留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摩擦纳米发电机输出性能提升策略的研究进展

鲍艳 朱孝锋 高璐 雷鹏 顾陇 刘超

鲍艳, 朱孝锋, 高璐, 等. 摩擦纳米发电机输出性能提升策略的研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 鲍艳, 朱孝锋, 高璐, 等. 摩擦纳米发电机输出性能提升策略的研究进展[J]. 复合材料学报, 2024, 42(0): 1-13.
BAO Yan, ZHU Xiaofeng, GAO Lu, et al. Enhancement Strategies of Output Performance of Triboelectric Nanogenerator[J]. Acta Materiae Compositae Sinica.
Citation: BAO Yan, ZHU Xiaofeng, GAO Lu, et al. Enhancement Strategies of Output Performance of Triboelectric Nanogenerator[J]. Acta Materiae Compositae Sinica.

摩擦纳米发电机输出性能提升策略的研究进展

基金项目: 国家自然科学基金(No.22078188)和咸阳市科技计划项目(No.2021ZDZX-GY-0007)资助项目
详细信息
    通讯作者:

    鲍艳,教授,博士研究生导师。主要从事有机无机纳米复合材料及功能性皮革化学品的研究。 E-mail:baoyan@sust.edu.cn

    顾陇,副教授。主要从事柔性电子器件的开发和自供能系统构建的研究。 E-mail:lgu@xidian.edu.cn

  • 中图分类号: O631.2;TB332

Enhancement Strategies of Output Performance of Triboelectric Nanogenerator

Funds: The work was supported by the National Natural Science Foundation of China (No.22078188) and Xianyang City Qin Chuangyuan Science and Xianyang City science and technology plan project (No.2021ZDZX-GY-0007)
  • 摘要: 摩擦纳米发电机(Triboelectric nanogenerator,TENG)是一类能将机械能转换为电能的电子设备,具有材料种类丰富、器件结构简单以及易于集成等特点,在蓝色能源收集、微/纳能源、自驱动传感等方面展示出广泛的应用前景。然而,如何提高TENG的输出性能一直是科学界关注的焦点。基于此,本文在查阅大量文献的基础上,从TENG的工作原理出发,分析了摩擦电材料、摩擦层结构和器件结构对TENG输出性能的影响,并总结了提升TENG输出性能的有效策略,最后对TENG今后的发展趋势进行了展望。

     

  • 图  1  摩擦纳米发电机(TENG)的工作原理[10]

    Figure  1.  Working principle of Triboelectric nanogenerator (TENG) [10]

    图  2  常见材料的摩擦电序列[27]

    Figure  2.  Triboelectric sequence of common materials[27]

    图  3  (a)PVA:Fibroin复合材料制备TENG的示意图[28];(b)CA-PEI复合材料制备TENG的示意图[29]

    Figure  3.  (a) Schematic diagram of TENG from PVA:Fibroin composite[28];(b)Schematic diagram of TENG from CA-PEI composite[29]

    图  4  (a) PVDF-AgNWs复合材料制备TENG的示意图[30];(b) TPU/Mica、PVDF/Mxene复合纳米纤维膜制备TENG的示意图[31]

    Figure  4.  (a) Schematic diagram of TENG from PVDF-AgNWs composite[30]; (b) Schematic diagram of TENG from TPU / Mica and PVD F/M xene composite nanofiber membrane[31]

    图  5  (a)摩擦电材料表面引入-NH2的示意图[44];(b)摩擦电材料表面引入-NH2和-CF3的示意图[45]

    Figure  5.  (a) Schematic diagram of the friction electric material surface introduction-NH2[44]; (b) Schematic diagram of the friction electric material surface introduction-NH2 and-CF3[45]

    图  6  (a)金字塔[50]、半球[51]和微柱[52]结构;(b)圆柱微结构[53];(c)表面褶皱结构[54]

    Figure  6.  (a) pyramid[50], hemisphere[51] and microcolumn[52] structure;(b) cylindrical microstructure[53];(c) surface fold structure[54]

    图  7  (a)离子注入聚四氟乙烯形成TENG的示意图[58];(b)正电荷注入聚酰亚胺形成TENG的示意图[59];(c)浮动层结构与电荷泵结合的TENG示意图[60]

    Figure  7.  (a) Schematic diagram of ion injection to form TENG[58];(b) schematic diagram of positive charge injection into polyimide to form TENG[59];(c) Schematic diagram of TENG with floating layer structure bound to the charge pump[60]

    图  8  (a)改性丙烯酸树脂涂层作为电荷掠夺层的液-固TENG示意图[65];(b)含有聚(偏氟乙烯)-六氟丙烯共聚物和钛酸钡纳米颗粒的介电调制多孔复合涂层作为电荷掠夺层的织物TENG示意图[66]

    Figure  8.  (a) Schematic diagram of liquid-solid TENG of modified acrylic resin coating as charge plunder layer [65]; (b) schematic diagram of dielectric modulated porous composite coating containing poly (vinylidene fluoride) -hexafluoropropylene copolymer and barium titanate nanoparticles as charge plunder layer [66]

    图  9  (a)石墨烯作为电荷传输层的TENG示意图[67](b) PVA+PS为电荷传输层的多层复合结构TENG[68]

    Figure  9.  (A) Schematic diagram of TENG of graphene as charge transport layer [67] (b) PVA + PS is a multilayer composite structure TENG of charge transport layer[68]

    图  10  (a) GNP为电荷存储层的TENG示意图[69];(b) 80BT/PVDF为电荷存储层的TENG示意图[70]

    Figure  10.  (a) GNP for the charge storage layer of the TENG diagram [69];(b) 80BT / PVDF is the TENG of the charge storage layer diagram [70]

    图  11  TENG的四种工作模式:(a)接触分离模式;(b)横向滑动模式;(c)单电极模式;(d)独立摩擦模式[71]

    Figure  11.  Four working modes of TENG: (a) contact separation mode; (b) lateral sliding mode; (c) single electrode mode; (d) Independent friction mode [71]

    图  12  (a)基于接触分离模式的多间隙结构TENG示意图[72];(b)基于接触分离模式和单电极模式的固-液双模式TENG示意图[73]

    Figure  12.  (a) schematic of multi-gap structure TENG based on contact separation mode [72]; (b) schematic of solid-liquid dual-mode TENG based on contact separation mode and single-electrode mode [73]

    图  13  (a)基于横向滑动模式的三元介质TENG示意图[74];(b)基于横向滑动模式的刷式TENG示意图[75]

    Figure  13.  (a) schematic diagram of ternary medium TENG based on lateral sliding mode [74]; (b) brush TENG diagram based on lateral sliding mode [75]

    图  14  (a)基于单电极模式的电荷泵固-液TENG示意图[76];(b)基于单电极模式和接触分离模式的纱线织物多功能TENG示意图[77]

    Figure  14.  (a) solid-liquid TENG based on single-electrode mode[76];(b) multifunctional TENG of yarn fabric based on single-electrode mode and contact separation mode[77]

    图  15  (a)基于独立摩擦模式的编织结构TENG示意图[78];基于独立摩擦模式的加速电荷转移策略的TENG示意图[79]

    Figure  15.  (a)TENG diagram based on independent weaving structure[78]; TENG diagram based on independent accelerated charge transfer strategy [79]

    表  1  提升摩擦纳米发电机输出性能不同策略的优缺点

    Table  1.   Advantages and disadvantages of different strategies to improve the output performance of friction nanogenerators

    策略方法优点缺点参考
    文献
    摩擦电材料
    加工
    材料复合有机-有机复合有机材料的复合不易出现团聚现象,所制备的TENG具有良好的稳定性相较无机材料,有机材料的介电常数通常较小,有机材料复合对TENG输出性能提升有限[28]
    [29]

    有机-无机复合
    有机-无机复合可有效调控材料的介电常数,并且可增加材料表面粗糙度,增大正负摩擦层间的有效接触面积无机材料与有机材料的复合过程中存在无机材料分布不均、团聚等问题,导致表面电荷分布不均匀,影响TENG的输出稳定性[30]
    [31]
    材料表面
    改性
    官能团引入官能团的引入直接增强摩擦层的电荷转移能力,且不会破坏材料本身特性材料表面出现磨损,官能团引入提高的TENG输出性能效益就会降低[44]
    [45]
    构建表面微纳结构表面微纳结构可增大摩擦层间的有效接触面积,提高表面电荷密度微纳结构的精度难以控制,且微纳结构易变形受损,影响TENG输出稳定性[53]
    [54]
    电荷注入直接将外加电荷作用于材料表面,显著提高电荷密度注入的电荷易耗散,影响TENG输出稳定性和耐久性,且技术要求高、成本高[58]
    [59]
    [60]
    摩擦层结构
    设计
    摩擦层功能分区电荷掠夺层直接增强摩擦层的电荷掠夺能力,显著增大材料间的电荷转移功能层如何优化的相关理论研究还需进一步明晰[64]
    [65]
    电荷传输层提高电荷迁移率,减小表面电荷消散,有利电荷存储[66]
    [67]
    电荷存储层增强材料电荷存储能力,显著提高表面电荷密度[68]
    [69]
    器件结构
    设计
    接触分离模式输出电压高,对压力变化感应敏感对正负摩擦层贴合度有一定要求[72]
    [73]
    横向滑动模式能量转化率高,适用于检测平面运动摩擦层材料易受损[74]
    [75]
    单电极模式易与其他设备进行集成,相较其他类型具有更广阔的应用前景输出性能较其他模式低[76]
    [77]
    独立摩擦模式摩擦层可移动,适用于检测移动物体的运动摩擦层材料易受损,且对运动频率有一定要求[78]
    [79]
    下载: 导出CSV
  • [1] 肖先勇, 郑子萱. “双碳” 目标下新能源为主体的新型电力系统: 贡献, 关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47-59.

    XU Xianyong, ZHENG Zixuan. New Power Systems Dominated by Renewable Energy Towards the Goal of Emission Peak & Carbon Neutrality: Contribution, Key Techniques, and Challenges[J]. Advanced Engineering Science, 2022, 54(1): 47-59 (in Chinese).
    [2] 于贵瑞, 郝天象, 朱剑兴. 中国碳达峰, 碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(4): 423-434.

    YU Guirui, HAO Tianxiang, ZHU Jianxing. Discussion on action strategies of China’s carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 423-434 (in Chinese).
    [3] FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator[J]. Nano energy, 2012, 1(2): 328-334. doi: 10.1016/j.nanoen.2012.01.004
    [4] CHEN K, LI Y, YANG G, et al. Fabric-Based TENG Woven with Bio-Fabricated Superhydrophobic Bacterial Cellulose Fiber for Energy Harvesting and Motion Detection[J]. Advanced Functional Materials, 2023: 2304809.
    [5] HAO D, GONG Y, WU J, et al. A Self-Sensing and Self-Powered Wearable System Based on Multi-Source Human Motion Energy Harvesting[J]. Small, 2024: 2311036.
    [6] SHI B, WANG Q, SU H, et al. Progress in recent research on the design and use of triboelectric nanogenerators for harvesting wind energy[J]. Nano Energy, 2023: 108789.
    [7] SUN F, ZHU Y, JIA C, et al. Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators[J]. Journal of Energy Chemistry, 2023, 79: 477-488. doi: 10.1016/j.jechem.2022.12.024
    [8] 谭杜娟. 用于海洋能收集的摩擦纳米发电机的结构设计及性能研究[D]. 重庆: 重庆大学, 2022.

    TAN Dujuan. Structural Design and Property Study of Triboelectric Nanogenerator for Ocean Energy Harvesting[D]. Chongqing: University Of Chongqing, 2022(in Chinese).
    [9] SHAN C, HE W, WU H, et al. Dual Mode TENG with Self-Voltage Multiplying Circuit for Blue Energy Harvesting and Water Wave Monitoring[J]. Advanced Functional Materials, 2023: 2305768.
    [10] FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator[J]. Nano energy, 2012, 1(2): 328-334. doi: 10.1016/j.nanoen.2012.01.004
    [11] MAHAPATRA A, AJIMASHA R S, DEEPAK D, et al. Textile-integrated MoS2-PDMS single electrode triboelectric nanogenerator for vibrational energy harvesting and biomechanical motion sensing[J]. Nano Energy, 2023, 116: 108829. doi: 10.1016/j.nanoen.2023.108829
    [12] ONG D T K, KOAY J S C, SIM M T, et al. High performance composition-tailored PVDF triboelectric nanogenerator enabled by low temperature-induced phase transition[J]. Nano Energy, 2023, 113: 108555. doi: 10.1016/j.nanoen.2023.108555
    [13] LI C, WANG P, ZHANG D. Self-healable, stretchable triboelectric nanogenerators based on flexible polyimide for energy harvesting and self-powered sensors[J]. Nano Energy, 2023, 109: 108285. doi: 10.1016/j.nanoen.2023.108285
    [14] HAN G H, LEE S H, GAO J, et al. Sustainable charged composites with amphiphobic surfaces for harsh environment–tolerant non-contact mode triboelectric nanogenerators[J]. Nano Energy, 2023, 112: 108428. doi: 10.1016/j.nanoen.2023.108428
    [15] WANG Y F, CAO B, YANG Y W, et al. Multi-channel self-powered attitude sensor based on triboelectric nanogenerator and inertia[J]. Nano Energy, 2023, 107: 108164. doi: 10.1016/j.nanoen.2022.108164
    [16] SUN X, DONG L, LIU Y, et al. Biomimetic PVA-PVDF-based triboelectric nanogenerator with MXene doping for self-powered water sterilization[J]. Materials Today Nano, 2023, 24: 100410. doi: 10.1016/j.mtnano.2023.100410
    [17] GU L, GERMAN L, LI T, et al. Energy harvesting floor from commercial cellulosic materials for a self-powered wireless transmission sensor system[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5133-5141.
    [18] CHEN Z, ZHOU C, XIA W, et al. Strong, flexible and robust aramid nanofibers-based textile-triboelectric nanogenerators for high temperature escape monitoring and multifunctional applications[J]. Nano Energy, 2024: 109359.
    [19] WANG Z, WAN D, CUI X, et al. Wearable electronics powered by triboelectrification between hair and cloth for monitoring body motions[J]. Energy Technology, 2022, 10(6): 2200195. doi: 10.1002/ente.202200195
    [20] MATIN N A, MOHSENIAN R, RAYEGANI A, et al. Skin-Contact Triboelectric Nanogenerator for Energy Harvesting and Motion Sensing: Principles, Challenges, and Perspectives[J]. Biosensors, 2023, 13(9): 872.002
    [21] CHEN X, LIU Y, SUN Y, et al. Electron trapping & blocking effect enabled by MXene/TiO2 intermediate layer for charge regulation of triboelectric nanogenerators[J]. Nano Energy, 2022, 98: 107236. doi: 10.1016/j.nanoen.2022.107236
    [22] LI W, XIANG Y, ZHANG W, et al. Ordered mesoporous SiO2 nanoparticles as charge storage sites for enhanced triboelectric nanogenerators[J]. Nano Energy, 2023, 113: 108539. doi: 10.1016/j.nanoen.2023.108539
    [23] XI B, WANG L, YANG B, et al. Boosting output performance of triboelectric nanogenerator based on BaTiO3: La embedded nanofiber membrane for energy harvesting and wireless power transmission[J]. Nano Energy, 2023, 110: 108385.6.
    [24] LEE K, HAN H S, RYU J H, et al. Laser-driven formation of ZnSnO3/CNT heterostructure and its critical role in boosting performance of the triboelectric nanogenerator[J]. Carbon, 2023, 212: 118120. doi: 10.1016/j.carbon.2023.118120
    [25] SHRESTHA K, SHARMA S, PRADHAN G B, et al. A Siloxene/Ecoflex Nanocomposite-Based Triboelectric Nanogenerator with Enhanced Charge Retention by MoS2/LIG for Self-Powered Touchless Sensor Applications[J]. Advanced Functional Materials, 2022, 32(27): 2113005. doi: 10.1002/adfm.202113005
    [26] GIUSEPPINA P , ANTONIO E D R C , ALESSIO L, et al. 2D Materials-based Electrochemical Triboelectric Nanogenerators[J]. Advanced Materials, 2023: 2211037.
    [27] ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nature communications, 2019, 10(1): 1427. doi: 10.1038/s41467-019-09461-x
    [28] CANDIDO I C M, OIVEIRAl G S, RIBEIRO S J L, et al. PVA-silk fibroin bio-based triboelectric nanogenerator[J]. Nano Energy, 2023, 105: 108035. doi: 10.1016/j.nanoen.2022.108035
    [29] BAI Z, XU Y, ZHANG Z, et al. Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator[J]. Nano Energy, 2020, 75: 104884. doi: 10.1016/j.nanoen.2020.104884
    [30] CHEON S, KANG H, KIM H, et al. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride–silver nanowire composite nanofibers[J]. Advanced Functional Materials, 2018, 28(2): 1703778. doi: 10.1002/adfm.201703778
    [31] LI W, LU L, YAN F, et al. High-performance triboelectric nanogenerators based on TPU/mica nanofiber with enhanced tribo-positivity[J]. Nano Energy, 2023, 114: 108629. doi: 10.1016/j.nanoen.2023.108629
    [32] XU J, ZOU Y, NASHALIAN A, et al. Leverage surface chemistry for high-performance triboelectric nanogenerators[J]. Frontiers in Chemistry, 2020, 8: 577327. doi: 10.3389/fchem.2020.577327
    [33] MORADI F, KARIMZADEH F, KHARAZIHA M. Rational micro/nano-structuring for high-performance triboelectric nanogenerator[J]. Journal of Alloys and Compounds, 2023, 960: 170693. doi: 10.1016/j.jallcom.2023.170693
    [34] WANG S, XIE Y, NIU S, et al. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding[J]. Advanced Materials, 2014, 26(39): 6720-6728. doi: 10.1002/adma.201402491
    [35] WU C, WANG A C, DING W, et al. Triboelectric nanogenerator: a foundation of the energy for the new era[J]. Advanced Energy Materials, 2019, 9(1): 1802906. doi: 10.1002/aenm.201802906
    [36] WANG Z L, WANG A C. On the origin of contact-electrification[J]. Materials Today, 2019, 30: 34-51. doi: 10.1016/j.mattod.2019.05.016
    [37] PENG Z, SONG J, GAO Y, et al. A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting[J]. Nano Energy, 2021, 85: 106021. doi: 10.1016/j.nanoen.2021.106021
    [38] SHI L, KALE V S, TIAN Z, et al. Fluorinated Covalent Organic Framework as a Positive Tribo-Material for High-Performance Triboelectric Nanogenerators[J]. Advanced Functional Materials, 2023, 33(12): 2212891. doi: 10.1002/adfm.202212891
    [39] LING Z, LIN F, HUANG X, et al. Influence of Molecular Structure and Material Properties on the Output Performance of Liquid–Solid Triboelectric Nanogenerators[J]. Micromachines, 2023, 14(10): 1825. doi: 10.3390/mi14101825
    [40] YAO C, YIN X, YU Y, et al. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development[J]. Advanced Functional Materials, 2017, 27(30): 1700794. doi: 10.1002/adfm.201700794
    [41] SHIN S H, KWON Y H, KIM Y H, et al. Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators[J]. ACS nano, 2015, 9(4): 4621-4627. doi: 10.1021/acsnano.5b01340
    [42] YUAN H, ZHANG J, RENCUS L S, et al. The engineering of molecular packing in amino acid crystals for the enhanced triboelectric effect[J]. Nano Energy, 2023, 110: 108375. doi: 10.1016/j.nanoen.2023.108375
    [43] THAKUR D, SEO S, HYUN J. Three-dimensional triboelectric nanogenerator with carboxymethylated cellulose nanofiber and perfluoroalkoxy films[J]. Journal of Industrial and Engineering Chemistry, 2023, 123: 220-229. doi: 10.1016/j.jiec.2023.03.037
    [44] WANG S, ZI Y, ZHOU Y S, et al. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators[J]. Journal of Materials Chemistry A, 2016, 4(10): 3728-3734. doi: 10.1039/C5TA10239A
    [45] SHIN S H, KWON Y H, Kim Y H, et al. Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators[J]. ACS nano, 2015, 9(4): 4621-4627. doi: 10.1021/acsnano.5b01340
    [46] 周亮. 基于仿生结构及可重构材料的摩擦纳米发电机设计与传感应用研究 [D]. 吉林: 吉林大学, 2022.

    ZHOU Liang. Design and Sensing Applications of Triboelectric Nanogenerators Based on Biomimetic Structure and Reconfigurable Materials [D]. Jilin: Jilin University, 2022(in Chinese).
    [47] 岳欧阳. 基于生物质胶原的多功能柔性电子传感材料的构建及性能研究 [D]. 西安: 陕西科技大学, 2022.

    YUE O Y. Preparation and Exploration of Multifunctional Collagen-basedFlexible Electronic Sensing Materials [D]. Xi'an: Shaanxi University of Technology , 2022(in Chinese).
    [48] MUTHU M, PANDEY R, WANG X, et al. Enhancement of triboelectric nanogenerator output performance by laser 3D-Surface pattern method for energy harvesting application[J]. Nano Energy, 2020, 78: 105205. doi: 10.1016/j.nanoen.2020.105205
    [49] SHANG W, GU G Q, YANG F, et al. A sliding-mode triboelectric nanogenerator with chemical group grated structure by shadow mask reactive ion etching[J]. ACS nano, 2017, 11(9): 8796-8803. doi: 10.1021/acsnano.7b02866
    [50] ZHANG S, RANS S M S, BHATTA T, et al. 3D printed smart glove with pyramidal MXene/Ecoflex composite-based toroidal triboelectric nanogenerators for wearable human-machine interaction applications[J]. Nano Energy, 2023, 106: 108110. doi: 10.1016/j.nanoen.2022.108110
    [51] LIU Z, ZHAO Z, ZENG X, et al. Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring[J]. Nano Energy, 2019, 59: 295-301. doi: 10.1016/j.nanoen.2019.02.057
    [52] PINMING C, WONGWIRIYAPAN W, RATTANAMAI S, et al. Carbon nanotube/polydimethylsiloxane composite micropillar arrays using non-lithographic silicon nanowires as a template for performance enhancement of triboelectric nanogenerators[J]. Nanotechnology, 2020, 32(9): 095303.
    [53] GAO C, TONG W, LIU S, et al. Fully degradable chitosan–based triboelectric nanogenerators applying in disposable medical products for information transfer[J]. Nano Energy, 2023: 108876.
    [54] CHEN H, XU Y, ZHANG J, et al. Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure[J]. Nano Energy, 2019, 58: 304-311. doi: 10.1016/j.nanoen.2019.01.029
    [55] GAO M, KIM S B, LI Y, et al. Triboelectric nanogenerator with enhanced output and durability based on Si-DLC films[J]. Nano Energy, 2023, 105: 107997. doi: 10.1016/j.nanoen.2022.107997
    [56] PARK S H, LEE J, KONG D S, et al. Laminating Structure for Interlayer Corona Discharge Treatment Toward Ion-Based Nanogenerators[J]. Small Methods, 2023: 2300097.
    [57] XIAO Z, LUO Y, YUAN H, et al. Coupling charge pump and BUCK circuits to efficiently enhance the output performance of triboelectric nanogenerator[J]. Nano Energy, 2023, 115: 108749. doi: 10.1016/j.nanoen.2023.108749
    [58] FAN Y, LI S, TAO X, et al. Negative triboelectric polymers with ultrahigh charge density induced by ion implantation[J]. Nano Energy, 2021, 90: 106574. doi: 10.1016/j.nanoen.2021.106574
    [59] WU H, FU S, HE W, et al. Improving and quantifying surface charge density via charge injection enabled by air breakdown[J]. Advanced Functional Materials, 2022, 32(35): 2203884. doi: 10.1002/adfm.202203884
    [60] XU L, BU T Z, YANG X D, et al. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators[J]. Nano Energy, 2018, 49: 625-633. doi: 10.1016/j.nanoen.2018.05.011
    [61] SEIFOLLAHI Z, ASHRAFIZADEH S N. Ionic-size dependent electroosmotic flow in ion-selective biomimetic nanochannels[J]. Colloids and Surfaces B: Biointerfaces, 2022, 216: 112545. doi: 10.1016/j.colsurfb.2022.112545
    [62] CHAI B, SHI K, ZOU H, et al. Conductive interlayer modulated ferroelectric nanocomposites for high performance triboelectric nanogenerator[J]. Nano Energy, 2022, 91: 106668. doi: 10.1016/j.nanoen.2021.106668
    [63] JIANG H, LEI H, WEN Z, et al. Charge-trapping-blocking layer for enhanced triboelectric nanogenerators[J]. Nano Energy, 2020, 75: 105011. doi: 10.1016/j.nanoen.2020.105011
    [64] KIM D W, LEE J H, YOU I, et al. Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators[J]. Nano Energy, 2018, 50: 192-200. doi: 10.1016/j.nanoen.2018.05.041
    [65] WANG H, FENG M, WANG W, et al. Fluorine-free coating-based droplet triboelectric nanogenerators for highly efficient energy harvesting[J]. Journal of Materials Chemistry A, 2024, 12(8): 4727-4738. doi: 10.1039/D3TA07103K
    [66] ZHENG Z, MA X, LU M, et al. High-Performance All-Textile Triboelectric Nanogenerator toward Intelligent Sports Sensing and Biomechanical Energy Harvesting[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 10746-10755.
    [67] YAN J, WANG H, WANG X, et al. High-performance triboelectric nanogenerators with laser-induced graphene pattern for efficient charge transfer[J]. Applied Surface Science, 2024, 661: 160034. doi: 10.1016/j.apsusc.2024.160034
    [68] CUI N, LIU J, LEI Y, et al. High-performance triboelectric nanogenerator with a rationally designed friction layer structure[J]. ACS Applied Energy Materials, 2018, 1(6): 2891-2897. doi: 10.1021/acsaem.8b00530
    [69] MENGE H G, KIM J O, PARK Y T. Enhanced triboelectric performance of modified PDMS nanocomposite multilayered nanogenerators[J]. Materials, 2020, 13(18): 4156. doi: 10.3390/ma13184156
    [70] ZHENG Z, XIA J, WANG B, et al. Hierarchically designed nanocomposites for triboelectric nanogenerator toward biomechanical energy harvester and smart home system[J]. Nano Energy, 2022, 95: 107047. doi: 10.1016/j.nanoen.2022.107047
    [71] LAI M, DU B, GUO H, et al. Enhancing the output charge density of TENG via building longitudinal paths of electrostatic charges in the contacting layers[J]. ACS applied materials & interfaces, 2018, 10(2): 2158-2165.
    [72] CUI N, LIU J, LEI Y, et al. High-performance triboelectric nanogenerator with a rationally designed friction layer structure[J]. ACS Applied Energy Materials, 2018, 1(6): 2891-2897. doi: 10.1021/acsaem.8b00530
    [73] LIU D, YANG P, GAO Y, et al. A Dual-Mode Triboelectric Nanogenerator for Efficiently Harvesting Droplet Energy[J]. Small, 2024: 2400698.
    [74] LI Q, HU Y, YANG Q, et al. A robust constant–voltage DC triboelectric nanogenerator using the ternary dielectric triboelectrification effect[J]. Advanced Energy Materials, 2023, 13(2): 2202921. doi: 10.1002/aenm.202202921
    [75] JEONG J, JEON S, MA X, et al. A Sustainable and Flexible Microbrush-Faced Triboelectric Generator for Portable/Wearable Applications[J]. Advanced Materials, 2021, 33(39): 2102530. doi: 10.1002/adma.202102530
    [76] WU P, YANG P, LIU Z, et al. Boosting the Output of Liquid–Solid Triboelectric Nanogenerator by an External Charge-Pumping Strategy[J]. Advanced Energy Materials, 2024, 14(16): 2303912. doi: 10.1002/aenm.202303912
    [77] HE M, DU W, FENG Y, et al. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring[J]. Nano Energy, 2021, 86: 106058. doi: 10.1016/j.nanoen.2021.106058
    [78] PAOSANGTHONG W, WAGIH M, TORAH R, et al. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions[J]. Nano Energy, 2022, 92: 106739. doi: 10.1016/j.nanoen.2021.106739
    [79] SUN Y, YU Y, GAO Q, et al. Enhancing performance of triboelectric nanogenerator by accelerating the charge transfer strategy[J]. Nano Energy, 2024, 121: 109194. doi: 10.1016/j.nanoen.2023.109194
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-09-06
  • 录用日期:  2024-09-21
  • 网络出版日期:  2024-10-12

目录

    /

    返回文章
    返回