Synthesis and properties of PEDOT: PSS conductive interpenetrated hydrogel induced by BSA
-
摘要:
由于具有优异的导电性、生物相容性、柔韧性和稳定性,聚 (3,4-乙撑二氧噻吩 ):聚苯乙烯磺酸(PEDOT:PSS)导电水凝胶被广泛用于生物传感、神经电极以及可穿戴电子等领域。但是,目前合成PEDOT:PSS导电水凝胶大都是通过大幅增加离子强度和降低pH改变PEDOT:PSS的聚集状态使其成胶,条件较为苛刻。本文发现一种温和的PEDOT:PSS成胶方法,即通过对牛血清白蛋白(BSA)进行解折叠,改变空间构象,随后充分暴露的多肽链能够原位诱导PEDOT:PSS一步快速形成PEDOT:PSS/BSA互穿网络导电水凝胶。当BSA加入到带尿素混合后的PEDOT:PSS中,由于尿素可以破坏BSA的疏水作用并且和BSA形成氢键从而改变BSA的空间结构的作用,BSA由β折叠和α螺旋组成的球形结构变为不规则的螺旋卷曲结构,此时BSA的链上的二硫键也暴露出来,再因为加入了三(2-羧乙基)膦(TCEP),其中心原子P所带的孤电子对能与氧原子形成配位共价结合而具有很强的还原性,所以被尿素解离的BSA上所暴露出来的二硫键会被TCEP还原成硫醇键,并且二硫键断裂后可以再次氧化重新形成二硫键。同时BSA具有丰富的-NH键,在混合到PEDOT:PSS中并且被尿素打开其空间结构后,BSA的-NH键可以与PEDOT:PSS链上的-SO3-键形成氢键。总之该互穿网络水凝胶的形成主要受到两种作用力的影响,一是BSA的二硫键被还原断裂后又再次氧化重新形成二硫键的化学作用力,二是BSA与PEDOT:PSS都具有大量的氢键结合位点,形成氢键发生了物理作用力。 PEDOT:PSS/BSA导电水凝胶的制备原理图 -
关键词:
- 牛血清白蛋白 /
- 聚 (3 /
- 4-乙撑二氧噻吩):聚苯乙烯磺酸 /
- 导电性 /
- 互穿网络水凝胶
Abstract: By virtue of their excellent electrical conductivity, biocompatibility, flexibility and stability, poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid (PEDOT:PSS) conductive hydrogels have been widely used in biosensors, neural electrode and wearable bioelectronic devices, etc. However, researchers usually greatly increased ionic strength and lowered pH to change the aggregation state of PEDOT:PSS to synthesize PEDOT:PSS conductive hydrogels and to some extent this synthesis condition was harsh in consideration of its future application. In this paper, we provided a facile way to synthesize this conductive hydrogel, that is, bovine serum albumin (BSA) was introduced to induce PEDOT:PSS in situ by changing its spatial configuration to rapidly form a PEDOT:PSS/BSA interpenetrating network conductive hydrogel in one step. It was found that the hydrogel has inherited excellent electrical conductivity of PEDOT:PSS, and in the same time, the unfolded BSA endowed the hydrogel with good swelling and thermal properties. Moreover, the hydrogel has certain mechanical properties and excellent hemolysis rate.To our surprise, the hydrogel also exhibited good adhesion, and self-healing properties. In all, the the synthesized method and excellent properties of PEDOT:PSS/BSA interpenetrated hydrogel we provided could have a wide potential in wearable bioelectronics and wound healing dressings. -
图 1 (a) 导电水凝胶制备示意图;(b) 不同牛血清白蛋白(BSA)浓度的成胶时间;(c) 不同原料含量的成胶示意图(左列:表1编号b和h;中间:表1编号e、f、g;右列:表1编号a、b、c、d、e)
Figure 1. (a) Schematic diagram of the preparation of conductive hydrogels; (b) Gel formation time at different bovine serum albumin (BSA) concentrations; (c) Schematic diagram of gel formation with different raw material contents( Left column: numbers b and h from Table 1; Middle: Numbers e, f, g in Table 1; Right column: numbers a, b, c, d, e from Table 1)
图 2 (a) 不同BSA含量导电水凝胶的FT-IR图谱;(b) 不同BSA含量导电水凝胶的SEM图谱(a:纯PEDOT:PSS凝胶;b:PEDOT:PSS/BSA1凝胶;c:PEDOT:PSS/BSA2凝胶;d:PEDOT:PSS/BSA3凝胶)
Figure 2. (a) FT-IR spectra of conductive hydrogels with different BSA contents; (b) SEM images of conductive hydrogels with different BSA contents(a:Pure PEDOT:PSS gel; b:PEDOT:PSS/BSA1 gel; c:PEDOT:PSS/BSA2 gel; d:PEDOT:PSS/BSA3 gel)
图 3 (a) 不同BSA含量水凝胶的流变行为(a:PEDOT:PSS/BSA1凝胶;b:PEDOT:PSS/BSA2凝胶;c:PEDOT:PSS/BSA3凝胶; 其中G'是存储模量, G''是损耗模量);(b) 不同BSA含量水凝胶的TG图像 (其中插图是DTG图像。 A:纯PEDOT:PSS凝胶;b:PEDOT:PSS/BSA1凝胶;c:PEDOT:PSS/BSA2凝胶;d:PEDOT:PSS/BSA3凝胶)
Figure 3. (a) Rheological behavior of hydrogels with different BSA contents (a:PEDOT:PSS/BSA1 gel; b:PEDOT:PSS/BSA2 gel; c:PEDOT:PSS/BSA3 gel; Where G' is storage modulus and G'' is loss modulus); (b) TG images of hydrogels with different BSA contents(The illustration is the DTG image. A: Pure PEDOT:PSS gel; b:PEDOT:PSS/BSA1 gel; c:PEDOT:PSS/BSA2 gel; d:PEDOT:PSS/BSA3 gel)
图 4 (a) 不同BSA含量导电水凝胶的XRD图谱;(b) 不同BSA含量导电水凝胶的DSC图谱(a:纯PEDOT:PSS凝胶;b:PEDOT:PSS/BSA1凝胶;c:PEDOT:PSS/BSA2凝胶;d:PEDOT:PSS/BSA3凝胶)
Figure 4. (a) XRD spectra of conductive hydrogels with different BSA contents; (b) DSC images of conductive hydrogels with different BSA contents(a:Pure PEDOT:PSS gel; b:PEDOT:PSS/BSA1 gel; c:PEDOT:PSS/BSA2 gel; d:PEDOT:PSS/BSA3 gel)
图 6 (a) 不同BSA含量的水凝胶在不同浸泡时间下的溶胀度(Sd);(b) 不同BSA含量的水凝胶的饱和溶胀度(a:PEDOT:PSS/BSA1凝胶;b:PEDOT:PSS/BSA2凝胶;c:PEDOT:PSS/BSA3凝胶)
Figure 6. (a) Swelling degree of hydrogels with different BSA contents under different soaking time(Sd); (b) Saturated swelling degree of hydrogels with different BSA contents (a:PEDOT:PSS/BSA1 gel; b:PEDOT:PSS/BSA2 gel; c:PEDOT:PSS/BSA3 gel)
图 7 (a) PEDOT:PSS/BSA凝胶良好的柔韧性使得它被压缩变形后而不断裂;(b) 不同BSA含量的水凝胶的压缩应力应变曲线(a:PEDOT:PSS/BSA2凝胶;b:PEDOT:PSS/BSA3凝胶)
Figure 7. (a) The good flexibility of PEDOT:PSS/BSA gel allows it to be compressed and deformed without breaking; (b) Compressive stress-strain curves of hydrogels with different BSA contents (a:PEDOT:PSS/BSA2 gel; b:PEDOT:PSS/BSA3 gel)
图 8 不同BSA含量凝胶的溶血效果图(a)和溶血率(b)(NC:阴性对照组; PC:阳性对照组; 1#:纯PEDOT:PSS凝胶; 2#:PEDOT:PSS/BSA1凝胶; 3#:PEDOT:PSS/BSA2凝胶; 4#:PEDOT:PSS/BSA3凝胶。)
Figure 8. Hemolysis effect chart(a) and hemolysis rate(b) of gels with different BSA content(NC:Negative control group; PC:Positive control group; 1#:Pure PEDOT:PSS gel; 2#:PEDOT:PSS/BSA1 gel; 3#:PEDOT:PSS/BSA2 gel; 4#:PEDOT:PSS/BSA3 gel.)
表 1 导电水凝胶PEDOT:PSS/BSA的配方
Table 1. Formulation of Conductive Hydrogel of PEDOT:PSS/BSA
Number Solvent system BSA/(mg·mL−1) Urea/(mg·mL−1) TCEP/(mg·mL−1) a PEDOT:PSS 15 540 3 b PEDOT:PSS 20 540 3 c PEDOT:PSS 40 540 3 d PEDOT:PSS 70 540 3 e PEDOT:PSS 100 540 3 f PEDOT:PSS 100 540 0 g PEDOT:PSS 100 0 3 h Water 20 540 3 -
[1] 王思恒, 杨欣欣, 刘鹤, 等. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2021, 40(5):2646-2664. doi: 10.16085/j.issn.1000-6613.2020-1196WANG S H, YANG X X, LIU H, et al. Research progress in preparation and application of conductive hydrogels[J]. Chemical Industry and Engineering Progress,2021,40(5):2646-2664(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1196 [2] ZHAO Y S, LO C-Y, RUAN L C, et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel[J]. Science Robotics,2021,6(53):eabd5483. doi: 10.1126/scirobotics.abd5483 [3] 韩景泉, 王慧祥, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/聚乙烯醇-硼酸盐复合导电水凝胶[J]. 复合材料学报, 2017, 34(10):2312-2320. doi: 10.13801/j.cnki.fhclxb.20170420.001HAN J Q, WANG H X, YUE Y Y, et al. Cellulose nanofiber-carbon nanotube/polyvinyl alcohol-borax hybrid conductive hydrogel[J]. Acta Materiae Compositae Sinica,2017,34(10):2312-2320(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170420.001 [4] DAS S, MARTIN P, VASILYEW G, et al. Processable, Ion-Conducting Hydrogel for Flexible Electronic Devices with Self-Healing Capability[J]. Macromolecules,2020,53:11130-11141. doi: 10.1021/acs.macromol.0c02060 [5] ZHENG Y Q, LIU Y X, ZHONG D L, et al. Monolithic optical microlithography of high-density elastic circuits[J]. Science,2021,373(6550):88-94. doi: 10.1126/science.abh3551 [6] LIANG Y Y, OFFENHUSSER A, INGEBRANDT S, et al. PEDOT: PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochmical Cell Signals[J]. Advanced Healthcare Materials,2021,10(11):e2100061. doi: 10.1002/adhm.202100061 [7] YAO B W, WANG H Y, ZHOU Q Q, et al. Ultrahigh-Conductivity Polymer Hydrogels with Arbitrary Structures[J]. Advanced Materials,2017,29:1700974. doi: 10.1002/adma.201700974 [8] XU Z Y, SONG J Y, LIU B R, et al. A conducting polymer PEDOT: PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat[J]. Sensors and Actuators, B:Chemical,2021,348:130674. doi: 10.1016/j.snb.2021.130674 [9] LIU Y X, LI J X, SONG S, et al. Author Correction: Morphing electronics enable neuromodulation in growing tissue[J]. Nature Biotechnology,2020,38(9):1031-1036. doi: 10.1038/s41587-020-0495-2 [10] ZHANG R L, XU X F, FAN X X, et al. Application of conducting micelles self-assembled from commercial poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate) and chitosan for electrochemical biosensor[J]. Colloid and Polymer Science,2018,296(3):495-502. doi: 10.1007/s00396-018-4270-6 [11] JIA Z R, GONG J L, ZENG Y, et al. Bioinspired Conductive Silk Microfiber Integrated Bioelectronic for Diagnosis and Wound Healing in Diabetes[J]. Advanced Functional Materials,2021,31:2010461. doi: 10.1002/adfm.202010461 [12] ZENG J, DONG L B, SHA W X, et al. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors[J]. Chemical Engineering Journal,2020,383:123098. doi: 10.1016/j.cej.2019.123098 [13] ZHANG S M, CHEN Y H, LIU H, et al. Room-Temperature-Formed PEDOT: PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics[J]. Advanced Materials,2020,32:1904752. doi: 10.1002/adma.201904752 [14] FEIG V R, TRAN H, LEE M, et al. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue[J]. Nature Communications,2018,9(1):5030. doi: 10.1038/s41467-018-07487-1 [15] BAI Y, LI S D, LI X P, et al. An injectable robust denatured albumin hydrogel formed via double equilibrium reactions[J]. Journal of Biomaterials Science Polymer Edition,2019,30(8):662-678. doi: 10.1080/09205063.2019.1600821 [16] BURNS J A, BUTLER J C, MORAN J, et al. Selective Reduction of Disulfides by Tris(2-carboxyethyl)phosphine[J]. Journal of Organic Chemistry,1991,56:2648-2650. doi: 10.1021/jo00008a014 [17] 徐国恒. 二硫键与蛋白质的结构[J]. 生物学通报, 2010, 45(5):5-7. doi: 10.3969/j.issn.0006-3193.2010.05.002XU G H. The disulfide bond and protein structure[J]. Bulletin of Biology,2010,45(5):5-7(in Chinese). doi: 10.3969/j.issn.0006-3193.2010.05.002 [18] BASHIR S, HINA M, IQBAL J, et al. Self-healable poly (N, N-dimethylacrylamide)/poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate composite hydrogel electrolytes for aqueous supercapacitors[J]. Journal of Energy Storage,2022,45:103760. doi: 10.1016/j.est.2021.103760 [19] KHANNA S, SINGTH A K, BEHERA S P, et al. Thermoresponsive BSA hydrogels with phase tunability[J]. Materials Science and Engineering C,2021,119:111590. doi: 10.1016/j.msec.2020.111590 [20] CSACH K, JURIKOVA A, MISKUF J, et al. Thermogravimetric Study of the Decomposition of BSA-Coated Magnetic Nanoparticles[J]. Acta Physica Polonica Series A,2012,121(5-6):1293-1295. doi: 10.12693/APhysPolA.121.1293 [21] 徐翔宇, 李弘坤, 詹达, 等. PEDOT: PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10):1734-1737. doi: 10.11896/cldb.18040192XU X Y, LI H K, ZHAN D, et al. Semiconducting Properties of PEDOT: PSS Doped Silk Fibroin Composite Film[J]. Materials Reports,2019,33(10):1734-1737(in Chinese). doi: 10.11896/cldb.18040192 [22] SABAA M W, HANNA D H, ABU ELELLA M H, et al. Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery[J]. Materials Science and Engineering C,2019,94:1044-1055. doi: 10.1016/j.msec.2018.10.040 -

计量
- 文章访问数: 246
- HTML全文浏览量: 141
- 被引次数: 0