留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马来酸改性木质素增强纳米纤维素复合膜制备及性能

罗丹 舒璇 孙高峰 刘秀宇 刘超 戴红旗 卞辉洋

罗丹, 舒璇, 孙高峰, 等. 马来酸改性木质素增强纳米纤维素复合膜制备及性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 罗丹, 舒璇, 孙高峰, 等. 马来酸改性木质素增强纳米纤维素复合膜制备及性能[J]. 复合材料学报, 2024, 42(0): 1-11.
LUO Dan, SHU Xuan, SUN Gaofeng, et al. Preparation and properties of maleic acid modified lignin reinforced nanocellulose composite film[J]. Acta Materiae Compositae Sinica.
Citation: LUO Dan, SHU Xuan, SUN Gaofeng, et al. Preparation and properties of maleic acid modified lignin reinforced nanocellulose composite film[J]. Acta Materiae Compositae Sinica.

马来酸改性木质素增强纳米纤维素复合膜制备及性能

基金项目: 国家自然科学基金(22208163,22208161);2024年江苏省高校“青蓝工程”项目;广西林产化学与工程重点实验室开放课题(GXFK2206); 江苏省研究生科研与实践创新计划项目(SJCX22_0320);江苏省高等学校大学生创新创业训练计划项目(202310298057Z)
详细信息
    通讯作者:

    卞辉洋,博士,副教授,硕士生导师,研究方向为纳米纤维素制备及功能化应用 E-mail: hybian1992@njfu.edu.cn

  • 中图分类号: TB332

Preparation and properties of maleic acid modified lignin reinforced nanocellulose composite film

Funds: National Natural Science Foundation of China (22208163, 222081161); Qing Lan Project of Jiangsu Province; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products (GXFK2206); Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX22_0320); National College Students Innovation and Entrepreneurship Training Program (202310298057Z)
  • 摘要: 以小麦秸秆为原料,采用金属氯化物催化马来酸分离提取木质素纳米颗粒(LNP)。随着金属氯化物的添加,制备得到粒径小、羧基含量高(4.83 mmol/g)、分散性好、含有不同金属离子的LNP。然后将LNP作为增强剂添加到纳米纤维素(CNF)中,采用真空过滤法制备得到复合薄膜材料。对纯CNF膜和复合膜的表面形貌、光学性能、表面色度值和力学性能进行比较分析,结果表明LNP添加量为3wt%时,复合膜具有超过95%的UVA屏蔽率和超过99%的UVB屏蔽率。同时,LNP的加入显著提高了复合膜的拉伸强度(最高达到188.5 MPa),采用AFM测得CNF和不同LNP之间的相互作用力(276~ 406 nN)均高于CNF之间的相互作用力(202 nN),与复合膜的拉伸强度提高相一致。综上所述,本研究在CNF膜中引入含金属离子的LNP,在复合膜中构建了具有金属离子交联和氢键结合相互作用的超强网络,为木质素增强纤维素基薄膜材料的开发提供新思路。

     

  • 图  1  木质素的分子量分布图 (a) 和羧基含量图 (b) 及分别对应LNP、Fe3+-LNP、Cu2+-LNP、Al3+-LNP ((c), (d), (e), (f)) 的FE-SEM图像

    Figure  1.  Molecular weight distribution (a), carboxyl group content (b), and FE-SEM images of LNP, Fe3+-LNP, Cu2+-LNP, Al3+-LNP ((c), (d), (e), (f))

    图  2  CNF (a) 及对应5 LNP-CNF、5 Fe3+-LNP-CNF、5 Cu2+-LNP-CNF、5 Al3+-LNP-CNF ((b), (c), (d), (e))复合膜材料的FE-SEM图像

    Figure  2.  FE-SEM images of CNF film (a) and different composite film material including 5 LNP-CNF, 5 Fe3+-LNP-CNF, 5 Cu2+-LNP-CNF and 5 Al3+-LNP-CNF ((b), (c), (d), (e))

    图  4  CNF膜及复合膜材料的UVA和UVB屏蔽率 (a) 和表面色度值 (b)

    Figure  4.  UVA and UVB blocking rate (a) and surface chromaticity value (b) of CNF film and composite film material

    图  3  CNF膜及复合膜材料的光学照片 (a) 、660 nm波长处的透光率 (b) 和紫外-可见光谱 (c)

    Figure  3.  Optical photographs (a), transmittance at 660 nm (b) and UV-vis transmission spectra (c) of CNF film and composite film material

    图  5  CNF膜及复合膜材料的力学性能: (a) 应力-应变曲线; (b) 拉伸应力; (c) 断裂伸长率; (d) 杨氏模量

    Figure  5.  Mechanical properties of CNF film and composite film material: (a) Stress-strain curve; (b) Tensile stress; (c) Elongation to break; (d) Young’s modulus

    图  6  CNF膜及复合膜材料的拉伸应力及其组成成分间的相互作用力

    Figure  6.  Tensile stresses of pure CNF and composite film materials and interaction forces between their components

    表  1  LNP的平均粒径及平均分子量

    Table  1.   The average particle size and average molecular weight of LNP

    SampleAverage particle size (nm)MnMwMw/Mn
    LNP457.40± 3.61248962152.50
    Fe3+-LNP599.87± 5.03207560792.93
    Cu2+-LNP450.10± 2.14246462922.55
    Al3+-LNP454.03± 3.42251064512.57
    Notes: Mn- Number-average molecular weight; Mw- Weight-average molecular weight; Mw/Mn- Polydispersity index.
    下载: 导出CSV
  • [1] HO B T, ROBERTS T K, LUCAS S. An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach[J]. Critical Reviews in Biotechnology, 2017, 38(2): 308-320.
    [2] MOHANAN N, MONTAZER Z, SHARMA P K, et al. Microbial and enzymatic degradation of synthetic plastics[J]. Frontiers in Microbiology, 2020, 11: 580709. doi: 10.3389/fmicb.2020.580709
    [3] HORODYTSKA O, VALDéS F J, FULLANA A. Plastic flexible films waste management - A state of art review[J]. Waste Management, 2018, 77: 413-425. doi: 10.1016/j.wasman.2018.04.023
    [4] FILICIOTTO L, ROTHENBERG G. Biodegradable plastics: standards, policies, and impacts[J]. ChemSusChem, 2020, 14(1): 56-72.
    [5] CHEN M J, ZHANG X Q, LIU C F, et al. Approach to renewable lignocellulosic biomass film directly from bagasse[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1164-1168.
    [6] 姜海晶, 晶态纳米纤维素基复合膜光学性质的研究[D]. 长春: 吉林大学, 2019.

    JIANG H J. The optical property of cellulose nanocrystal-based composite films[D]. Changchun: Jilin University, 2019 (in Chinese).
    [7] 马小婷, 徐雁. 纳米纤维素: 多层次跨尺度无机功能体系的构筑平台[J]. 高分子学报, 2020, 51(8): 833-863. doi: 10.11777/j.issn1000-3304.2020.20073

    MA X T, XU Y. Nanocellulose: a sustainable platform for functional materials organization[J]. Acta Polymerica Sinica, 2020, 51(8): 833-863 (in Chinese). doi: 10.11777/j.issn1000-3304.2020.20073
    [8] ZHANG Y Z, WEI Y, QIAN Y Y, et al. Lignocellulose enabled highly transparent nanopaper with tunable ultraviolet-blocking performance and superior durability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(46): 17033-17041.
    [9] AMINI E, HAFEZ I, TAJVIDI M, et al. Cellulose and lignocellulose nanofibril suspensions and films: A comparison[J]. Carbohydrate Polymers, 2020, 250: 117011. doi: 10.1016/j.carbpol.2020.117011
    [10] BIAN H Y, CHEN L D, DONG M L, et al. Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance[J]. International Journal of Biological Macromolecules, 2021, 166: 1578-1585. doi: 10.1016/j.ijbiomac.2020.11.037
    [11] JIANG Y, LIU X Y, YANG Q, et al. Effects of residual lignin on composition, structure and properties of mechanically defibrillated cellulose fibrils and films[J]. Cellulose, 2019, 26(3): 1577-1593. doi: 10.1007/s10570-018-02229-4
    [12] BIAN H Y, SHU X, SU W H, et al. Biodegradable, flexible and ultraviolet blocking nanocellulose composite film incorporated with lignin nanoparticles[J]. International Journal of Molecular Sciences, 2022, 23(23): 14863. doi: 10.3390/ijms232314863
    [13] ÖSTERBERG M, SIPPONEN M H, MATTOS B D, et al. Spherical lignin particles: a review on their sustainability and applications[J]. Green Chemistry, 2020, 22(9): 2712-2733. doi: 10.1039/D0GC00096E
    [14] YU S X, WANG M L, XIE Y M, et al. Lignin self-assembly and auto-adhesion for hydrophobic cellulose/lignin composite film fabrication[J]. International Journal of Biological Macromolecules, 2023, 233: 123598. doi: 10.1016/j.ijbiomac.2023.123598
    [15] FAROOQ M, ZOU T, RIVIERE G, et al. Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal Lignin particles[J]. Biomacromolecules, 2019, 20(2): 693-704. doi: 10.1021/acs.biomac.8b01364
    [16] OU J F, HU S N, YAO L, et al. Simultaneous strengthening and toughening lignin/cellulose nanofibril composite films: Effects from flexible hydrogen bonds[J]. Chemical Engineering Journal, 2023, 453: 139770. doi: 10.1016/j.cej.2022.139770
    [17] BUDNYAK T M, AMINZADEH S, PYLYPCHUK I V, et al. Peculiarities of synthesis and properties of lignin(-)silica nanocomposites prepared by sol-gel method[J]. Nanomaterials (Basel), 2018, 8(11): 950. doi: 10.3390/nano8110950
    [18] MYINT A A, LEE H W, SEO B, et al. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent[J]. Green Chemistry, 2016, 18(7): 2129-2146. doi: 10.1039/C5GC02398J
    [19] SUN J, DUTTA T, PARTHASARATHI R, et al. Rapid room temperature solubilization and depolymerization of polymeric lignin at high loading[J]. Green Chemistry, 2016, 18(22): 6012-6020. doi: 10.1039/C6GC02258H
    [20] WU Chen, YANG Y M, SUN K Q, et al. Lignin decolorization in organic solvents and their application in natural sunscreen[J]. International Journal of Biological Macromolecules, 2023, 237: 124081. doi: 10.1016/j.ijbiomac.2023.124081
    [21] MA Q L, CHEN L H, WANG R B, et al. Direct production of lignin nanoparticles (LNPs) from wood using p-toluenesulfonic acid in an aqueous system at 80°C: characterization of LNP morphology, size, and surface charge[J]. Holzforschung, 2018, 72(11): 933-942. doi: 10.1515/hf-2018-0033
    [22] ZHANG Y, NAEBE M. Lignin: A review on structure, properties, and applications as a light-colored UV absorber[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(4): 1427-1442.
    [23] SU C, HIRTH K, LIU Z L, et al. Acid hydrotropic fractionation of switchgrass at atmospheric pressure using maleic acid in comparison with p-TsOH: Advantages of lignin esterification[J]. Industrial Crops and Products, 2021, 159: 113017. doi: 10.1016/j.indcrop.2020.113017
    [24] CAI C, HIRTH K, GLEISNER R, et al. Maleic acid as a dicarboxylic acid hydrotrope for sustainable fractionation of wood at atmospheric pressure and ≤100℃: mode and utility of lignin esterification[J]. Green Chemistry, 2020, 22(5): 1605-1617. doi: 10.1039/C9GC04267A
    [25] 王瑞琦. 木质素氧化、酯化改性及在聚氨酯材料中的应用研究[D]. 长春: 吉林大学, 2019.

    WANG Ruiqi. Study on the oxidation and esterfication of lignin and its application[D]. Changchun: Jilin University, 2019 (in Chinese).
    [26] CHEN L H, DOU J Z, MA Q L, et al. Rapid and near-complete dissolution of wood lignin at ≤80℃ by a recyclable acid hydrotrope[J]. Science Advances, 2017, 3(9): e1701735. doi: 10.1126/sciadv.1701735
    [27] SALENTINIG S, SCHUBERT M. Softwood lignin self-assembly for nanomaterial design[J]. Biomacromolecules, 2017, 18(8): 2649-2653. doi: 10.1021/acs.biomac.7b00822
    [28] 张梦丽, 陈港, 魏渊, 等. 木质素-纳米纤维素复合薄膜的制备及其紫外光屏蔽性能[J]. 复合材料学报, 2022, 39(03): 1239-1248.

    ZHANG M L, CHEN G, WEI Y, et al. Preparation and UV-blocking performance of lignin-cellulose nanofiber composite film[J]. Acta Materiae Compositae Sinica, 2022, 39(03): 1239-12489 (in Chinese).
    [29] SIRVIö J A, ISMAIL M Y, ZHANG K, et al. Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties[J]. Journal of Materials Chemistry A, 2020, 8(16): 7935-7946. doi: 10.1039/C9TA13182E
    [30] CHEN C, SUN W J, WANG L, et al. Transparent multifunctional cellulose nanocrystal films prepared using trivalent metal ion exchange for food packaging[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9419-9430.
    [31] 姜波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7): 3059-3083.

    JIANG B, JIN Y C. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3059-3083 (in Chinese).
    [32] WANG J Y, DENG Y H, QIAN Y, et al. Reduction of lignin color via one-step UV irradiation[J]. Green Chemistry, 2015, 18(3): 695-699.
    [33] HU S X, GU J, JIANG F, et al. Holistic rice straw nanocellulose and hemicelluloses/lignin composite films[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 728-737.
    [34] MA L, ZHU Y, HUANG Y, et al. Strong water-resistant, UV-blocking cellulose/glucomannan/lignin composite films inspired by natural LCC bonds[J]. Carbohydrate Polymer, 2022, 281: 119083. doi: 10.1016/j.carbpol.2021.119083
    [35] ROJO E, PERESIN M S, SAMPSON W W, et al. Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films[J]. Green Chemistry, 2015, 17(3): 1853-1866. doi: 10.1039/C4GC02398F
    [36] MICIC M, BENITEZ I, RUANO M, et al. Probing the lignin nanomechanical properties and lignin-lignin interactions using the atomic force microscopy[J]. Chemical Physics Letters, 2001, 347(1-3): 41-45. doi: 10.1016/S0009-2614(01)01022-3
    [37] QIN C R, CLARKE K, LI K C. Interactive forces between lignin and cellulase as determined by atomic force microscopy[J]. Biotechnology for biofuels, 2014, 7: 65. doi: 10.1186/1754-6834-7-65
    [38] ZHU C T, MONTI S, MATHEW A P. Evaluation of nanocellulose interaction with water pollutants using nanocellulose colloidal probes and molecular dynamic simulations[J]. Carbohydrate Polymers, 2020, 229: 115510. doi: 10.1016/j.carbpol.2019.115510
    [39] TAN X, LI K. Adhesion forces between ligno-cellulose surfaces by atomic force microscopy[J]. Journal of pulp and Paper Science, 2008, 34(2): 77-85.
    [40] NOTLEY S M, NORGREN M. Measurement of interaction forces between lignin and cellulose as a function of aqueous electrolyte solution conditions[J]. Langmuir, 2006, 22(26): 11199-11204. doi: 10.1021/la0618566
  • 加载中
计量
  • 文章访问数:  39
  • HTML全文浏览量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-04-06
  • 录用日期:  2024-05-21
  • 网络出版日期:  2024-06-13

目录

    /

    返回文章
    返回