Multistable characteristics of cruciform unsymmetric composite laminates with notch design
-
摘要: 本文通过将两块非对称铺层的矩形层板交叉铺设同时引入切口设计,提出了一种新型十字形多稳态复合材料层板,通过该切口设计解决了共固化成型引起的层板结构胶接区域内刚度增强进而导致层板失去多稳态特性的问题。建立了含切口十字形多稳态复合材料层板的有限元模型,并通过热压罐成型工艺制备了试验件,仿真和试验结果验证了本文切口设计的可行性。最后研究了胶接面积、切口角度和矩形纵横比对十字形多稳态层板稳定构型的影响规律,结果表明:胶接面积与第一稳态的面外最大位移呈线性关系,切口角度对层板第二稳态构型具有显著影响,而层板纵横比也对第一稳态起重要作用。Abstract: This paper proposes a novel cruciform multistable composite laminate achieved by cross-laying two unsymmetric rectangular laminates and introducing a notch design. The notch design resolves the issue of large stiffness within the co-curing area of laminates resulting from co-curing process. A finite element model of the cruciform multistable composite laminate was established, and specimens were fabricated by autoclave process. The feasibility of the notch design was validated through simulation and experimental results. In addition, the effects of the co-curing area, notch angle and rectangular aspect ratio on the stable configurations of the cruciform multistable laminates were further investigated. The result shows that the co-curing area demonstrates a linear relationship with the maximum out-of-plane displacement of configuration Ⅰ. The notch angle significantly impacts Configuration Ⅱ, whereas the aspect ratio of the laminate plays a crucial role in Configuration Ⅰ.
-
Key words:
- composite laminates /
- multistable /
- stable configurations /
- notch design
-
表 1 S4 C9/SY-24型玻璃纤维增强环氧树脂复合材料材料属性
Table 1. Material properties of S4 C9/SY-24 glass fiber reinforced polymer composite
Material properties E1/GPa E2/GPa ν12 G12/GPa G13/GPa G23/GPa α11/°C−1 α12/°C−1 α13/°C−1 Value 54.6 10.5 0.33 5.5 5.5 3.9 6.7×10−6 2.9×10−5 2.9×10−5 Notes: E1-Longitudinal modulus; E2-Transverse modulus; ν12-Poisson’s ratio; G12-In-plane shear modulus; G13, G23-Inter-laminar shear modulus; α11-Longitudinal thermal expansion coefficient; α12, α13-Transverse thermal expansion coefficient. 表 2 不同胶接面积下十字形多稳态层板的两种稳定构型
Table 2. Two stable configurations of cruciform multistable laminates with different co-curing area
Co-curing area/mm×mm Configuration Ⅰ Configuration Ⅱ 10×10 25×25 50×50 -
[1] HYER M W. Some observations on the cured shape of thin unsymmetric laminates[J]. Journal of composite materials, 1981, 15(2): 175-194. doi: 10.1177/002199838101500207 [2] HYER M W. Nonlinear effects of elastic coupling in unsymmetric laminates[J]. Mechanics of Composite Materials, 1983: 243-258. [3] DANO M L, HYER M W. Thermally-induced deformation behavior of unsymmetric laminates[J]. International journal of solids and structures, 1998, 35(17): 2101-2120. doi: 10.1016/S0020-7683(97)00167-4 [4] 陈丹迪, 张征, 柴国钟. 双稳态复合材料层合结构的黏弹性模型[J]. 复合材料学报, 2016, 33(10): 2336-2343.CHEN Dandi, ZHANG Zheng, CHAI Guozhong. Viscoelastic model of bistable composite laminated structures[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2336-2343(in Chinese). [5] SABERI S, ABDOLLAHI A, FRISWELL M I. Probability analysis of bistable composite laminates using the subset simulation method[J]. Composite Structures, 2021, 271: 114120. doi: 10.1016/j.compstruct.2021.114120 [6] LIU T, BAI J, FANTUZZI N. Analytical model for predicting folding stable state of bistable deployable composite boom[J]. Chinese Journal of Aeronautics, 2023. https://doi.org/10.1016/j.cja.2023.05.021 [7] 李昊, 戴福洪, 杜善义. 双稳定矩形非对称复合材料层板的跳变研究[J]. 复合材料学报, 2011, 28(4): 196-201.LI Hao, DAI Fuhong, DU Shanyi. Snap-through of bi-stable rectangular unsymmetric cross-ply composite laminates[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 196-201(in Chinese). [8] 胡建强, 潘殿坤, 戴福洪. 混杂薄膜天线层的双稳态复合材料层板力电性能[J]. 复合材料学报, 2018, 35(4): 857-865.HU Jianqiang, PAN Diankun, DAI Fuhong. Mechanical and electric performance of bistable composite laminates with membrane antenna[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 857-865(in Chinese). [9] GUO X T, ZHANG W, ZHANG Y F. Experimental and numerical investigations on nonlinear snap-through vibrations of an asymmetrically composite laminated bistable thin plate simple supported at four corners[J]. Engineering Structures, 2023, 296: 116926. doi: 10.1016/j.engstruct.2023.116926 [10] 叶红玲, 王秀华, 王伟伟, 等. 混合材料双稳态壳结构力学性能分析及优化设计[J]. 北京工业大学学报, 2022, 48(11): 1113-1121. doi: 10.11936/bjutxb2021040028YE Hongling, WANG Xiuhua, WANG Weiwei, et al. Mechanical Properties Analysis and Optimization Design for Bistable Hybrid Composite Shells[J]. Journal of Beijing University of Technology, 2022, 48(11): 1113-1121(in Chinese). doi: 10.11936/bjutxb2021040028 [11] LI H, DAI F, DU S. Numerical and experimental study on morphing bi-stable composite laminates actuated by a heating method[J]. Composites Science and Technology, 2012, 72(14): 1767-1773. doi: 10.1016/j.compscitech.2012.07.015 [12] PANCIROLI R, NERILLI F. Bistable morphing panels through SMA actuation[J]. Procedia Structural Integrity, 2019, 24: 593-600. doi: 10.1016/j.prostr.2020.02.052 [13] ZHANG Z, LI X, YU X, et al. Magnetic actuation bionic robotic gripper with bistable morphing structure[J]. Composite Structures, 2019, 229: 111422. doi: 10.1016/j.compstruct.2019.111422 [14] ANILKUMAR P M, HALDAR A, SCHEFFLER S, et al. Morphing of bistable variable stiffness composites using distributed MFC actuators[J]. Composite Structures, 2022, 289: 115396. doi: 10.1016/j.compstruct.2022.115396 [15] RIVAS-PADILLA J R, BOSTON D M, BODDAPATI K, et al. Aero-structural optimization and actuation analysis of a morphing wing section with embedded selectively stiff bistable elements[J]. Journal of Composite Materials, 2023, 57(4): 737-757. doi: 10.1177/00219983231155163 [16] ZHANG Z, PEI K, SUN M, et al. A novel solar tracking model integrated with bistable composite structures and bimetallic strips[J]. Composite Structures, 2020, 248: 112506. doi: 10.1016/j.compstruct.2020.112506 [17] DONG T, CAO D, DONG M. The dynamic regimes and the energy harvesting of the energy harvester based on the bistable piezoelectric composite laminate[J]. Thin-Walled Structures, 2023, 188: 110777. doi: 10.1016/j.tws.2023.110777 [18] MATTIONI F, WEAVER P M, POTTER K D, et al. Analysis of thermally induced multistable composites[J]. International Journal of Solids and Structures, 2008, 45(2): 657-675. doi: 10.1016/j.ijsolstr.2007.08.031 [19] SOUSA C S, CAMANHO P P, SULEMAN A. Analysis of multistable variable stiffness composite plates[J]. Composite Structures, 2013, 98: 34-46. doi: 10.1016/j.compstruct.2012.10.053 [20] ARRIETA A F, KUDER I K, RIST M, et al. Passive load alleviation aerofoil concept with variable stiffness multi-stable composites[J]. Composite structures, 2014, 116: 235-242. doi: 10.1016/j.compstruct.2014.05.016 [21] CUI Y, SANTER M. Characterisation of tessellated bistable composite laminates[J]. Composite Structures, 2016, 137: 93-104. doi: 10.1016/j.compstruct.2015.11.005 [22] WANG J, NARTEY M A, LUO Y, et al. Designing multi-stable structures with enhanced designability and deformability by introducing transition elements[J]. Composite Structures, 2020, 233: 111580. doi: 10.1016/j.compstruct.2019.111580 [23] ZHANG Z, PEI K, SUN M, et al. Tessellated multistable structures integrated with new transition elements and antisymmetric laminates[J]. Thin-Walled Structures, 2022, 170: 108560. doi: 10.1016/j.tws.2021.108560 [24] ANNAMALAI S. Design of bistable composite laminates for shape morphing applications[D]. Clemson: Clemson University, 2016. [25] DAI F, LI H, DU S. A multi-stable lattice structure and its snap-through behavior among multiple states[J]. Composite Structures, 2013, 97: 56-63. doi: 10.1016/j.compstruct.2012.10.016 [26] ZHANG Z, CHEN D, WU H, et al. Non-contact magnetic driving bioinspired Venus flytrap robot based on bistable anti-symmetric CFRP structure[J]. Composite Structures, 2016, 135: 17-22. doi: 10.1016/j.compstruct.2015.09.015 [27] PANESAR A S, HAZRA K, WEAVER P M. Investigation of thermally induced bistable behaviour for tow-steered laminates[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(6): 926-934. doi: 10.1016/j.compositesa.2012.01.029 [28] ALGMUNI A, XI F, ALIGHANBARI H. Flexible joints for a grid-based multi-stable composite morphing skin[J]. Composite Structures, 2021, 259: 113512. doi: 10.1016/j.compstruct.2020.113512 [29] RISSO G, ERMANNI P. Multi-stability of fiber reinforced polymer frames with different geometries[J]. Composite Structures, 2023, 313: 116958. doi: 10.1016/j.compstruct.2023.116958 [30] PHANENDRA K A, KHAJAMOINUDDIN S M, BURELA R G, et al. Snap-through analysis of multistable laminate using the variational asymptotic method[J]. Mechanics Based Design of Structures and Machines, 2023, 51(11): 6097-6122. doi: 10.1080/15397734.2022.2036617
计量
- 文章访问数: 111
- HTML全文浏览量: 63
- 被引次数: 0