留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电纺La2O3-CeO2纳米纤维的除氟性能

杨为森 刘毅飞 史丰硕 江文龙 陈玉煌 胡家朋 段改改 简绍菊

杨为森, 刘毅飞, 史丰硕, 等. 电纺La2O3-CeO2纳米纤维的除氟性能[J]. 复合材料学报, 2023, 40(6): 3385-3395. doi: 10.13801/j.cnki.fhclxb.20220809.006
引用本文: 杨为森, 刘毅飞, 史丰硕, 等. 电纺La2O3-CeO2纳米纤维的除氟性能[J]. 复合材料学报, 2023, 40(6): 3385-3395. doi: 10.13801/j.cnki.fhclxb.20220809.006
YANG Weisen, LIU Yifei, Shi Fengshuo, et al. Defluoridation performance of electrospun La2O3-CeO2 nanofibers[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3385-3395. doi: 10.13801/j.cnki.fhclxb.20220809.006
Citation: YANG Weisen, LIU Yifei, Shi Fengshuo, et al. Defluoridation performance of electrospun La2O3-CeO2 nanofibers[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3385-3395. doi: 10.13801/j.cnki.fhclxb.20220809.006

电纺La2O3-CeO2纳米纤维的除氟性能

doi: 10.13801/j.cnki.fhclxb.20220809.006
基金项目: 国家自然科学基金(51903123);福建省自然科学基金(2020J05220;2020J01419);中央引导地方科技发展专项(2019L3021)
详细信息
    作者简介:

    简绍菊:杨为森,博士,副教授,研究方向为纳米复合材料,污水处理 E-mail: yangweisen@126.com

    通讯作者:

    胡家朋,博士,教授,硕士生导师,研究方向为环境功能材料设计 E-mail: 22402414@qq.com

  • 中图分类号: X703;TB331

Defluoridation performance of electrospun La2O3-CeO2 nanofibers

Funds: National Natural Science Foundation of China (51903123); Natural Science Foundation of Fujian Province (2020J05220; 2020J01419); Central Special Project for Fujian Local Science and Technology Development (2019L3021)
  • 摘要: 纳米双金属氧化物作为除氟剂具有广泛的应用前景。以六水合硝酸铈和六水合硝酸镧为原料,聚丙烯腈(PAN)为模板,通过静电纺丝技术与煅烧相结合制备La2O3-CeO2纳米纤维,利用TEM、SEM-EDS、BET、FTIR和XRD对La2O3-CeO2纳米纤维的形貌和结构进行表征。探究了La2O3-CeO2纳米纤维对氟离子吸附性能,研究了pH、吸附质(F)初始浓度、吸附时间、La2O3-CeO2纳米纤维投加量和共存阴离子等对除氟效率的影响。研究结果表明,La2O3-CeO2纳米纤维的比表面积为31.04 m2·g−1。pH为3时,La2O3-CeO2纳米纤维的除氟性能最佳。La2O3-CeO2的吸附效率随着F初始浓度的增大而上升。准二级动力学和Langmuir等温线模型(R2>0.99)能够很好描述La2O3-CeO2纳米纤维的除氟过程,最大吸附量可达111.98 mg·g−1。热力学研究结果表明,La2O3-CeO2纳米纤维的除氟过程是自发的(ΔG0<0)、熵增(ΔS0=56.63 J·mol−1·K−1)和吸热(ΔH0=9.90 kJ·mol−1)的反应。

     

  • 图  1  La(NO3)3-Ce(NO3)3-PAN纤维 (a) 与La2O3-CeO2纳米纤维 (b) 的SEM图像,La2O3-CeO2纳米纤维的TEM图像 (c) 和EDS能谱 (d)

    Figure  1.  SEM images of La(NO3)3-Ce(NO3)3-PAN (a) and La2O3-CeO2 nanofibers (b), TEM image (c) and EDS spectrum of La2O3-CeO2 nanofibers (d)

    图  2  La2O3-CeO2纳米纤维的N2吸附-解吸附等温线 (a) 和孔径分布图 (b)

    Figure  2.  N2 adsorption-desorption isotherms of La2O3-CeO2 nanofibers (a) and its corresponding BJH pore size distribution (b)

    dV/dD—Pore area

    图  3  pH值对La2O3-CeO2纳米纤维除氟性能的影响(a) 和pHpzc (b)

    Figure  3.  Effect of pH on the adsorption of F by La2O3-CeO2 nanofibers (a) and pHpzc (b)

    图  4  投加量对La2O3-CeO2纳米纤维除氟性能的影响

    Figure  4.  Effect of dosage on the adsorption of F by La2O3-CeO2 nanofibers

    图  5  不同初始浓度时La2O3-CeO2纳米纤维的吸附动力学曲线及动力学模型拟合曲线

    Figure  5.  Adsorption dynamic curves and kinetic models fitting of La2O3-CeO2 nanofibers at various concentrations

    Qt—Adsorption capacity at time t

    图  6  初始浓度对La2O3-CeO2纳米纤维吸附F性能的影响及吸附等温线模型

    Figure  6.  Effect of initial concentration on the adsorption of F by La2O3-CeO2 nanofibers and adsorption isotherm

    Ce—Solution F concentration after adsorption

    图  7  La2O3-CeO2纳米纤维除氟的lnKD(平衡常数)与103/T的关系

    Figure  7.  Relationship between ln KD (equilibrium constant) and 103/T for removal of fluoride by La2O3-CeO2 nanofibers

    图  8  共存阴离子对La2O3-CeO2纳米纤维除氟性能的影响

    Figure  8.  Effect of coexisting anions on fluoride removal by La2O3-CeO2 nanofibers

    图  9  La2O3-CeO2纳米纤维的循环使用性能

    Figure  9.  Recyclability of La2O3-CeO2 nanofibers

    图  10  La2O3-CeO2纳米纤维吸附前后的XRD图谱 (a) 和FTIR图谱 (b)

    Figure  10.  XRD patterns (a) and FTIR spectra (b) of La2O3-CeO2 nanofibers before and after adsorption

    表  1  La2O3-CeO2纳米纤维的吸附动力学拟合参数(T=25℃)

    Table  1.   Adsorption kinetics fitting parameters of La2O3-CeO2 nanofibers (T=25℃)

    ModelparametersC0/(mg·L−1)
    2050
    Pseudo-first-orderk1×102 1.626 1.640
    Qe 12.33 33.06
    R20.88880.8268
    Pseudo-second-orderk2×102 0.532 0.147
    Qe 64.98114.42
    R20.99990.9999
    Weber-Morris modelkid111.81229.903
    R20.84630.9844
    kid22.69204.0108
    R20.60320.9652
    kid30.51010.9792
    R20.11050.1113
    Notes: k1―Pseudo-first-order kinetic constant; k2―Pseudo-second-order kinetic constant; kid―Intra-particle diffusion rate constant; R2—Fit coefficient; C0—Solution F concentration before adsorption.
    下载: 导出CSV

    表  2  La2O3-CeO2纳米纤维的吸附等温线拟合参数

    Table  2.   Adsorption isotherm fitting parameters of La2O3-CeO2 nanofibers

    T/℃LangmuirFreundlich
    b/(L·mg−1)Qm/(mg·g−1)R2kF/(L1/n·mg1−1/n·g−1)nR2
    250.3944 93.020.999948.370.22180.7012
    350.6636101.320.996653.370.21870.6953
    450.6439111.980.999062.840.20180.5756
    Notes: Qm―Maximum adsorption capacity; b, kF, n―Isotherm constants.
    下载: 导出CSV

    表  3  La2O3-CeO2纳米纤维与其他相关吸附剂除氟性能的比较

    Table  3.   Comparison of defluoridation performance of other related adsorbents with La2O3-CeO2 nanofibers

    AdsorbentspHQm/(mg·g−1)Ref.
    Lanthanum modified mesoporous alumina (La/MA)626.45[25]
    Cerium modified mesoporous alumina (Ce/MA)613.06[25]
    La-Ce-Fe3O4319.78(45℃)[26]
    La2O3-CeO2/laterite58.02(RT)[15]
    Bx-Ce-La@500388.13(25℃)[27]
    Ce-AlOOH362.77(30℃)[28]
    ZCPC films712.88(30℃)[29]
    ZLPC films711.57(30℃)[29]
    La-Al-Fe trioxide composite8.2528.06(25℃)[30]
    CeO2 micro-nanofibers321.45(35℃)[14]
    La2O3-CeO2 nanofibers3111.98(45℃)This sthdy
    Note: RT—Room temperature; ZCPC—Zirconium-cerium; ZLPC—Zirconium-lanthanum.
    下载: 导出CSV

    表  4  La2O3-CeO2纳米纤维吸附F的热力学常数

    Table  4.   Thermodynamic parameters of defluoridation by La2O3-CeO2 nanofibers

    T/℃lnKDΔG0
    /(kJ·mol−1)
    ΔH0
    /(kJ·mol−1)
    ΔS0
    /(J·mol−1·K−1)
    154.77−11.439.9056.63
    255.22−12.94
    355.59−14.32
    456.23−16.49
    Note: ΔG0, ΔH0 and ΔS0—Gibbs free energy change, the enthalpy change and the entropy change, respectively.
    下载: 导出CSV
  • [1] WAN K, HUANG L, YAN J, et al. Removal of fluoride from industrial wastewater by using different adsorbents: A review[J]. Science of the Total Environment,2021,773:145535. doi: 10.1016/j.scitotenv.2021.145535
    [2] 张海阳, 高柏, 樊骅, 等. XRD和FTIR对Ce/γ-Al2O3除氟除砷的机理研究[J]. 光谱学与光谱分析, 2020, 40(9):2869-2874.

    ZHANG H Y, GAO B, FAN H, et al. Mechanism of fluoride and arsenic removal by Ce/γ-Al2O3 based on XRD and FTIR[J]. Spectroscopy and Spectral Analysis,2020,40(9):2869-2874(in Chinese).
    [3] HE X, LI P, WU J, et al. Poor groundwater quality and high potential health risks in the Datong Basin, Northern China: Research from published data[J]. Environmental Geochemistry and Health,2021,43:791-812. doi: 10.1007/s10653-020-00520-7
    [4] JEIHANIPOUR A, SHEN J J, ABBT-BRAUN G, et al. Seasonal variation of organic matter characteristics and fluoride concentration in the Maji ya Chai River (Tanzania): Impact on treatability by nanofiltration/reverse osmosis[J]. Science of the Total Environment,2018,637:1209-1220.
    [5] DUBEY S, AGRAWAL M, GUPTA A B. Advances in coagulation technique for treatment of fluoride-contaminated water: A critical review[J]. Review Chemical Engineering,2018,35(1):109-137. doi: 10.1515/revce-2017-0043
    [6] RMA C, SPA C, DVBB C, et al. Preparation of polyvinylidene fluoride blend anion exchange membranes via non-solvent induced phase inversion for desalination and fluoride removal[J]. Desalination,2018,445:85-94. doi: 10.1016/j.desal.2018.07.032
    [7] FAROOQI A, MASUDA H, KUSAK A E M, et al. Distribution of highly arsenic and fluoride contaminated groundwater from east punjab, pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle[J]. Geochemical Journal,2007,41(4):213-234. doi: 10.2343/geochemj.41.213
    [8] ZHANG Y X, JIA Y. Fluoride adsorption on manganese carbonate: Ion-exchange based on the surface carbonate-like groups and hydroxyl groups[J]. Journal of Colloid & Interface Science,2017,510:407-417.
    [9] TANDEKAR S, SARAVANAN D, JUGADE R. Zirconia-chitosan beads as highly efficient adsorbent for defluoridation of water[J]. Indian Journal of Chemistry,2020,59A:1067-1075.
    [10] ZHANG J, CHEN N, SU P, et al. Fluoride removal from aqueous solution by zirconium-chitosan/graphene oxide membrane[J]. Reactive and Functional Polymers,2017,114:127-135. doi: 10.1016/j.reactfunctpolym.2017.03.008
    [11] CHIGONDO M, KAMDEM P H, BHAUMIK M, et al. Hydrous CeO2-Fe3O4 decorated polyaniline fibers nanocomposite for effective defluoridation of drinking water[J]. Journal of Colloid and Interface Science,2018,532:500-516. doi: 10.1016/j.jcis.2018.07.134
    [12] KONG L, TIAN Y, PANG Z, et al. Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites[J]. Chemical Engineering Journal,2019,71:893-902.
    [13] ZHANG Y, QIAN Y, LI W, et al. Fluoride uptake by three lanthanum based nanomaterials: behavior and mechanism dependent upon lanthanum species[J]. Science of the Total Environment,2019,683:609-616. doi: 10.1016/j.scitotenv.2019.05.185
    [14] 简绍菊, 程意婷, 洪慧芳, 等. 静电纺丝法制备CeO2微纳米纤维及其除氟性能[J]. 人工晶体学报, 2022, 51(2):316-323.

    JIAN S J, CHENG Y T, HONG H F, et al. Fabrication of CeO2 micro-nanofibers by electrospinning and its fluoride removal performance[J]. Journal of Synthetic Crystals,2022,51(2):316-323(in Chinese).
    [15] LIM D T, TUYEN T N, NHIEM D N, et al. Fluoride and arsenite removal by adsorption on La2O3-CeO2/laterite[J]. Journal of Nanomaterials,2021,2021:1-13.
    [16] 王智辉, 徐开蒙, 张钰禄, 等. LiCl/DMAc溶剂中活化处理对不同类型纤维素静电纺丝效果的影响[J]. 林业工程学报, 2020, 5(4):108-113.

    WANG Z H, XU K M, ZHANG Y L, et al. Study on electrospin performance of different types of cellulose by activation in the solvent of LiCl/DMAc[J]. Journal of Forestry Engineering,2020,5(4):108-113(in Chinese).
    [17] JIAN S, CHENG Y, MA X, et al. Excellent fluoride removal performance by electrospun La-Mn bimetal oxide nanofibers[J]. New Journal of Chemistry,2022,46:490-497. doi: 10.1039/D1NJ04976C
    [18] HU J, WU D, RA R, et al. Adsorption kinetics of fluoride on bone char and its regeneration[J]. Environment Protection Engineering,2017,43:93-112.
    [19] 韦冬芳, 韦仲华, 金城凤鹤, 等. 竹炭陶的制备及其气体吸附和调湿性能[J]. 林业工程学报, 2020, 5(1):109-113.

    WEI D F, WEI Z H, KANESHIRO H, et al. Preparation of bamboo charcoal pottery and its gas adsorption and humidity regulation performance[J]. Journal of Forestry Engineering,2020,5(1):109-113(in Chinese).
    [20] 冯江涛, 王睎, 赵旭阳, 等. 改性聚吡咯材料去除水中氟离子的性能[J]. 化工进展, 2021, 40(7):4036-4046. doi: 10.16085/j.issn.1000-6613.2020-1551

    FENG J T, WANG X, ZHAO X Y, et al. Removal of fluoride from water by modified polypyrrole[J]. Chemical Industry and Engineering Progress,2021,40(7):4036-4046(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1551
    [21] YAO G, ZHU X, WANG M, et al. Controlled fabrication of the biomass cellulose-CeO2 nanocomposite membrane as efficient and recyclable adsorbents for fluoride removal[J]. Industrial & Engineering Chemistry Research,2021,60:5914-5923.
    [22] LI W, ZHANG T, LV L, et al. Room-temperature synthesis of MIL-100(Fe) and its adsorption performance for fluoride removal from water[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2021,624:126791. doi: 10.1016/j.colsurfa.2021.126791
    [23] TANG D, ZHANG G. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal,2016,283:721-729. doi: 10.1016/j.cej.2015.08.019
    [24] 王姿轮, 胡传双, 涂登云, 等. 油茶果壳活性炭的制备及其吸附性能[J]. 林业工程学报, 2020, 5(5):96-102.

    WANG Z L, HU C S, TU D Y, et al. Preparation and adsorption property of activated carbon made from Camellia olerea shells[J]. Journal of Forestry Engineering,2020,5(5):96-102(in Chinese).
    [25] HE Y, ZHANG L, AN X, et al. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism[J]. Science of the Total Environment,2019,688:184-198. doi: 10.1016/j.scitotenv.2019.06.175
    [26] 赵瑨云, 苏丽鳗, 徐婕, 等. Ce-La@Fe3O4吸附剂制备及其除氟性能研究[J]. 人工晶体学报, 2020, 49(9):1705-1710. doi: 10.3969/j.issn.1000-985X.2020.09.023

    ZHAO J Y, SU L M, XU J, et al. Fabrication of Ce-La@Fe3O4 adsorbents and its property for defluorination[J]. Journal of Synthetic Crystals,2020,49(9):1705-1710(in Chinese). doi: 10.3969/j.issn.1000-985X.2020.09.023
    [27] ALHASSAN S I, WANG H, HE Y, et al. Fluoride remediation from on-site wastewater using optimized bauxite nanocomposite (Bx-Ce-La@500): Synthesis maximization, and mechanism of F removal[J]. Journal of Hazardous Materials,2022,430:128401. doi: 10.1016/j.jhazmat.2022.128401
    [28] TAO W, ZHONG H, PAN X, et al. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification[J]. Journal of Hazardous Materials,2020,384:121373. doi: 10.1016/j.jhazmat.2019.121373
    [29] KIRAN S M, BHANDARI R, NEHRA A, et al. Zirconium-cerium and zirconium-lanthanum complexed polyvinyl alcohol films for efficient fluoride removal from aqueous solution[J]. Journal of Dispersion Science and Technology,2020,42(10):1-16.
    [30] GASPAROTTO J M, ROTH D, PERILLI A, et al. A novel Fe-Al-La trioxide composite: Synthesis, characterization, and application for fluoride ions removal from the water supply[J]. Journal of Environmental Chemical Engineering,2021,9:106350. doi: 10.1016/j.jece.2021.106350
    [31] 蒋珊, 周淼, 邓稳, 等. 木质纤维纸基吸附材料及其重金属离子吸附性能[J]. 林业工程学报, 2020, 5(3):101-107.

    JIANG S, ZHOU M, DENG W, et al. High-wet-strength paper-based lignocellulosic adsorbents and its heavy metal ion adsorption properties[J]. Journal of Forestry Engineering,2020,5(3):101-107(in Chinese).
    [32] KHATUN H, MOU S S, MORTUZA A A, et al. Investigation on LaF3/porous silicon system for photonic application[J]. Chinese Optics Letters,2010,3:306-308.
    [33] 马雪慧, 赵彦保, 吴志申. 表面修饰中空LaF3纳米微粒的制备及其摩擦学性能[J]. 物理化学学报, 2008, 24(11):2037-2041. doi: 10.3866/PKU.WHXB20081117

    MA X H, ZHAO Y B, WU Z S. Preparation of surface modified hollow LaF3 nanoparticles and their tribological performances[J]. Acta Physico-Chimica Sinica,2008,24(11):2037-2041(in Chinese). doi: 10.3866/PKU.WHXB20081117
    [34] DONG C, WU X, GAO Z, et al. A novel and efficient metal oxide fluoride absorbent for drinking water safety and sustainable development[J]. Sustainability,2021,13(2):883. doi: 10.3390/su13020883
    [35] XIANG W, ZHANG G, ZHANG Y, et al. Synthesis and characterization of cotton-like Ca-Al-La composite as an adsorbent for fluoride removal[J]. Chemical Engineering Journal,2014,250:423-430. doi: 10.1016/j.cej.2014.03.118
    [36] THATHSARA T, COORAY P, MUDIYANSELAGE T K, et al. A novel Fe-La-Ce tri-metallic composite for the removal of fluoride ions from aqueous media[J]. Journal of Environmental Management,2018,207:387-395.
    [37] REGMI C, ASHITIANI S, SOFTER Z, et al. CeO2-blended cellulose triacetate mixed-matrix membranes for selective CO2 separation[J]. Membranes,2021,11(8):632. doi: 10.3390/membranes11080632
    [38] MA H Y, ZHOU D, LIU J M, et al. Preparation and spectral characteristics of SO42−/CeO2-TiO2 photocatalyst[J]. Spectroscopy and Spectral Analysis,2017,37(10):3315-3320.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  832
  • HTML全文浏览量:  394
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-07-09
  • 录用日期:  2022-07-30
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回