Preparation and mechanical properties of shield powder/stone-plastic composite materials
-
摘要: 针对滑石粉成本高、工艺复杂和钢渣产量大但利用率低的问题,采用超细立磨技术结合功能助剂,成功将钢渣加工为中位径(d50)分别为6.445 μm (600目)、5.775 μm (800目)和5.098 μm (
1000 目)的盾粉。通过熔融共混与热压冷压相结合的工艺实现用盾粉替代滑石粉制备盾粉/石塑复合材料。对其进行拉伸强度、弯曲强度和冲击强度测试,并通过XRD、SEM、FTIR和DSC进行表征分析。结果表明,盾粉的加入显著提升了石塑复合材料的力学性能。尤其是在6.445 μm、5.775 μm和5.098 μm盾粉替代滑石粉比例为50%时,与纯滑石粉/石塑复合材料相比,拉伸强度分别提高12.3%、33.2%和27.4%,弯曲强度分别提高11.7%、26.0%和17.6%,冲击强度分别提高33.3%、52.9%和32.8%。由于,5.775 μm盾粉因其粒径分布宽度最小(2.177),在石塑复合材料中分散性良好,显著提升了界面相容性,因此在提升石塑复合材料力学性能方面表现最为突出。此外,5.775 μm盾粉有效提高了熔融焓和结晶焓,分别为45.16 J·g−1和42.31 J·g−1,这有助于石塑复合材料形成更均匀的晶体结构,并促进成核和晶体生长,从而进一步提升了其力学性能。Abstract: In response to the high cost and complex processing of talc powder, as well as the large production volume but low utilization rate of steel slag, ultrafine vertical grinding technology combined with functional additives was employed to successfully process steel slag shield powder with a median diameter (d50) of 6.445 μm (600 mesh), 5.775 μm (800 mesh) and 5.098 μm (1000 mesh) respectively. The preparation of shield powder/stone-plastic composite materials were achieved by substituting shield powder for talc powder through a process that integrates melt blending with hot and cold pressing techniques. Tensile strength, bending strength, and impact strength tests were conducted on these materials, and characteristics were analyzed using XRD, SEM, FTIR, and DSC. The results indicate that the incorporation of shield powder significantly enhances the mechanical properties of the stone-plastic composites. Particularly, when the substitution ratio of shield powder for talc powder reaches 50%, the tensile strength is increased by 12.3%, 33.2%, and 27.4%, the bending strength by 11.7%, 26.0%, and17.6%, and the impact strength by 33.3%, 52.9%, and 32.8%, respectively, compared to the composites made with pure talc powder. Due to its narrowest fineness distribution width (2.177), the 5.775 μm shield powder exhibits excellent dispersibility in stone-plastic composite materials and significantly improves interfacial compatibility, thereby demonstrating the most pronounced performance in enhancing the mechanical properties of the stone-plastic composite materials. Additionally, the 5.775 μm shield powder effectively increases the melting enthalpy and crystallization enthalpy to 45.16 J·g−1 and 42.31 J·g−1, respectively, which aids in the formation of a more uniform crystal structure in the stone-plastic composite materials, promotes nucleation and crystal growth, and further enhances their mechanical properties.-
Key words:
- steel slag /
- stone-plastic /
- mechanical properties /
- waste utilization /
- talc powder
-
表 1 滑石粉与盾粉的化学成分/wt%
Table 1. Chemical composition of talc powder and shield powder/wt%
Sample CaO SiO2 Al2O3 Fe2O3 MgO P2O5 MnO TiO2 Others Talc powder 93.15 2.07 0.87 0.30 2.62 0.11 — — 0.88 6.445 μm shield powder 34.19 17.60 3.71 24.30 9.36 2.47 5.22 1.06 2.09 5.775 μm shield powder 34.29 15.75 3.45 26.53 9.23 2.91 5.23 1.06 1.55 5.098 μm shield powder 33.98 14.61 3.58 27.66 9.47 2.40 5.08 1.16 2.06 表 2 滑石粉与盾粉的粒径分布及粒径比
Table 2. Particle size distribution and particle size ratio of talc powder and shield powder
Sample d90/μm d50/μm d10/μm (d90-d10)/d50 T/S90 T/S50 T/S10 Talc powder 12.694 5.377 1.365 2.107 1 1 1 6.445 μm shield powder 19.895 6.445 1.420 2.867 0.638 0.834 0.961 5.775 μm shield powder 13.933 5.775 1.361 2.177 0.911 0.931 1.003 5.098 μm shield powder 12.578 5.098 1.366 2.199 1.009 1.055 0.999 Notes: d90-90% cumulative distribution diameter; d50-50% cumulative distribution diameter; d10-10% cumulative distribution diameter; (d90- d10)/ d50-Width of particle size distribution; T/S90- The ratio of d90 between talc powder and shield powder; T/S50- The ratio of d50 between talc powder and shield powder; T/S10- The ratio of d10 between talc powder and shield powder. 表 3 盾粉/石塑复合材料的原料配比/wt%
Table 3. Mass fraction of shield powder/stone-plastic composite materials/wt%
Sample PE Lubricant MAPE Wood powder Talc powder Shield powder Y0 30 2 4 32 32 0 Y600-1 30 2 4 32 24 8 Y600-2 30 2 4 32 16 16 Y600-3 30 2 4 32 8 24 Y600-4 30 2 4 32 0 32 Y800-1 30 2 4 32 24 8 Y800-2 30 2 4 32 16 16 Y800-3 30 2 4 32 8 24 Y800-4 30 2 4 32 0 32 Y1000-1 30 2 4 32 24 8 Y1000-2 30 2 4 32 16 16 Y1000-3 30 2 4 32 8 24 Y1000-4 30 2 4 32 0 32 Notes: PE-Polyethylene; MAPE-Maleic anhydride grafted polyethylene. 表 4 熔融、结晶曲线的特征数据
Table 4. Characteristic data of the melting curves
Sample ΔT/℃ ΔHm/(J·g−1) ΔHc/(J·g−1) Y0 2.46 42.28 37.68 Y600-2 2.64 42.36 38.13 Y800-2 2.70 45.16 42.31 Y1000-2 2.71 43.38 38.27 Notes: ΔT—undercooling degree; ΔHm—the melting enthalpy; and ΔHc—the crystallization enthalpy. -
[1] 霍玉娜, 魏童, 周雪莲, 等. 以石塑为表层的WF/HDPE夹层结构复合材料的性能[J]. 林业工程学报, 2023, 8(4): 27-34.HUO Yuna, WEI Tong, ZHOU Xuelian, et al. Performance of sandwiched WF/HDPE composites with stone-flour/HDPE surface layer[J]. Journal of Forestry Engineering, 2023, 8(4): 27-34(in Chinese). [2] 沈超, 朱能贵, 蒋团辉, 等. 增强剂尺寸效应对聚酰胺6发泡复合材料性能的影响[J]. 高分子材料科学与工程, 2022, 38(8): 75-88.SHEN Chao, ZHU Nenggui, JIANG Tuanhui, et al. Dimension Effect of Reinforcement on Properties of Polyamide 6 Foam Composites[J]. Polymer Materials Science & Engineering, 2022, 38(8): 75-88(in Chinese). [3] 赵令, 张浩, 徐维成, 等. 盾粉/橡胶阻燃复合材料的制备与性能[J]. 复合材料学报, 2023, 40(9): 5085-5094.ZHAO Ling, ZHANG Hao, XU Weicheng, et al. Preparation and properties studies of shield powder/rubber flame retardant composite material[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5085-5094(in Chinese). [4] 于先坤, 徐维成, 张浩, 等. 盾粉/橡胶增容复合材料性能与机理的光谱学分析[J]. 光谱学与光谱分析, 2024, 44(4): 1177-1182. doi: 10.3964/j.issn.1000-0593(2024)04-1177-06YU Xiankun, XU Weicheng, ZHANG Hao, et al. Properties and Mechanism of Shield Powder/Rubber Compatibilizer Composites Based on Spectroscopic Analysis[J]. Spectroscopy and Spectral Analysis, 2024, 44(4): 1177-1182(in Chinese). doi: 10.3964/j.issn.1000-0593(2024)04-1177-06 [5] 张浩, 胡道庆, 程峥明, 等. 钢渣基盾粉/橡胶复合材料的性能及机理[J]. 材料工程, 2024, 52(5): 188-194.ZHANG Hao, HU Daoqing, CHENG Zhengming, et al. Properties and mechanism of steel slag based shield powder/rubber composites[J]. Journal of Materials Engineering, 2024, 52(5): 188-194(in Chinese). [6] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第 2 部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2-2022[S]. 北京: 中国标准出版社, 2022.Standardization Administration of the People’s Republic of China. Plastics-Determination of tensile properties-Part 2: Test conditions for moulding and extrusion plastics: Test conditions for moulding and extrusion plastics: GB/T 1040.2-2022[S]. Beijing: China Standards Press, 2022(in Chinese). [7] 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T9341-2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Plastics-Determination of flexural properties: GB/T 9341-2008[S]. Beijing: China Standards Press, 2008(in Chinese). [8] 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843 − 2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Plastics-determination of izod impact strength: GB/T 1843-2008[S]. Beijing: China Standards Press, 2008(in Chinese). [9] HALDAR S, SAIN T, GHOSH S. A novel high symmetry interlocking micro-architecture design for polymer composites with improved mechanical properties[J]. International Journal of Solids and Structures, 2017, 124: 161-175. doi: 10.1016/j.ijsolstr.2017.06.030 [10] 常成, 戴一铭, 段先健, 等. 高温火焰处理纳米二氧化硅及其对硅橡胶的补强性能[J]. 华东理工大学学报(自然科学版), 2020, 46(6): 745-752.CHANG Cheng, DAI Yiming, DUAN Xianjian, et al. High temperature flame treatment of nano silica and its reinforcement performance on silicone rubber[J]. Journal of East China University of Science and Technology, 2020, 46(6): 745-752(in Chinese). [11] SHAHRAKI A, GHASEMI-KAHRIZSANGI S, NEMATI A. Performance improvement of MgO-CaO refractories by the addition of nano-sized Al2O3[J]. Materials Chemistry and Physics, 2017, 198: 354-359. doi: 10.1016/j.matchemphys.2017.06.026 [12] 中国国家标准化管理委员会. 木塑装饰板: GB/T 24137-2009 [S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People’s Republic of China. Wood-plastic composite decorative boards: GB/T 24137-2009 [S]. Beijing: China Standards Press, 2009(in Chinese). [13] KAZE R C, à MOUNGAM L M B, CANNIO M, et al. Microstructure and engineering properties of Fe2O3(FeO)-Al2O3-SiO2 based geopolymer composites[J]. Journal of Cleaner Production, 2018, 199: 849-859. doi: 10.1016/j.jclepro.2018.07.171 [14] ZHENG W, ZHAO L, XU W, et al. Utilization of shield powder as a novel reinforcing and compatibilizing filler in styrene–butadiene rubber (SBR) composites[J]. Journal of Material Cycles and Waste Management, 2023, 25(4): 2113-2122. doi: 10.1007/s10163-023-01666-z [15] TEE Z Y, YEAP S P, HASSAN C S, et al. Nano and non-nano fillers in enhancing mechanical properties of epoxy resins: a brief review[J]. Polymer-Plastics Technology and Materials, 2022, 61(7): 709-725. doi: 10.1080/25740881.2021.2015778 [16] BALAKRISHNAN A, PIZETTE P, MARTIN C L, et al. Effect of particle size in aggregated and agglomerated ceramic powders[J]. Acta Materialia, 2010, 58(3): 802-812. doi: 10.1016/j.actamat.2009.09.058 [17] SHAH U V, KARDE V, GHOROI C, et al. Influence of particle properties on powder bulk behaviour and processability[J]. International journal of pharmaceutics, 2017, 518(1-2): 138-154. doi: 10.1016/j.ijpharm.2016.12.045 [18] 罗晔. 煤焦油制备块状石墨的可行性研究[J]. 燃料与化工, 2022, 53(4): 5-7. doi: 10.3969/j.issn.1001-3709.2022.4.rlyhg202204002LUO Ye. Study on the feasibility of preparing bulk graphite from coal tar[J]. Fuel & Chemical Processes, 2022, 53(4): 5-7(in Chinese). doi: 10.3969/j.issn.1001-3709.2022.4.rlyhg202204002 [19] ZHAO L, MA W K, ZHANG H, et al. Use of melt blending to synthesize wood plastic composites containing modified steel slag: a study[J]. Materials and Manufacturing Processes, 2024, 39(8): 1052-1060. doi: 10.1080/10426914.2024.2304840 [20] GUO Y, ZHU S, CHEN Y, et al. Thermal properties of wood-plastic composites with different compositions[J]. Materials, 2019, 12(6): 881. doi: 10.3390/ma12060881 [21] 李羽佳, 王喜明, 姚利宏, 等. 功能型植物纤维增强聚乳酸复合材料研究进展[J]. 塑料, 2024, 53(3): 104-108.LI Yujia, WANG Ximing, YAO Lihong, et al. Research Progress of Functional Plant Fiber Reinforced Polylactic Acid Composite[J]. Plastic, 2024, 53(3): 104-108(in Chinese). [22] 张浩, 司乐琦, 王林, 等. 钢渣基功能填料的高附加值非建材领域应用研究进展[J]. 材料工程, 2023, 51(9): 52-59. doi: 10.11868/j.issn.1001-4381.2021.001171ZHANG Hao, SI Leqi, WANG Lin, et al. Research progress in steel slag-based functional fillers with high added value in non-building materials field[J]. Journal of Materials Engineering, 2023, 51(9): 52-59(in Chinese). doi: 10.11868/j.issn.1001-4381.2021.001171 [23] SHUKRI N A, GHAZALI Z, WAHIT M U, et al. Surface analysis of grafted low density polyethylene film by FTIR and XPS spectroscopy[J]. Key Engineering Materials, 2022, 908: 49-53. doi: 10.4028/p-t71hi3 [24] WEINER S, NAGORSKY A, FELDMAN Y, et al. Archaeological ceramic diagenesis: clay mineral recrystallization in sherds from a late Byzantine Kiln, Israel[J]. Minerals, 2020, 10(5): 408. doi: 10.3390/min10050408 [25] KOKER H S, ERSAN H Y, AYTAC A. Plasticized Polyethylene/Chitosan Blend Films and Study of the Effect of Plasticizers on their various Properties and Biodegradabilty[J]. Journal of Polymer Materials, 2020, 37. [26] MA Y, WANG X, NAMILA E. Rare earth Eu3+/Tb3+-doped hollow microspheres (LaPO4) and core-shell nanocomposite luminescent materials with different transmittance (SiO2@LaPO4 Eu3+) preparation and research on luminescence performance[J]. Luminescence: The journal of biological and chemical luminescence, 2023, 38(10): 1825-1835. doi: 10.1002/bio.4569 [27] IQBAL D N, TARIP M, KHAN S M, et al. Synthesis and characterization of chitosan and guar gum based ternary blends with polyvinyl alcohol[J]. International journal of biological macromolecules, 2020, 143: 546-554. doi: 10.1016/j.ijbiomac.2019.12.043 [28] ZHAO L, ZHAO K, SHEN Z, et al. Novel wood–plastic composite fabricated via modified steel slag: preparation, mechanical and flammability properties[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31: 1-11. [29] 张波, 陆绍荣, 王敏, 等. 含柔性链大分子偶联剂对SF/PP木塑复合材料结构和性能的影响[J]. 高分子材料科学与工程, 2010, 26(3): 4.ZHANG Bo, LU Shaorong, WANG Min, et al. Effect of Macromolecule Coupling Agent Containing Flexible Segment on Structure and Property of SF/PP Wood-Plastic Composites[J]. Polymer Materials Science and Engineering, 2010, 26(3): 4(in Chinese). [30] 郑波, 贾红丽, 颜春, 等. 含缩醛结构环氧树脂的固化行为及其碳纤维复合材料的制备与性能[J]. 复合材料学报, 2024, 41(5): 2374-2384.ZHENG Bo, JIA Hongli, YAN Chun, et al. Curing behavior of epoxy resin containing aldehyde structure and preparation and properties of carbon fiber composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2374-2384(in Chinese). [31] 刘玲伟, 邹新全, 张鸿, 等. 三维网笼状聚N-羟甲基丙烯酰胺/聚乙二醇半互穿网络复合相变微球的制备及热性能[J]. 复合材料学报, 2021, 38(4): 1098-1106.LIU Lingwei, ZOU Xinquan, ZHANG Hong, et al. Preparation and thermal properties of three-dimensional cage-like PolyN-methylethylamine/Polyethylene glycol semi-interpenetrating network composite phase change microspheres[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1098-1106(in Chinese). [32] 张清锋. 差示扫描量热法在木塑复合材料研究中的应用与进展[J]. 塑料助剂, 2022, (5): 36-39+46. doi: 10.3969/j.issn.1671-6294.2022.05.0010ZHANG Qingfeng. Differential Scanning Calorimetry in Wood Plastic Composites: Application and Progress[J]. Plastic Additives, 2022, (5): 36-39+46(in Chinese). doi: 10.3969/j.issn.1671-6294.2022.05.0010
计量
- 文章访问数: 26
- HTML全文浏览量: 32
- 被引次数: 0