留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯-有机物复合光催化材料及其应用

刘洋洋 易敏 陈涛 董舒宇

刘洋洋, 易敏, 陈涛, 等. 石墨烯-有机物复合光催化材料及其应用[J]. 复合材料学报, 2023, 40(4): 1937-1950. doi: 10.13801/j.cnki.fhclxb.20220628.003
引用本文: 刘洋洋, 易敏, 陈涛, 等. 石墨烯-有机物复合光催化材料及其应用[J]. 复合材料学报, 2023, 40(4): 1937-1950. doi: 10.13801/j.cnki.fhclxb.20220628.003
LIU Yangyang, YI Min, CHEN Tao, et al. Applications of graphene-organic compound photocatalytic materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1937-1950. doi: 10.13801/j.cnki.fhclxb.20220628.003
Citation: LIU Yangyang, YI Min, CHEN Tao, et al. Applications of graphene-organic compound photocatalytic materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1937-1950. doi: 10.13801/j.cnki.fhclxb.20220628.003

石墨烯-有机物复合光催化材料及其应用

doi: 10.13801/j.cnki.fhclxb.20220628.003
详细信息
    通讯作者:

    刘洋洋,硕士,工程师,研究方向为石墨烯及相关复合材料 E-mail: m15210570625@163.com

  • 中图分类号: TB332

Applications of graphene-organic compound photocatalytic materials

  • 摘要: 光催化技术以其绿色安全的特点在能源和环境领域显示出巨大的应用潜力。近年来,有机物光催化剂以其可见光响应及成本较低等优势逐渐进入人们的视野,但也存在一些不足,而石墨烯材料的大比表面积、高载流子迁移率等性质,在催化剂构建领域具有天然优势。本文针对石墨烯-有机物半导体光催化材料,在总结石墨烯在材料中的基本作用的基础上,介绍了石墨烯/共轭聚合物、石墨烯/金属有机骨架、石墨烯/染料3种典型的石墨烯-有机物光催化材料及多种合成方法。进一步阐述了此类材料在能源和环境领域,包括光解水析氢、CO2还原、有机物降解、重金属离子还原及细菌灭活等领域的应用。最后对石墨烯-有机物复合光催化材料的未来发展提出了建议。

     

  • 图  1  石墨烯(G)-有机物复合光催化材料的种类、制备及应用情况

    Figure  1.  Types, preparation and application of graphene (G)-organic compound photocatalytic materials

    GO—Graphene oxide; X—Dopant atoms

    图  2  暴露在联氨蒸气下氧化石墨烯(GO)的带隙逐渐减小[21]

    Figure  2.  Gradual decrease in optical band gap of GO upon exposure to hydrazine vapors[21]

    图  3  光电流响应图[24]

    Figure  3.  Photocurrent responses spectra[24]

    TPA—Triphenylamine

    图  4  可见光下材料的光电流对比[27]

    Figure  4.  Photocurrent action spectra of the materials[27]

    RGO—Reduced graphene oxide; ZnP—Porphyrin; NPs—Nanoparticles

    图  5  多孔g-C3N4(PCN)/AgBr/RGO复合材料制备示意图[34]

    Figure  5.  Schematic diagrams of preparation process of the porous g-C3N4 (PCN)/AgBr/RGO nanocomposite[34]

    CTAB—Cetyltrimethyl ammonium bromide

    图  6  太阳光照射下BiOCl/RGO/质子化g-C3N4 (PTCN)光催化剂中光诱导载流子分离和传输示意图[36]

    Figure  6.  Schematic diagram for photoinduced charge carrier separation and transportation in BiOCl/RGO/protonation g-C3N4 (PTCN) photocatalyst under simulated solar light irradiation[36]

    SHE—Standard hydrogen electrode; VB—Valence band; CB—Conduction band; TC—Tetracycline

    图  7  Co-金属有机物层(MOL)@GO的合成过程示意图[52]

    Figure  7.  Schematic diagrams of preparation process of Co-metal-organic layers(MOL)@GO[52]

    图  8  g-C3N4/RGO/MoS2三元2D纳米结(a)和2D-0D (b)光催化剂示意图[43]

    Figure  8.  Schematic diagrams of g-C3N4/RGO/MoS2 ternary 2D nanojunction photocatalysts (a) and 2D-0D photocatalysts (b)[43]

    图  9  吸附一个氢原子(a)、一个氢分子(b)和多个不同界面氢分子(c)的石墨烯(G)-C3N4-G三明治结构的优化布局[42]

    Figure  9.  Optimized configurations of the G-C3N4-G sandwich adsorbed with one H atom (a), one H2 molecule (b) and many H2 molecules (c) with different interfacial spaces[42]

    d—Interfacial spaces

    图  10  GO/g-C3N4/聚丙烯腈(PAN)纤维((a)~(c))及GO (d)的透射电镜图[40]

    Figure  10.  TEM images of GO/g-C3N4/polyacrylonitrile (PAN) fiber ((a)-(c)) and GO (d)[40]

    图  11  可见光驱动光催化细菌灭活机制:g-C3N4(CN)-RGO-环辛硫(S8) (a)、RGO-CN-S8 (b)有氧环境下;CN-RGO-S8 (c)、RGO-CN-S8 (d)无氧环境下[48]

    Figure  11.  Schematic illustration of the visible light driven photocatalytic bacterial inactivation mechanisms: g-C3N4(CN)-RGO-S8 (a), RGO-CN-S8 (b) in aerobic condition; CN-RGO-S8 (c), RGO-CN-S8 (d) in anaerobic condition[48]

    表  1  石墨烯-共轭聚合物复合材料的制备方法及光催化效果

    Table  1.   Preparation method and photocatalytic effects of graphene-conjugated polymer composites

    CompositesPreparationApplicationEffectsRole of grapheneRef.
    PCN/AgBr/RGOUltrasonic hydrothermalDegradation of organicsTetracycline: Degradation rate 78.4% in 90 minConduction of electrons and holes between the two catalysts[34]
    CNNP/GO Acid ultrasonicDegradation of organicsMethylene blue: Degradation rate
    67% in 3 h
    Changing the band gap and promoting the separation of
    photogenerated carriers
    [35]
    BiOCl/RGO/PTCNUltrasonic hydrothermalDegradation of organicsTetracycline:
    k=1.58×10−2 min−1
    Conduction of electrons between
    the two catalysts
    [36]
    MCN/RGOAUltrasonicDegradation of organicsRhodamine B:
    k=3.78×10−2 min−1
    Accelerating electron conduction
    and organic matter adsorption
    [37]
    RGO-CNDsUltrasonic hydrothermalDegradation of organicsMethylene blue: Degradation rate
    90% in 1 h
    Changing the band gap, promoting the separation of photogenerated carriers and organic matter adsorption[38]
    NG@g-C3N4UltrasonicDegradation of organicsMethyl orange:
    k=2.76×10−2 min−1
    Promoting the separation of photogenerated carriers[39]
    GO/g-C3N4SpinningDegradation of organicsRhodamine B: degradation rate
    91.1% in 100 min
    Broaden the available light range[40]
    GO-Ln-DPDPPUltrasonicHydrogen production549 μmol·h−1·g−1Photocatalyst[41]
    GF-CxNySimulation calculationHydrogen productionPhotocatalyst[42]
    g-C3N4/
    RGO/MoS2
    Calcination hydrothermalHydrogen production317 µmol·h−1·g−1Promoting the separation of photogenerated carriers[43]
    aza-CMP*/RGO/C2NCalcinationHydrogen production10 µmol·h−1Promoting the separation of photogenerated carriers[44]
    g-C3N4/GAUltrasonic hydrothermalCO2 reduction3833 μmol·h−1·g−1Accelerating electron conduction
    and organic matter adsorption
    [45]
    g-C3N4@PPy-RGOIn situ synthesisHeavy metal reductionCr(VI) degradation rate 100% in 150 minChanging the band gap, accelerating electron conduction and organic matter adsorption[46]
    PDCN/GOUltrasonicBacterial inactivationEscherichia coli: Inactivation rate
    98% in 7 h
    Promoting the separation of photogenerated carriers[47]
    RGO-CN-S8 and
    CN-RGO-S8
    IlluminationBacterial inactivationEscherichia coli: Inactivation rate
    100% in 4 h
    Promoting the separation of photogenerated carriers[48]
    Notes: aza-CMP*—aza fused π conjugated microporous polymer; CNNP—g-C3N4 nanoparticles; MCN—Mesoporous g-C3N4; A—Aerogel; CNDs—g-C3N4 nanodots; NG—N-doped graphene; DPDPP—Diphenylporphyrin; PDCN—P-doped g-C3N4; GF—Graphene layers modifified by functional groups; GA—Graphene aerogel; PPy—Polypyrrole; S8—Cyclooctene sulfur; k—Reaction rate constant.
    下载: 导出CSV

    表  2  石墨烯-金属有机骨架复合材料的制备方法及光催化效果

    Table  2.   Preparation method and photocatalytic effect of graphene-MOFs composites

    CompositesPreparationApplicationEffectsRole of grapheneRef.
    ZnO/GO+(Cu-BTC)Electrostatic
    self-assembly
    Hydrogen production191 µmol·h−1·g−1Accelerating electron conduction[50]
    NH2-MIL-125(Ti)/PPy-RGOElectrostatic
    self-assembly
    Hydrogen production91 µmol·h−1·g−1Promoting the separation of photogenerated carriers[53]
    G wrapped ZIF-8Electrostatic
    self-assembly
    Hydrogen production41.4 mmol·h−1·g−1Promoting the separation of photogenerated carriers[54]
    MIL-53(Fe)-RGOElectrostatic
    self-assembly hydrothermal
    Heavy metal reductionCr(VI) degradation
    rate 100% in 80 min
    Broaden the available light range[55]
    G/MIL-53(Fe)HydrothermalDegradation of organicsRhodamine B:
    k=7.77×10−2 min−1
    Accelerating electron conduction, broaden the available light range[51]
    RMZMicrowaveDegradation of organicsMethylene blue degradation rate 82%
    in 2 h
    Accelerating electron conduction and organic matter adsorption[56]
    M88/GOUltrasonic hydrothermalDegradation of organicsRhodamine B:
    k=6.45×10−2 min−1
    Changing the band gap and increasing the active sites[57]
    Co-MOL@GOHydrothermal growthCO2 reductionCO productivity
    18.02 mmol·g−1·h−1
    Reducing surface energy and accelerating electron conduction[52]
    UIO-66-NH2/GMicrowave digestionCO2 reductionReduction rate
    532 μmol·h−1·g−1
    Accelerating electron conduction, broaden the available light range[58]
    2D/2D RGO/MOFUltrasonicCO2 reductionCO productivity
    34.5 mmol·h−1·g−1
    Accelerating electron conduction, broaden the available light range[59]
    Notes: BTC—2-methylimidazole zinc salt; NH2-MIL-125(Ti)—Coordination metal Ti ligand, C48H34N6O36Ti8; ZIF-8—2-methylimidazole zinc salt; MIL-53(Fe)—Coordination metal Fe ligand terephthalic acid, C8H5FeO5; RMZ—Reduced graphene oxide incorporated MOF derived ZnO composites; M88—Coordination metal Fe ligand fumaric acid, C12H6O13Fe3; UIO-66-NH2—Amino functionalized organometallic framework, G—Graphene.
    下载: 导出CSV
  • [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38. doi: 10.1038/238037a0
    [2] TOSINE H M, LAWRENCE J, CAREY J H. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination & Toxicology,1976,16(6):697-701.
    [3] XIE R, FANG K, LIU Y, et al. Z-scheme In2O3/WO3 heterogeneous photocatalysts with enhanced visible-light-driven photocatalytic activity toward degradation of organic dyes[J]. Journal of Materials Science, 2020, 55(26): 11919-11937.
    [4] REDDY P A K, REDDY P V L, KWON E, et al. Recent advances in photocatalytic treatment of pollutants in aqueous media[J]. Environment International,2016,91:94-103. doi: 10.1016/j.envint.2016.02.012
    [5] YAO G Y, LIU Q L, ZHAO Z Y. Applications of localized surface plasmon resonance effect in photocatalysis[J]. Progress in Chemistry,2019,31(4):516-535.
    [6] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visiblelight[J]. Nature Materials,2009,8:76-80. doi: 10.1038/nmat2317
    [7] FAJRINA N, TAHIR M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production[J]. International Journal of Hydrogen Energy,2019,44(2):540-577. doi: 10.1016/j.ijhydene.2018.10.200
    [8] ZHANG G, HUANG C, WANG X. Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation[J]. Small,2015,11(9-10):1215-1221. doi: 10.1002/smll.201402636
    [9] ZHOU P, YU J, JARONIEC M. All-solid-state Z-scheme photocatalytic systems[J]. Advanced Materials,2014,26(29):4920-4935. doi: 10.1002/adma.201400288
    [10] WU Z S, REN W, GAO L, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation[J]. ACS Nano,2009,3(2):411-417. doi: 10.1021/nn900020u
    [11] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9-10):351-355. doi: 10.1016/j.ssc.2008.02.024
    [12] STOLLER M D, PARK S, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters,2008,8(10):3498-3502. doi: 10.1021/nl802558y
    [13] SUN Y, LI R, XU R, et al. Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst[J]. Chemical Communications,2010,46(26):4740-4742. doi: 10.1039/c001635g
    [14] ZHANG S, ZHAO L, ZENG M, et al. Hierarchical nanocomposites of polyaniline nanorods arrays on graphitic carbon nitride sheets with synergistic effect for photocatalysis[J]. Catalysis Today,2014,224(4):114-121.
    [15] BABU R, ROSHAN R K, GIM Y, et al. Inverse relationship of dimensionality and catalytic activity in CO2 transformation: A systematic investigation by comparing multidimensional metal-organic frameworks[J]. Journal of Materials Chemistry A, 2017, 5(30): 15961-15969.
    [16] ABE R, SHINMEI K, KOUMURA N, et al. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator[J]. Journal of the American Chemical Society,2013,135(45):16872-16884. doi: 10.1021/ja4048637
    [17] YANAGIDA S, KABUMOTO A, MIZUMOTO K, et al. Poly(p-phenylene) catalysed photoreduction of water to hydrogen[J]. Journal of the Chemical Society, Chemical Communications,1985,1985(8):474-475.
    [18] XAMENA F X L I, CORMA A, GARCIA H. Applications for metal organic frameworks (MOFs) as quantum dot semiconductors[J]. Journal of Physical Chemistry C,2007,111(1):80-85. doi: 10.1021/jp063600e
    [19] BORGARELLO E, KIWI J, GRAETZELET M, et al. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles[J]. Journal of the American Chemical Society, 1982, 104(11): 2996-3002.
    [20] ASIM J, DZARFAN O, OMAISH A M, et al. Graphene and its derivatives: Synthesis, modifications, and applications in wastewater treatment[J]. Environmental Chemistry Letters,2018,16:1301-1323. doi: 10.1007/s10311-018-0755-2
    [21] MATHKAR A, TOZIER D, COX P, et al. Controlled, Stepwise reduction and band gap manipulation of graphene oxide[J]. Journal of Physical Chemistry Letters,2012,3(8):986-991. doi: 10.1021/jz300096t
    [22] YEH T F, SYU J M, CHENG C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials,2010,20(14):2255-2262. doi: 10.1002/adfm.201000274
    [23] LEI Y P, SHI Q, HAN C, et al. N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production[J]. Nano Research,2016(8):2498-2509.
    [24] ZHI L, CHEN Y, DU Y, et al. Triphenylamine functionalized graphene decorated with Pt nanoparticles and its application in photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy,2012,37(6):4880-4888. doi: 10.1016/j.ijhydene.2011.12.045
    [25] LIN K Y A, ZHANG Z Y. Degradation of bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal,2017,313:1320-1327. doi: 10.1016/j.cej.2016.11.025
    [26] QU D, ZHENG M, DU P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J]. Nanoscale,2013,5(24):12272-12277.
    [27] HAYASHI H, LIGHTCAP I V, TSUJIMOTO M, et al. Electron transfer cascade by organic/inorganic ternary composites of porphyrin, zinc oxide nanoparticles, and reduced graphene oxide on a tin oxide electrode that exhibits efficient photocurrent generation[J]. Journal of the American Chemical Society,2011,133(20):7684-7687. doi: 10.1021/ja201813n
    [28] DONG C, LU J, QIU B, et al. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions[J]. Applied Catalysis B: Environmental,2018,222:146-156. doi: 10.1016/j.apcatb.2017.10.011
    [29] REN W, WEI Z, XIA X, et al. CO2 adsorption performance of CuBTC/graphene aerogel composites[J]. Journal of Nanoparticle Research,2020,22:191. doi: 10.1007/s11051-020-04933-4
    [30] DU A, SANVITO S, LI Z, et al. Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response[J]. Journal of the American Chemical Society,2012,134(9):4393-4397. doi: 10.1021/ja211637p
    [31] WANG M, CAI L, YI W, et al. Graphene-draped semiconductors for enhanced photocorrosion resistance and photocatalytic properties[J]. Journal of the American Chemical Society,2017,139(11):4144-4151. doi: 10.1021/jacs.7b00341
    [32] LI X, WEN J Q, LIU J X, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel[J]. Science China Materials,2014,57:70-100. doi: 10.1007/s40843-014-0003-1
    [33] SORCAR S, THOMPSON J, HWANG Y, et al. High-rate solar-light photoconversion of CO2 to fuel: Controllable transformation from C1 to C2 products[J]. Energy & Environmental Science,2018,11(11):3183-3193. doi: 10.1039/C8EE00983J
    [34] ZHOU Y, LI J, LIU C, et al. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity[J]. Applied Surface Science,2018,458:586-596. doi: 10.1016/j.apsusc.2018.07.121
    [35] WANG H, SHEN Q, YOU Z, et al. Preparation of nanoscale-dispersed g-C3N4/graphene oxide composite photocatalyst with enhanced visible-light photocatalytic activity[J]. Materials Letters,2018,217:143-145. doi: 10.1016/j.matlet.2018.01.037
    [36] XUE J, LI X, MA S, et al. Facile fabrication of BiOCl/RGO/protonated g-C3N4 ternary nanocomposite as Z-scheme photocatalyst for tetracycline degradation and benzyl alcohol oxidation[J]. Journal of Materials Science,2019,54(2):1275-1290.
    [37] XU C, WANG J, GAO B, et al. Synergistic adsorption and visible-light catalytic degradation of RhB from recyclable 3D mesoporous graphitic carbon nitride/reduced graphene oxide aerogels[J]. Journal of Materials Science,2019,54(12):8892-8906.
    [38] FU L, XIAO X, WANG A. Reduced graphene oxide coupled with g-C3N4 nanodots as 2D/0D nanocomposites for enhanced photocatalytic activity[J]. The Journal of Physics and Chemistry of Solids,2018,122:104-108.
    [39] VELLAICHAMY K, PAULMONY T. Visible light active metal-free photocatalysis: N-doped graphene covalently grafted with g-C3N4 for highly robust degradation of methyl orange[J]. Solid State Sciences,2019,94:99-105. doi: 10.1016/j.solidstatesciences.2019.06.003
    [40] WANG Y X, CHEN M N, TAO H. Preparation of nested g-C3N4 fiber surrounding graphene oxide and its photocatalytic degradation of rhodamine B[J]. Journal of Nanoscience and Nanotechnology,2020,20(9):5445-5451. doi: 10.1166/jnn.2020.17880
    [41] ZHANG L, QIN L, KANG S Z, et al. Graphene/pyridylporphyrin hybrids interfacially linked with rare earth ions for enhanced photocatalytic hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8358-8366.
    [42] YANG L, LI X, ZHANG G, et al. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures[J]. Nature Communications,2017,8:16049. doi: 10.1038/ncomms16049
    [43] YUAN Y J, YAN Y, LI Z, et al. Promoting charge separation in g-C3N4/graphene/MoS2 photocatalysts by two-dimensional nanojunction for enhanced photocatalytic H2 production[J]. ACS Applied Energy Materials, 2018, 1(4): 1400-1407.
    [44] WANG L, ZHENG X, CHEN L, et al. Van der waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting[J]. Angewandte Chemie,2018,57(13):3454-3458. doi: 10.1002/anie.201710557
    [45] TONG Z, YANG D, SHI J, et al. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance[J]. ACS Applied Materials & Interfaces,2015,7(46):25693-25701. doi: 10.1021/acsami.5b09503
    [46] LIANG Y, WANG X, AN W, et al. A g-C3N4@ppy-rGO 3D structure hydrogel for efficient photocatalysis[J]. Applied Surface Science,2019,466:666-672. doi: 10.1016/j.apsusc.2018.10.059
    [47] SUDHAIK A, RAIZADA P, THAKUR S, et al. Peroxymonosulphate-mediated metal-free pesticide photodegradation and bacterial disinfection using well-dispersed graphene oxide supported phosphorus-doped graphitic carbon nitride[J]. Applied Nanoscience, 2020, 10: 4115-4137.
    [48] WANG W, YU J C, XIA D, et al. Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light[J]. Environmental Science & Technology,2013,47(15):8724-8732.
    [49] REMYA V R, KURIAN M. Synthesis and catalytic applications of metal-organic frameworks: A review on recent literature[J]. International Nano Letters, 2019, 9: 17-29.
    [50] SHI X, ZHANG J, CUI G, et al. Photocatalytic H2 evolution improvement for H free-radical stabilization by electrostatic interaction of a Cu-BTC MOF with ZnO/GO[J]. Nano Research,2017,11(2):979-987.
    [51] ZHANG C, AI L, JING J. Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of rhodamine B under visible light[J]. Industrial & Engineering Chemistry Research,2015,54(1):153-163.
    [52] WANG J W, QIAO L Z, NIE H, et al. Facile electron delivery from graphene template to ultrathin metal-organic layers for boosting CO2 photoreduction[J]. Nature Communications, 2021, 12: 813.
    [53] KARTHIK P, VINOTH R, PENG Z, et al. π-π interaction between metal-organic framework and reduced graphene oxide for visible-light photocatalytic H2 production[J]. ACS Applied Energy Materials,2018,1(5):1913-1923.
    [54] YANG W, YU Y, RUI L, et al. Hydrogen production with ultrahigh efficiency under visible light by graphene well-wrapped UiO-66-NH2 octahedrons[J]. Journal of Materials Chemistry A, 2017, 5(38): 20136-20140.
    [55] LIANG R, SHEN L, JING F, et al. Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: Efficient visible-light photocatalysts[J]. ACS Applied Materials & Interfaces,2015,7(18):9507-9515.
    [56] ZHU G, LI X, WANG H, et al. Microwave assisted synthesis of reduced graphene oxide incorporated MOF-derived ZnO composites for photocatalytic application[J]. Catalysis Communications,2017,88:5-8. doi: 10.1016/j.catcom.2016.09.024
    [57] LIU N, HUANG W, ZHANG X, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB[J]. Applied Catalysis B: Environmental, 2018, 221: 119-128.
    [58] WANG X, ZHAO X, ZHANG D, et al. Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO2[J]. Applied Catalysis B: Environmental,2018,228:47-53. doi: 10.1016/j.apcatb.2018.01.066
    [59] MU Q, ZHU W, LI X, et al. Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure[J]. Applied Catalysis B: Environmental,2020,262:118144. doi: 10.1016/j.apcatb.2019.118144
    [60] WILLKOMM J, ORCHARD K L, REYNAL A, et al. Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production[J]. Chemical Society Reviews,2016,45(1):9-23. doi: 10.1039/C5CS00733J
    [61] MIN S, LU G. Promoted photoinduced charge separation and directional electron transfer over dispersible xanthene dyes sensitized graphene sheets for efficient solar H2 evolution[J]. International Journal of Hydrogen Energy,2013,38(5):2106-2116. doi: 10.1016/j.ijhydene.2012.11.124
    [62] ZHU M, DONG Y, XIAO B, et al. Enhanced photocatalytic hydrogen evolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxide hybrid[J]. Journal of Materials Chemistry,2012,22(45):23773-23779. doi: 10.1039/c2jm35322a
    [63] HAN X, XU D, AN L, et al. WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy,2018,43(10):4845-4855. doi: 10.1016/j.ijhydene.2018.01.117
    [64] RUI L, SHEN L, REN Z, et al. Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS[J]. Chemical Communications,2014,50(62):8533-8535. doi: 10.1039/C4CC01776E
    [65] LATORRE-SÁNCHEZ M, LAVORATO C, PUCHE M, et al. Visible-light photocatalytic hydrogen generation by using dye-sensitized graphene oxide as a photocatalyst[J]. Chemistry—A European Journal,2012,18(52):16774-16783. doi: 10.1002/chem.201202372
    [66] HU S, LOZADA-HIDALGO M, WANG F C, et al. Proton transport through one atom thick crystals[J]. Nature,2014,516(7530):227-230. doi: 10.1038/nature14015
    [67] ARIHARAN A, VISWANATHAN B, NANDHAKUMAR V. Hydrogen storage on boron substituted carbon materials[J]. International Journal of Hydrogen Energy,2016,41(5):3527-3536. doi: 10.1016/j.ijhydene.2015.12.169
    [68] GONZALES J N, MATSON M M, ATSUMI S. Nonphotosynthetic biological CO2 reduction[J]. Biochemistry,2019,58(11):1470-1477. doi: 10.1021/acs.biochem.8b00937
    [69] ZHANG Q F, MYERS D, LAN J, et al. Applications of light scattering in dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics,2012,14(43):14982-14998. doi: 10.1039/C2CP43089D
    [70] KUMAR P, SAIN B, JAIN S L. Photocatalytic reduction of carbon dioxide to methanol using a ruthenium trinuclear polyazine complex immobilized on graphene oxide under visible light irradiation[J]. Journal of Materials Chemistry A,2014,2(29):11246-11253. doi: 10.1039/c4ta01494d
    [71] YANG M Q, ZHANG N, WANG Y, et al. Metal-free, robust, and regenerable 3D graphene-organics aerogel with high and stable photosensitization efficiency[J]. Journal of Catalysis,2017,346:21-29. doi: 10.1016/j.jcat.2016.11.012
    [72] ZHU L, TAN C F, GAO M, et al. Microreactors: Design of a metal oxide-organic framework (MoOF) foam microreactor: Solar-induced direct pollutant degradation and hydrogen generation[J]. Advanced Materials, 2015, 27(47): 7681.
    [73] SHANDILYA P, MITTAL D, SUDHAIK A, et al. GdVO4 modified fluorine doped graphene nanosheets as dispersed photocatalyst for mitigation of phenolic compounds in aqueous environment and bacterial disinfection[J]. Separation & Purification Technology,2019,210:804-816.
    [74] YANMIN C, ANHUAI L, YAN L, et al. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light[J]. Environmental Science & Technology,2013,45(13):5689-5695.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  652
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-05-31
  • 录用日期:  2022-06-18
  • 网络出版日期:  2022-06-29
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回