留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含切口十字形非对称复合材料层板的多稳态特性

胡建强 王振宁 张邦慧 张致远

胡建强, 王振宁, 张邦慧, 等. 含切口十字形非对称复合材料层板的多稳态特性[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 胡建强, 王振宁, 张邦慧, 等. 含切口十字形非对称复合材料层板的多稳态特性[J]. 复合材料学报, 2024, 42(0): 1-10.
HU Jianqiang, WANG Zhenning, ZHANG Banghui, et al. Multistable characteristics of cruciform unsymmetric composite laminates with notch design[J]. Acta Materiae Compositae Sinica.
Citation: HU Jianqiang, WANG Zhenning, ZHANG Banghui, et al. Multistable characteristics of cruciform unsymmetric composite laminates with notch design[J]. Acta Materiae Compositae Sinica.

含切口十字形非对称复合材料层板的多稳态特性

基金项目: 中央高校基本科研业务费中国民航大学专项(3122019089)
详细信息
    通讯作者:

    胡建强,博士,讲师,硕士生导师,研究方向为智能复合材料结构及其力学 E-mail: jqhu@cauc.edu.cn

  • 中图分类号: TB332

Multistable characteristics of cruciform unsymmetric composite laminates with notch design

Funds: Basic Research Funds for Central Universities, Special Project of Civil Aviation University of China (3122019089)
  • 摘要: 本文通过将两块非对称铺层的矩形层板交叉铺设同时引入切口设计,提出了一种新型十字形多稳态复合材料层板,通过该切口设计解决了共固化成型引起的层板结构胶接区域内刚度增强进而导致层板失去多稳态特性的问题。建立了含切口十字形多稳态复合材料层板的有限元模型,并通过热压罐成型工艺制备了试验件,仿真和试验结果验证了本文切口设计的可行性。最后研究了胶接面积、切口角度和矩形纵横比对十字形多稳态层板稳定构型的影响规律,结果表明:胶接面积与第一稳态的面外最大位移呈线性关系,切口角度对层板第二稳态构型具有显著影响,而层板纵横比也对第一稳态起重要作用。

     

  • 图  1  矩形双稳态层板切口设计

    Figure  1.  Notch design of rectangular bistable laminate

    图  2  矩形及含切口矩形双稳态层板稳定构型

    Figure  2.  Stable configurations of rectangular and notched rectangular bistable composite laminates

    图  3  矩形及含切口矩形双稳态层板试件

    Figure  3.  Specimens of rectangular and notched rectangular bistable laminates

    图  4  面外相对位移及构型曲线测量平台

    Figure  4.  Measurement platform for out-of-plane displacement and configuration curve

    图  5  矩形及含切口矩形层板第一稳态稳定构型

    Figure  5.  Stable configurations of configuration Ⅰ of rectangular and notched rectangular laminates

    图  6  矩形及含切口矩形层板双稳态面外最大位移

    Figure  6.  Max out-of-plane displacement of two stable configurations of rectangular and notched rectangular laminates

    图  7  十字形多稳态层板切口设计

    Figure  7.  Notch design of cruciform multistable laminate

    图  8  十字形非对称层板的多稳态特性

    Figure  8.  Multistable characteristics of cruciform unsymmetric laminate

    图  9  形状记忆合金驱动元件加载方案

    Figure  9.  Loading method of SMA actuations

    图  10  十字形多稳态层板形状记忆合金驱动方法

    Figure  10.  Cruciform multistable laminate actuating method through SMA

    图  11  胶接面积对十字形多稳态层板面外最大位移的参数影响分析

    Figure  11.  Parametric analysis of co-curing area on the max out-of-plane displacement of cruciform multistable laminates

    图  12  不同胶接面积的十字形多稳态层板跳变行为分析

    Figure  12.  Snap-through behavior of cruciform multistable laminates with different co-curing area

    图  13  不同胶接面积十字形多稳态层板第一稳态稳定构型

    Figure  13.  Stable configurations of configuration Ⅰ of cruciform multistable laminates with different co-curing area

    图  14  十字形多稳态层板两种稳态的面外最大位移

    Figure  14.  Max out-of-plane displacement of two stable configurations of cruciform multistable laminates

    图  15  切口角度θ对十字形多稳态层板面外最大位移的参数影响分析

    Figure  15.  Parametric analysis of notch angle on the max out-of-plane displacement of cruciform multistable laminates

    图  16  长度L对十字形多稳态层板面外最大位移的参数影响分析

    Figure  16.  Parametric analysis of length on the max out-of-plane displacement of cruciform multistable laminates

    表  1  S4 C9/SY-24型玻璃纤维增强环氧树脂复合材料材料属性

    Table  1.   Material properties of S4 C9/SY-24 glass fiber reinforced polymer composite

    Material properties E1/GPa E2/GPa ν12 G12/GPa G13/GPa G23/GPa α11/°C−1 α12/°C−1 α13/°C−1
    Value 54.6 10.5 0.33 5.5 5.5 3.9 6.7×10−6 2.9×10−5 2.9×10−5
    Notes: E1-Longitudinal modulus; E2-Transverse modulus; ν12-Poisson’s ratio; G12-In-plane shear modulus; G13, G23-Inter-laminar shear modulus; α11-Longitudinal thermal expansion coefficient; α12, α13-Transverse thermal expansion coefficient.
    下载: 导出CSV

    表  2  不同胶接面积下十字形多稳态层板的两种稳定构型

    Table  2.   Two stable configurations of cruciform multistable laminates with different co-curing area

    Co-curing area/mm×mm Configuration Ⅰ Configuration Ⅱ
    10×10
    25×25
    50×50
    下载: 导出CSV
  • [1] HYER M W. Some observations on the cured shape of thin unsymmetric laminates[J]. Journal of composite materials, 1981, 15(2): 175-194. doi: 10.1177/002199838101500207
    [2] HYER M W. Nonlinear effects of elastic coupling in unsymmetric laminates[J]. Mechanics of Composite Materials, 1983: 243-258.
    [3] DANO M L, HYER M W. Thermally-induced deformation behavior of unsymmetric laminates[J]. International journal of solids and structures, 1998, 35(17): 2101-2120. doi: 10.1016/S0020-7683(97)00167-4
    [4] 陈丹迪, 张征, 柴国钟. 双稳态复合材料层合结构的黏弹性模型[J]. 复合材料学报, 2016, 33(10): 2336-2343.

    CHEN Dandi, ZHANG Zheng, CHAI Guozhong. Viscoelastic model of bistable composite laminated structures[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2336-2343(in Chinese).
    [5] SABERI S, ABDOLLAHI A, FRISWELL M I. Probability analysis of bistable composite laminates using the subset simulation method[J]. Composite Structures, 2021, 271: 114120. doi: 10.1016/j.compstruct.2021.114120
    [6] LIU T, BAI J, FANTUZZI N. Analytical model for predicting folding stable state of bistable deployable composite boom[J]. Chinese Journal of Aeronautics, 2023. https://doi.org/10.1016/j.cja.2023.05.021
    [7] 李昊, 戴福洪, 杜善义. 双稳定矩形非对称复合材料层板的跳变研究[J]. 复合材料学报, 2011, 28(4): 196-201.

    LI Hao, DAI Fuhong, DU Shanyi. Snap-through of bi-stable rectangular unsymmetric cross-ply composite laminates[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 196-201(in Chinese).
    [8] 胡建强, 潘殿坤, 戴福洪. 混杂薄膜天线层的双稳态复合材料层板力电性能[J]. 复合材料学报, 2018, 35(4): 857-865.

    HU Jianqiang, PAN Diankun, DAI Fuhong. Mechanical and electric performance of bistable composite laminates with membrane antenna[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 857-865(in Chinese).
    [9] GUO X T, ZHANG W, ZHANG Y F. Experimental and numerical investigations on nonlinear snap-through vibrations of an asymmetrically composite laminated bistable thin plate simple supported at four corners[J]. Engineering Structures, 2023, 296: 116926. doi: 10.1016/j.engstruct.2023.116926
    [10] 叶红玲, 王秀华, 王伟伟, 等. 混合材料双稳态壳结构力学性能分析及优化设计[J]. 北京工业大学学报, 2022, 48(11): 1113-1121. doi: 10.11936/bjutxb2021040028

    YE Hongling, WANG Xiuhua, WANG Weiwei, et al. Mechanical Properties Analysis and Optimization Design for Bistable Hybrid Composite Shells[J]. Journal of Beijing University of Technology, 2022, 48(11): 1113-1121(in Chinese). doi: 10.11936/bjutxb2021040028
    [11] LI H, DAI F, DU S. Numerical and experimental study on morphing bi-stable composite laminates actuated by a heating method[J]. Composites Science and Technology, 2012, 72(14): 1767-1773. doi: 10.1016/j.compscitech.2012.07.015
    [12] PANCIROLI R, NERILLI F. Bistable morphing panels through SMA actuation[J]. Procedia Structural Integrity, 2019, 24: 593-600. doi: 10.1016/j.prostr.2020.02.052
    [13] ZHANG Z, LI X, YU X, et al. Magnetic actuation bionic robotic gripper with bistable morphing structure[J]. Composite Structures, 2019, 229: 111422. doi: 10.1016/j.compstruct.2019.111422
    [14] ANILKUMAR P M, HALDAR A, SCHEFFLER S, et al. Morphing of bistable variable stiffness composites using distributed MFC actuators[J]. Composite Structures, 2022, 289: 115396. doi: 10.1016/j.compstruct.2022.115396
    [15] RIVAS-PADILLA J R, BOSTON D M, BODDAPATI K, et al. Aero-structural optimization and actuation analysis of a morphing wing section with embedded selectively stiff bistable elements[J]. Journal of Composite Materials, 2023, 57(4): 737-757. doi: 10.1177/00219983231155163
    [16] ZHANG Z, PEI K, SUN M, et al. A novel solar tracking model integrated with bistable composite structures and bimetallic strips[J]. Composite Structures, 2020, 248: 112506. doi: 10.1016/j.compstruct.2020.112506
    [17] DONG T, CAO D, DONG M. The dynamic regimes and the energy harvesting of the energy harvester based on the bistable piezoelectric composite laminate[J]. Thin-Walled Structures, 2023, 188: 110777. doi: 10.1016/j.tws.2023.110777
    [18] MATTIONI F, WEAVER P M, POTTER K D, et al. Analysis of thermally induced multistable composites[J]. International Journal of Solids and Structures, 2008, 45(2): 657-675. doi: 10.1016/j.ijsolstr.2007.08.031
    [19] SOUSA C S, CAMANHO P P, SULEMAN A. Analysis of multistable variable stiffness composite plates[J]. Composite Structures, 2013, 98: 34-46. doi: 10.1016/j.compstruct.2012.10.053
    [20] ARRIETA A F, KUDER I K, RIST M, et al. Passive load alleviation aerofoil concept with variable stiffness multi-stable composites[J]. Composite structures, 2014, 116: 235-242. doi: 10.1016/j.compstruct.2014.05.016
    [21] CUI Y, SANTER M. Characterisation of tessellated bistable composite laminates[J]. Composite Structures, 2016, 137: 93-104. doi: 10.1016/j.compstruct.2015.11.005
    [22] WANG J, NARTEY M A, LUO Y, et al. Designing multi-stable structures with enhanced designability and deformability by introducing transition elements[J]. Composite Structures, 2020, 233: 111580. doi: 10.1016/j.compstruct.2019.111580
    [23] ZHANG Z, PEI K, SUN M, et al. Tessellated multistable structures integrated with new transition elements and antisymmetric laminates[J]. Thin-Walled Structures, 2022, 170: 108560. doi: 10.1016/j.tws.2021.108560
    [24] ANNAMALAI S. Design of bistable composite laminates for shape morphing applications[D]. Clemson: Clemson University, 2016.
    [25] DAI F, LI H, DU S. A multi-stable lattice structure and its snap-through behavior among multiple states[J]. Composite Structures, 2013, 97: 56-63. doi: 10.1016/j.compstruct.2012.10.016
    [26] ZHANG Z, CHEN D, WU H, et al. Non-contact magnetic driving bioinspired Venus flytrap robot based on bistable anti-symmetric CFRP structure[J]. Composite Structures, 2016, 135: 17-22. doi: 10.1016/j.compstruct.2015.09.015
    [27] PANESAR A S, HAZRA K, WEAVER P M. Investigation of thermally induced bistable behaviour for tow-steered laminates[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(6): 926-934. doi: 10.1016/j.compositesa.2012.01.029
    [28] ALGMUNI A, XI F, ALIGHANBARI H. Flexible joints for a grid-based multi-stable composite morphing skin[J]. Composite Structures, 2021, 259: 113512. doi: 10.1016/j.compstruct.2020.113512
    [29] RISSO G, ERMANNI P. Multi-stability of fiber reinforced polymer frames with different geometries[J]. Composite Structures, 2023, 313: 116958. doi: 10.1016/j.compstruct.2023.116958
    [30] PHANENDRA K A, KHAJAMOINUDDIN S M, BURELA R G, et al. Snap-through analysis of multistable laminate using the variational asymptotic method[J]. Mechanics Based Design of Structures and Machines, 2023, 51(11): 6097-6122. doi: 10.1080/15397734.2022.2036617
  • 加载中
计量
  • 文章访问数:  111
  • HTML全文浏览量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 修回日期:  2024-04-25
  • 录用日期:  2024-05-10
  • 网络出版日期:  2024-06-07

目录

    /

    返回文章
    返回