汀, 蒲凯凯, 等. 原位产过氧化氢光芬顿体系g-C3N4/CQDs/Fe2+对土霉素的降解: 机制、降解路径和毒性变化分析[J]. 复合材料学报, 2024, 41(5): 2520-2533.

    SHI J H, SHI J T, PU K K, et al. Degradation of oxytetracycline by photo-Fenton system g-C3N4/CQDs/Fe2+ in situ-hydrogen peroxide production: mechanism, degradation pathway and toxicity analysis[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2520-2533 (in Chinese).
    [8] 马泽浩, 董文强, 夏琦兴. 基于零价金属材料的类芬顿氧化技术研究进展[J]. 环境化学, 2023, 42(11): 3976-3985. doi: 10.7524/j.issn.0254-6108.2022122003

    MA Z H, DONG W Q, XIA Q X. Research progress of Fenton-like oxidation processes based on zero valent metal materials[J]. Environmental Chemistry, 2023, 42(11): 3976-3985 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022122003
    [9] 陈洪雪, 张智慧, 白成英, 等. 高级氧化技术降解四环素类抗生素的研究进展 [J/OL]. 精细化工, 2024, 1-17.

    CHEN H X, ZHANG Z H, BAI C Y, et al. Research progress on the degradation of tetracycline antibiotics by advanced oxidation technology [J/OL]. Fine Chemicals, 2024, 1-17 (in Chinese).
    [10] BOUTEMEDJET A, DJERAD S, TIFOUTI L, et al. Effect of Fe0 content on the effectiveness of Fe0/Fe3O4 catalyst in Fenton process[J]. Journal of Water Process Engineering, 2021, 41: 2214-7144.
    [11] DUAN Z H, ZHANG W H, LU M W, et al. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol[J]. Carbon, 2020, 107: 351-363.
    [12] YANG T Y, YU D Y, WANG D, at al. Accelerating Fe(Ⅲ)/Fe(Ⅱ) cycle via Fe(Ⅱ) substitution for enhancing Fenton-like performance of Fe-MOFs[J]. Applied Catalysis B: Environmental, 2021, 286: 0926-3373.
    [13] YANG R X, PENG Q H, YU B, et al. Yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal[J]. Separation and Purification Technology, 2021, 267: 1383-5866.
    [14] MIAO W, LIU Y, CHEN X Y, et al. Tuning layered Fe-doped g-C3N4 structure through pyrolysis for enhanced Fenton and photo-Fenton activities[J]. Carbon, 2020, 159: 0008-6223.
    [15] HUANG Y, LUO X, DU Y N, et al. The role of iron-doped g-C3N4 heterogeneous catalysts in Fenton-like process investigated by experiment and theoretical simulation[J]. Chemical Engineering Journal, 2022, 446(Part 3): 1385-8947.
    [16] SUN Y, TIAN P F, DING D D, et al. Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction[J]. Applied Catalysis B: Environmental, 2019, 258: 0926-3373.
    [17] ZHANG X, XU B K, WANG S W, et al. High-density dispersion of CuNx sites for H2O2 activation toward enhanced Photo-Fenton performance in antibiotic contaminant degradation[J]. Journal of Hazardous Materials, 2022, 423: 0304-3894.
    [18] 杨露. 含双功能区的铜基催化剂应用于类芬顿降解水体中土霉素的行为机制研究 [D]. 湖南大学, 2023.

    YANG L. Study on the behavior mechanism of Fenton-like degradation of oxytetracycline in water using Cupric based catalysts containing double functional regions [D]. Hunan University, 2023(in Chinese).
    [19] SILVA M, BALTRUS J P, WILLIAMS C, et al. Heterogeneous photo-Fenton-like degradation of emerging pharmaceutical contaminants in wastewater using Cu-doped MgO nanoparticles[J]. Applied Catalysis A: General, 2022, 630: 118468. doi: 10.1016/j.apcata.2021.118468
    [20] NICHELA D A, BERKOVIC A M, COSTANTE M R, et al. Nitrobenzene degradation in Fenton-like systems using Cu(II) as catalyst. Comparison between Cu(II)and Fe(III) based systems[J]. Chemical Engineering Journal, 2013, 228: 1148-1157. doi: 10.1016/j.cej.2013.05.002
    [21] LI L F, HU C, ZHANG L L, et al. More octahedral Cu+ and surface acid sites in uniformly porous Cu-Al2O3 for enhanced Fenton catalytic performances[J]. Journal of Hazardous Materials, 2021, 406: 0304-3894.
    [22] XIANG M H, HUANG M F, LI H, et al. Nanoscale zero-valent iron/cobalt@mesoporous hydrated silica core-shell particles as a highly active heterogeneous Fenton catalyst for the degradation of tetrabromobisphenol A[J]. Chemical Engineering Journal, 2021, 417: 1385-8947.
    [23] HU H T, MIAO K K, XIAO L L, et al. Efficient Fenton-like treatment of high-concentration chlorophenol wastewater catalysed by Cu-Doped SBA-15 mesoporous silica[J]. Journal of Cleaner Production, 2021, 318: 0959-6526.
    [24] LIU C H, HE D Y, YANG H, et al. Selective generation of H2O2 by Cu-modified graphitic carbon nitride for rapid water disinfection via intracellular Fenton reaction[J]. Chemical Engineering Journal, 2023, 477: 1385-8947.
    [25] SONG H, GUAN Z Y, XIA D S, et al. Copper-oxygen synergistic electronic reconstruction on g-C3N4 for efficient non-radical catalysis for peroxydisulfate and peroxymonosulfate[J]. Separation and Purification Technology, 2021, 257: 1383-5866.
    [26] ZHU J N, ZHU X Q, CHENG F F, et al. Preparing copper doped carbon nitride from melamine templated crystalline copper chloride for Fenton-like catalysis[J]. Applied Catalysis B: Environmental, 2019, 256: 0926-3373.
    [27] 陈杨林. 改性石墨相氮化碳的制备及光催化分解水制氢性能研究 [D]. 黑龙江: 哈尔滨工业大学, 2022.

    CHEN Y L. Preparation of modified graphite phase carbon nitride and study on photocatalytic water decomposition to produce hydrogen [D]. Heilongjiang: Harbin Institute of Technology, 2022(in Chinese).
    [28] 马香港, 丁远, 张俊格, 等. 改性g-C3N4光催化降解双酚A的研究进展 [J/OL]. 化工进展, 2024, 1-26.

    MA X G, DING Y, ZHANG J G, et al. Research progress of photocatalytic degradation of bisphenol A by modified g-C3N4 [J/OL]. Chemical Industry and Engineering Progress, 2024, 1-26(in Chinese).
    [29] 鹿宇, 刘成宝, 郑磊之, 等. 石墨相氮化碳基材料的缺陷调控策略及其光催化性能研究进展 [J/OL]. 复合材料学报, 2024, 1-19.

    LU Y, LIU C B, ZHENG L Z, et al. Research progress on defect control strategies and photocatalytic properties of graphitic carbon nitride-based materials [J/OL]. Acta Materiae Compositae Sinica, 2024, 1-19(in Chinese).
    [30] TONDA S, KUMAR S, KANDULA S, et al. Fe doped and mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight[J]. Journal of Materials Chemistry A, 2014, 2(19): 6772-6780. doi: 10.1039/c3ta15358d
    [31] ZUO S Y, GUAN Z Y, XIA D S, et al. Polarized heterogeneous CuO-CN for peroxymonosulfate nonradical activation: An enhancement mechanism of mediated electron transfer[J]. Chemical Engineering Journal, 2021, 420: 1385-8947.
    [32] WANG S N, YUAN C, CHEN W, et al. 3D spherical CuO@g-C3N4 composites activating peroxymonosulfate for high efficient degradation of 2, 4, 6-trichlorophenol: The mechanism of 1O2 generation[J]. Chemical Engineering Journal, 2024, 480: 1385-8947.
    [33] 郝彩红, 杨泽鹏, 常青, 等. 碳点/g-C3N4复合催化剂的制备及其光催化性能[J]. 复合材料学报, 2023, 40(10): 5811-5819(in Chinese).

    HAO C H, YANG Z P, CHANG Qing, et al. Preparation of carbon point/g-C3N4 composite catalyst and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5811-5819(in Chinese).
    [34] 肖自胜, 李金玲, 陈伊睿, 等. g-C3N4锚定Cu(Ⅰ)高选择性催化CCl4合成 2, 4, 4, 4-四氯丁腈 [J/OL][J]. 化工进展, 2023, 1-10: 1000-6613.

    XIAO Z S, LI J L, CHEN Y R, et al. g-C3N4-anchored Cu (I) catalyzed the highly selective synthesis of 2, 4, 4, 4-tetrachloronitrile from CCl4 [J/OL][J]. Chemical Industry and Engineering Progress, 2023, 1-10: 1000-6613(in Chinese).
    [35] FANG Z Y, BAI Y J. LI L H, et al. In situ constructing intramolecular ternary homojunction of carbon nitride for efficient photoinduced molecular oxygen activation and hydrogen evolution[J]. Nano Energy, 2020, 75: 104865. doi: 10.1016/j.nanoen.2020.104865
    [36] 刘练练. 氮化碳基光催化剂的精准设计制备及过氧化氢的绿色合成 [D]. 中国科学技术大学, 2023.

    LIU L L. Precise Design and Synthesis of Carbon Nitride-Based Photocatalysts for Green Production of Hydrogen Peroxide [D]. Anhui: University of Science and Technology of China, 2023(in Chinese).
    [37] 孙丹卉. 金属/石墨相氮化碳光催化氧化硫醚和醇类化合物的研究 [D]. 内蒙古: 内蒙古民族大学, 2021.

    SUN D H. Study on photocatalysis of thioether and alcohols by carbon nitride in metal/graphite phase [D]. Inner Mongolia: Inner Mongolia Minzu University, 2021(in Chinese).
    [38] SYAL B, KUMAR P, GUPTA P. Recent Advancements in the Preparation and Application of Copper Single-Atom Catalysts[J]. 2023, 392: 122261.
    [39] HE F, WANG Z, LI Y, et al. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts[J]. Applied Catalysis B: Environmental, 2020, 269: 118828. doi: 10.1016/j.apcatb.2020.118828
    [40] 秦志才. 铜基氮化碳催化剂的制备及其催化氧化降解木质素的性能研究 [D]. 广东: 华南理工大学, 2021.

    QIN Z C. Preparation of copper-based carbon nitride catalyst and its catalytic oxidation and degradation of lignin [D]. Guangdong: South China University of Technology, 2021(in Chinese).
    [41] 王伟康. 氮化碳及金属氧化物光催化剂的制备及其合成氨性能研究 [D]. 安徽: 中国科学技术大学, 2021.

    WANG W K. Preparation of carbon nitride and metal oxide photocatalysts and their properties for ammonia synthesis [D]. Anhui: University of Science and Technology of China, 2021(in Chinese).
    [42] 魏仕恺, 曲雅涵, 刁刘祥, 等. 碳纤维负载氧化铜催化剂制备与合成对氨基苯酚特性研究[J]. 当代化工研究, 2023, 11: 93-95.

    WEI S K, QU Y H, DIAO L X, et al. Study on preparation and synthesis of P-aminophenol by carbon fiber supported copper oxide catalyst[J]. Modern Chemical Research, 2023, 11: 93-95(in Chinese).
    [43] YAO Z Y, ZHU G X, LU T L, et al. Synergistically homogeneous-heterogeneous Fenton catalysis of trace copper ion and g-C3N4 for degradation of organic pollutants[J]. Water Science and Technology, 2021, 84(5): 1090-1102. doi: 10.2166/wst.2021.296
    [44] 秦琅琅. 铜基催化剂的制备及其电化学还原CO2制乙烯的研究 [D]. 太原理工大学, 2023.

    QIN L L. Preparation of Copper based Catalysts and Study on Electrochemical Reduction of CO2 to Ethylene [D]. Shanxi: Taiyuan University of Technology, 2023(in Chinese).
    [45] TANG Z M, JIANG S T, WANG Y D, et al. Copper Peroxide Coated Mesoporous Silica Nanoparticles for Tumor Treatment by the Combination of Chemodynamic Therapy and Chemotherapy[J]. 2023, 37: 21.
    [46] 刘丹. 碳材料负载过渡金属催化剂应用于水中微污染物的催化降解研究 [D]. 浙江: 浙江师范大学, 2023.

    LIU D. Study on the catalytic degradation of micropollutants in water using carbon supported transition metal catalysts [D]. Zhejiang: Zhejiang Normal University, 2023(in Chinese).
    [47] 翁梦婷. 基于铁掺杂氮化碳复合材料活化过硫酸盐降解四环素的研究: 效能、理论计算及降解机制 [D]. 浙江: 浙江工商大学, 2022.

    WENG M T. Degradation of tetracycline by persulfate activation based on iron-doped carbon nitride composites: efficiency, theoretical calculation and degradation mechanism [D]. Zhejiang: Zhejiang Gongshang University, 2022(in Chinese).
    [48] LI N, HE X, YE J, et al. H2O2 activation and contaminants removal in heterogeneous Fenton-like systems[J]. Journal of Hazardous Materials, 2023.
    [49] 杨林海. 铜掺杂氮化碳材料的制备及其类Fenton降解污染物的性能研究 [D]. 甘肃: 兰州交通大学, 2022.

    YANG L H. Preparation of Copper-doped carbon nitride materials and their Fenton-like degradation properties [D]. Gansu: Lanzhou Jiaotong University, 2022(in Chinese).
    [50] CONSTANTIN M A, CHIRIAC F L, GHEORGHE S, et al. Degradation of Carbamazepine from Aqueous Solutions via TiO2-Assisted Photo Catalyze[J]. Toxics, 2022, 10(4): 168. doi: 10.3390/toxics10040168
    [51] LUO H, LIU C, CHENG Y, et al. Fe (III) greatly promotes peroxymonosulfate activation by WS2 for efficient carbamazepine degradation and Escherichia coli disinfection[J]. Science of The Total Environment, 2021, 787: 147724. doi: 10.1016/j.scitotenv.2021.147724
    [52] TENG C, ZHOU K, LIAO L, et al. Coordination-driven Cu-based Fenton-like process for humic acid treatment in wastewater[J]. Science of The Total Environment, 2022, 838: 156462. doi: 10.1016/j.scitotenv.2022.156462
    [53] LI J, PHAM A N, DAI R, et al. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites[J]. Journal of Hazardous Materials, 2020, 392: 122261. doi: 10.1016/j.jhazmat.2020.122261
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-07-26
  • 录用日期:  2024-08-04
  • 网络出版日期:  2024-08-24

目录

    /

    返回文章
    返回