留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BSA诱导PEDOT:PSS导电互穿网络水凝胶的制备与性能

黄云锋 李德 王楠 马姣

黄云锋, 李德, 王楠, 等. BSA诱导PEDOT:PSS导电互穿网络水凝胶的制备与性能[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 黄云锋, 李德, 王楠, 等. BSA诱导PEDOT:PSS导电互穿网络水凝胶的制备与性能[J]. 复合材料学报, 2022, 40(0): 1-11
Yunfeng HUANG, De LI, Nan WANG, Jiao MA. Synthesis and properties of PEDOT: PSS conductive interpenetrated hydrogel induced by BSA[J]. Acta Materiae Compositae Sinica.
Citation: Yunfeng HUANG, De LI, Nan WANG, Jiao MA. Synthesis and properties of PEDOT: PSS conductive interpenetrated hydrogel induced by BSA[J]. Acta Materiae Compositae Sinica.

BSA诱导PEDOT:PSS导电互穿网络水凝胶的制备与性能

基金项目: 国家自然科学基金 (No.51903185)
详细信息
    通讯作者:

    马姣,博士,讲师,硕士生导师,研究方向为生物传感与生物电子 E-mail: majiao@tyut.edu.cn

  • 中图分类号: TB332;TQ427.2

Synthesis and properties of PEDOT: PSS conductive interpenetrated hydrogel induced by BSA

Funds: National Natural Science Foundation of China(No.51903185)
  • 摘要: 由于具有优异的导电性、生物相容性、柔韧性和稳定性,聚 (3,4-乙撑二氧噻吩 ):聚苯乙烯磺酸(PEDOT:PSS)导电水凝胶被广泛用于生物传感、神经电极以及可穿戴电子等领域。但是,目前合成PEDOT:PSS导电水凝胶大都是通过大幅增加离子强度和降低pH改变PEDOT:PSS的聚集状态使其成胶,条件较为苛刻。本文发现一种温和的PEDOT:PSS成胶方法,即通过对牛血清白蛋白(BSA)进行解折叠,改变空间构象,随后充分暴露的多肽链能够原位诱导PEDOT:PSS一步快速形成PEDOT:PSS/BSA互穿网络导电水凝胶。当BSA加入到带尿素混合后的PEDOT:PSS中,由于尿素可以破坏BSA的疏水作用并且和BSA形成氢键从而改变BSA的空间结构的作用,BSA由β折叠和α螺旋组成的球形结构变为不规则的螺旋卷曲结构,此时BSA的链上的二硫键也暴露出来,再因为加入了三(2-羧乙基)膦(TCEP),其中心原子P所带的孤电子对能与氧原子形成配位共价结合而具有很强的还原性,所以被尿素解离的BSA上所暴露出来的二硫键会被TCEP还原成硫醇键,并且二硫键断裂后可以再次氧化重新形成二硫键。同时BSA具有丰富的-NH键,在混合到PEDOT:PSS中并且被尿素打开其空间结构后,BSA的-NH键可以与PEDOT:PSS链上的-SO3-键形成氢键。总之该互穿网络水凝胶的形成主要受到两种作用力的影响,一是BSA的二硫键被还原断裂后又再次氧化重新形成二硫键的化学作用力,二是BSA与PEDOT:PSS都具有大量的氢键结合位点,形成氢键发生了物理作用力。PEDOT:PSS/BSA导电水凝胶的制备原理图

     

  • 图  1  (a) 导电水凝胶制备示意图;(b) 不同牛血清白蛋白(BSA)浓度的成胶时间;(c) 不同原料含量的成胶示意图(左列:表1编号b和h;中间:表1编号e、f、g;右列:表1编号a、b、c、d、e)

    Figure  1.  (a) Schematic diagram of the preparation of conductive hydrogels; (b) Gel formation time at different bovine serum albumin (BSA) concentrations; (c) Schematic diagram of gel formation with different raw material contents( Left column: numbers b and h from Table 1; Middle: Numbers e, f, g in Table 1; Right column: numbers a, b, c, d, e from Table 1)

    图  2  (a) 不同BSA含量导电水凝胶的FT-IR图谱;(b) 不同BSA含量导电水凝胶的SEM图谱(a:纯PEDOT:PSS凝胶;b:PEDOT:PSS/BSA1凝胶;c:PEDOT:PSS/BSA2凝胶;d:PEDOT:PSS/BSA3凝胶)

    Figure  2.  (a) FT-IR spectra of conductive hydrogels with different BSA contents; (b) SEM images of conductive hydrogels with different BSA contents(a:Pure PEDOT:PSS gel; b:PEDOT:PSS/BSA1 gel; c:PEDOT:PSS/BSA2 gel; d:PEDOT:PSS/BSA3 gel)

    图  3  (a) 不同BSA含量水凝胶的流变行为(a:PEDOT:PSS/BSA1凝胶;b:PEDOT:PSS/BSA2凝胶;c:PEDOT:PSS/BSA3凝胶; 其中G'是存储模量, G''是损耗模量);(b) 不同BSA含量水凝胶的TG图像 (其中插图是DTG图像。 A:纯PEDOT:PSS凝胶;b:PEDOT:PSS/BSA1凝胶;c:PEDOT:PSS/BSA2凝胶;d:PEDOT:PSS/BSA3凝胶)

    Figure  3.  (a) Rheological behavior of hydrogels with different BSA contents (a:PEDOT:PSS/BSA1 gel; b:PEDOT:PSS/BSA2 gel; c:PEDOT:PSS/BSA3 gel; Where G' is storage modulus and G'' is loss modulus); (b) TG images of hydrogels with different BSA contents(The illustration is the DTG image. A: Pure PEDOT:PSS gel; b:PEDOT:PSS/BSA1 gel; c:PEDOT:PSS/BSA2 gel; d:PEDOT:PSS/BSA3 gel)

    图  4  (a) 不同BSA含量导电水凝胶的XRD图谱;(b) 不同BSA含量导电水凝胶的DSC图谱(a:纯PEDOT:PSS凝胶;b:PEDOT:PSS/BSA1凝胶;c:PEDOT:PSS/BSA2凝胶;d:PEDOT:PSS/BSA3凝胶)

    Figure  4.  (a) XRD spectra of conductive hydrogels with different BSA contents; (b) DSC images of conductive hydrogels with different BSA contents(a:Pure PEDOT:PSS gel; b:PEDOT:PSS/BSA1 gel; c:PEDOT:PSS/BSA2 gel; d:PEDOT:PSS/BSA3 gel)

    图  5  (a) 不同BSA含量水凝胶的电导率;(b) PEDOT:PSS/BSA3凝胶可以作为导线点亮LED小灯泡

    Figure  5.  (a) Conductivity of hydrogels with different BSA contents; (b) PEDOT:PSS/BSA3 gel can be used as a wire to light up small LED bulbs

    图  6  (a) 不同BSA含量的水凝胶在不同浸泡时间下的溶胀度(Sd);(b) 不同BSA含量的水凝胶的饱和溶胀度(a:PEDOT:PSS/BSA1凝胶;b:PEDOT:PSS/BSA2凝胶;c:PEDOT:PSS/BSA3凝胶)

    Figure  6.  (a) Swelling degree of hydrogels with different BSA contents under different soaking time(Sd); (b) Saturated swelling degree of hydrogels with different BSA contents (a:PEDOT:PSS/BSA1 gel; b:PEDOT:PSS/BSA2 gel; c:PEDOT:PSS/BSA3 gel)

    图  7  (a) PEDOT:PSS/BSA凝胶良好的柔韧性使得它被压缩变形后而不断裂;(b) 不同BSA含量的水凝胶的压缩应力应变曲线(a:PEDOT:PSS/BSA2凝胶;b:PEDOT:PSS/BSA3凝胶)

    Figure  7.  (a) The good flexibility of PEDOT:PSS/BSA gel allows it to be compressed and deformed without breaking; (b) Compressive stress-strain curves of hydrogels with different BSA contents (a:PEDOT:PSS/BSA2 gel; b:PEDOT:PSS/BSA3 gel)

    图  8  不同BSA含量凝胶的溶血效果图(a)和溶血率(b)(NC:阴性对照组; PC:阳性对照组; 1#:纯PEDOT:PSS凝胶; 2#:PEDOT:PSS/BSA1凝胶; 3#:PEDOT:PSS/BSA2凝胶; 4#:PEDOT:PSS/BSA3凝胶。)

    Figure  8.  Hemolysis effect chart(a) and hemolysis rate(b) of gels with different BSA content(NC:Negative control group; PC:Positive control group; 1#:Pure PEDOT:PSS gel; 2#:PEDOT:PSS/BSA1 gel; 3#:PEDOT:PSS/BSA2 gel; 4#:PEDOT:PSS/BSA3 gel.)

    图  9  PEDOT:PSS/BSA凝胶的自修复性

    Figure  9.  Self-healing property of PEDOT:PSS/BSA gel

    图  10  PEDOT:PSS/BSA凝胶在不同基底下的黏附性

    Figure  10.  Adhesion of PEDOT:PSS/BSA gel under different substrates

    表  1  导电水凝胶PEDOT:PSS/BSA的配方

    Table  1.   Formulation of Conductive Hydrogel of PEDOT:PSS/BSA

    NumberSolvent systemBSA/(mg·mL−1)Urea/(mg·mL−1)TCEP/(mg·mL−1)
    a PEDOT:PSS 15 540 3
    b PEDOT:PSS 20 540 3
    c PEDOT:PSS 40 540 3
    d PEDOT:PSS 70 540 3
    e PEDOT:PSS 100 540 3
    f PEDOT:PSS 100 540 0
    g PEDOT:PSS 100 0 3
    h Water 20 540 3
    下载: 导出CSV
  • [1] 王思恒, 杨欣欣, 刘鹤, 等. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2021, 40(5):2646-2664. doi: 10.16085/j.issn.1000-6613.2020-1196

    WANG S H, YANG X X, LIU H, et al. Research progress in preparation and application of conductive hydrogels[J]. Chemical Industry and Engineering Progress,2021,40(5):2646-2664(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1196
    [2] ZHAO Y S, LO C-Y, RUAN L C, et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel[J]. Science Robotics,2021,6(53):eabd5483. doi: 10.1126/scirobotics.abd5483
    [3] 韩景泉, 王慧祥, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/聚乙烯醇-硼酸盐复合导电水凝胶[J]. 复合材料学报, 2017, 34(10):2312-2320. doi: 10.13801/j.cnki.fhclxb.20170420.001

    HAN J Q, WANG H X, YUE Y Y, et al. Cellulose nanofiber-carbon nanotube/polyvinyl alcohol-borax hybrid conductive hydrogel[J]. Acta Materiae Compositae Sinica,2017,34(10):2312-2320(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170420.001
    [4] DAS S, MARTIN P, VASILYEW G, et al. Processable, Ion-Conducting Hydrogel for Flexible Electronic Devices with Self-Healing Capability[J]. Macromolecules,2020,53:11130-11141. doi: 10.1021/acs.macromol.0c02060
    [5] ZHENG Y Q, LIU Y X, ZHONG D L, et al. Monolithic optical microlithography of high-density elastic circuits[J]. Science,2021,373(6550):88-94. doi: 10.1126/science.abh3551
    [6] LIANG Y Y, OFFENHUSSER A, INGEBRANDT S, et al. PEDOT: PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochmical Cell Signals[J]. Advanced Healthcare Materials,2021,10(11):e2100061. doi: 10.1002/adhm.202100061
    [7] YAO B W, WANG H Y, ZHOU Q Q, et al. Ultrahigh-Conductivity Polymer Hydrogels with Arbitrary Structures[J]. Advanced Materials,2017,29:1700974. doi: 10.1002/adma.201700974
    [8] XU Z Y, SONG J Y, LIU B R, et al. A conducting polymer PEDOT: PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat[J]. Sensors and Actuators, B:Chemical,2021,348:130674. doi: 10.1016/j.snb.2021.130674
    [9] LIU Y X, LI J X, SONG S, et al. Author Correction: Morphing electronics enable neuromodulation in growing tissue[J]. Nature Biotechnology,2020,38(9):1031-1036. doi: 10.1038/s41587-020-0495-2
    [10] ZHANG R L, XU X F, FAN X X, et al. Application of conducting micelles self-assembled from commercial poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate) and chitosan for electrochemical biosensor[J]. Colloid and Polymer Science,2018,296(3):495-502. doi: 10.1007/s00396-018-4270-6
    [11] JIA Z R, GONG J L, ZENG Y, et al. Bioinspired Conductive Silk Microfiber Integrated Bioelectronic for Diagnosis and Wound Healing in Diabetes[J]. Advanced Functional Materials,2021,31:2010461. doi: 10.1002/adfm.202010461
    [12] ZENG J, DONG L B, SHA W X, et al. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors[J]. Chemical Engineering Journal,2020,383:123098. doi: 10.1016/j.cej.2019.123098
    [13] ZHANG S M, CHEN Y H, LIU H, et al. Room-Temperature-Formed PEDOT: PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics[J]. Advanced Materials,2020,32:1904752. doi: 10.1002/adma.201904752
    [14] FEIG V R, TRAN H, LEE M, et al. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue[J]. Nature Communications,2018,9(1):5030. doi: 10.1038/s41467-018-07487-1
    [15] BAI Y, LI S D, LI X P, et al. An injectable robust denatured albumin hydrogel formed via double equilibrium reactions[J]. Journal of Biomaterials Science Polymer Edition,2019,30(8):662-678. doi: 10.1080/09205063.2019.1600821
    [16] BURNS J A, BUTLER J C, MORAN J, et al. Selective Reduction of Disulfides by Tris(2-carboxyethyl)phosphine[J]. Journal of Organic Chemistry,1991,56:2648-2650. doi: 10.1021/jo00008a014
    [17] 徐国恒. 二硫键与蛋白质的结构[J]. 生物学通报, 2010, 45(5):5-7. doi: 10.3969/j.issn.0006-3193.2010.05.002

    XU G H. The disulfide bond and protein structure[J]. Bulletin of Biology,2010,45(5):5-7(in Chinese). doi: 10.3969/j.issn.0006-3193.2010.05.002
    [18] BASHIR S, HINA M, IQBAL J, et al. Self-healable poly (N, N-dimethylacrylamide)/poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate composite hydrogel electrolytes for aqueous supercapacitors[J]. Journal of Energy Storage,2022,45:103760. doi: 10.1016/j.est.2021.103760
    [19] KHANNA S, SINGTH A K, BEHERA S P, et al. Thermoresponsive BSA hydrogels with phase tunability[J]. Materials Science and Engineering C,2021,119:111590. doi: 10.1016/j.msec.2020.111590
    [20] CSACH K, JURIKOVA A, MISKUF J, et al. Thermogravimetric Study of the Decomposition of BSA-Coated Magnetic Nanoparticles[J]. Acta Physica Polonica Series A,2012,121(5-6):1293-1295. doi: 10.12693/APhysPolA.121.1293
    [21] 徐翔宇, 李弘坤, 詹达, 等. PEDOT: PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10):1734-1737. doi: 10.11896/cldb.18040192

    XU X Y, LI H K, ZHAN D, et al. Semiconducting Properties of PEDOT: PSS Doped Silk Fibroin Composite Film[J]. Materials Reports,2019,33(10):1734-1737(in Chinese). doi: 10.11896/cldb.18040192
    [22] SABAA M W, HANNA D H, ABU ELELLA M H, et al. Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery[J]. Materials Science and Engineering C,2019,94:1044-1055. doi: 10.1016/j.msec.2018.10.040
  • 加载中
计量
  • 文章访问数:  246
  • HTML全文浏览量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-06
  • 修回日期:  2022-11-10
  • 录用日期:  2022-11-12
  • 网络出版日期:  2022-12-01

目录

    /

    返回文章
    返回