留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响

刘嘉源 张宏亮 左晓宝 邹欲晓

刘嘉源, 张宏亮, 左晓宝, 等. 纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响[J]. 复合材料学报, 2023, 40(9): 5046-5056. doi: 10.13801/j.cnki.fhclxb.20221213.004
引用本文: 刘嘉源, 张宏亮, 左晓宝, 等. 纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响[J]. 复合材料学报, 2023, 40(9): 5046-5056. doi: 10.13801/j.cnki.fhclxb.20221213.004
LIU Jiayuan, ZHANG Hongliang, ZUO Xiaobao, et al. Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5046-5056. doi: 10.13801/j.cnki.fhclxb.20221213.004
Citation: LIU Jiayuan, ZHANG Hongliang, ZUO Xiaobao, et al. Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5046-5056. doi: 10.13801/j.cnki.fhclxb.20221213.004

纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响

doi: 10.13801/j.cnki.fhclxb.20221213.004
基金项目: 国家自然科学基金(52078252;51778297)
详细信息
    通讯作者:

    左晓宝,博士,教授,研究方向为混凝土材料与结构 E-mail:xbzuo@sina.com

  • 中图分类号: TU593;TB332

Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar

Funds: National Natural Science Foundation of China (52078252; 51778297)
  • 摘要: 为了获得具有良好分散性、填充性和阻隔性的纳米材料,同时将其作为填料以提升环氧树脂涂层对水泥砂浆试件的防护能力,本文制备了纳米聚多巴胺六方氮化硼–二氧化硅(PDABN-fSiO2)/环氧树脂涂层,涂覆于水泥砂浆试件表面,研究涂层对试件的防护效果。首先,利用盐酸多巴胺(DA)自聚合形成的聚多巴胺(PDA)与偶联剂(KH550),分别修饰纳米六方氮化硼(hBN)与纳米二氧化硅(SiO2),获得纳米聚多巴胺六方氮化硼(PDABN)与功能化的SiO2(fSiO2);其次,经聚合以制备纳米PDABN-fSiO2;最后,将其作为填料改性环氧树脂,并涂覆于水泥砂浆表面。通过FTIR、SEM-EDS和XPS等微观表征,观察并研究了纳米材料的微观特征;开展了碳化试验和涂层透气性试验,分析了纳米PDABN-fSiO2对环氧树脂涂层的改性效果。结果表明:制备的纳米PDABN-fSiO2具有“片层+颗粒”特殊结构,且在涂层中具有良好的分散性,可有效减缓其涂层中CO2的渗透;同无填料涂层相比,涂覆有纳米PDABN-fSiO2/环氧树脂涂层的水泥砂浆试件,在碳化7天、14天和28天时的碳化深度分别下降了68.7%、72.9%和64.8%,其涂层在48 h的透气性降低了34.7%。因此,纳米PDABN-fSiO2掺入环氧树脂涂层后,明显地提高了涂层水泥砂浆试件的抗碳化能力,并降低了环氧树脂涂层的透气性。

     

  • 图  1  掺入纳米聚多巴胺六方氮化硼-二氧化硅(PDABN-fSiO2)的环氧树脂涂层制备流程

    Figure  1.  Preparation process of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide (PDABN-fSiO2) epoxy coating

    图  2  环氧树脂中纳米填料的分散过程

    Figure  2.  Dispersion process of nano fillers in epoxy resins

    图  3  涂层透气性试验装置示意图

    Figure  3.  Experimental diagram of the gas permeability of coatings

    图  4  各种纳米材料的FTIR图谱

    Figure  4.  FTIR spectra of various nano materials

    图  5  各种纳米填料的SEM图像及纳米PDABN-fSiO2不同测试区域的EDS图谱

    Figure  5.  SEM images of various nano fillers and EDS spectra of nano PDABN-fSiO2 about different areas

    D—Diameter of nano fSiO2 particles; T—Thickness of nano PDABN layers

    图  6  各种环氧树脂涂层断面处SEM图像及其Mapping分析结果

    Figure  6.  SEM images and mapping analysis results of cross sectional about various epoxy coatings

    图  7  纳米PDABN-fSiO2的XPS图谱与纳米PDABN-fSiO2的XPS高分辨图谱

    Figure  7.  XPS spectra of nano PDABN-fSiO2 and its high-resolution XPS spectra

    图  8  水泥砂浆表面涂覆掺入不同填料的环氧树脂涂层在7、14和28天时酚酞显色结果

    Figure  8.  Results of phenolphthalein color test on cement mortar coated with epoxy coatings with different fillers at 7, 14 and 28 days

    图  9  水泥砂浆表面涂覆掺入不同填料的环氧树脂涂层在7、14和28天时水泥砂浆试件碳化深度

    Figure  9.  Carbonization depth of cement mortar coated with epoxy coatings with different fillers at 7, 14 and 28 days

    图  10  干燥剂吸水量随时间变化曲线

    Figure  10.  Curves of water absorption of desiccant with time

    表  1  水泥的氧化物组成

    Table  1.   Oxide composition of cement wt%

    CementCaOSiO2Al2O3Fe2O3SO3MgOK2ONa2OTiO2
    P.II 52.566.9219.284.203.782.071.840.740.300.26
    下载: 导出CSV

    表  2  制备各种含有填料的环氧树脂涂层所需材料与用量

    Table  2.   Materials and quantities required for the preparation of various epoxy coatings with fillers

    SampleCoating filler componentEpoxy dosage/gTotal amount of filler/g
    Epoxy coatingBlank5
    Nano SiO2/epoxy coatingNano SiO250.05
    Nano PDABN/epoxy coatingNano PDABN50.05
    Nano PDABN-SiO2/epoxy coatingNano PDABN-fSiO250.05
    下载: 导出CSV
  • [1] 孙伟. 荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命[J]. 东南大学学报(自然科学版), 2006, 36(S2):7-14.

    SUN Wei. Durability and service life of structure concrete under load and environment coupling effects[J]. Journal of Southeast University (Natural Science Edition),2006,36(S2):7-14(in Chinese).
    [2] 李士彬, 孙伟. 疲劳、碳化和氯盐作用下混凝土劣化的研究进展[J]. 硅酸盐学报, 2013, 41(11):1459-1464.

    LI Shibin, SUN Wei. Review on deterioration of concrete subjected to coupling effect of fatigue load, carbonation and chlorides[J]. Journal of the Chinese Ceramic Society,2013,41(11):1459-1464(in Chinese).
    [3] 柏朱安. 有机成膜涂层混凝土抗碳化性能的时变退化[D]. 徐州: 中国矿业大学, 2017.

    BO Zhu'an. Time-varying degradation of carbonation re-sistance of organic film-forming coated concrete[D]. Xuzhou: China University of Mining and Technology, 2017(in Chinese).
    [4] 马骏, 孙冬, 张明爽, 等. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8):4456-4462. doi: 10.16085/j.issn.1000-6613.2020-1790

    MA Jun, SUN Dong, ZHANG Mingshuang, et al. Preparation of graphene oxide modified epoxy resin coating and research on its anti-corrosive performance[J]. Chemical Industry and Engineering Progress,2021,40(8):4456-4462(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1790
    [5] 汪雨微, 欧宝立, 鲁忆, 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12):3971-3985.

    WANG Yuwei, OU Baoli, LU Yi, et al. Preparation and pro-perties of functionalized nano-TiO2/epoxy resin superhydrophobic anticorrosive composite coating[J]. Acta Materiae Compositae Sinica,2021,38(12):3971-3985(in Chinese).
    [6] LI G, HU W J, CUI H Y, et al. Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO2 modified polymer coatings[J]. Construction and Building Materials,2019,201:623-630. doi: 10.1016/j.conbuildmat.2019.01.004
    [7] 范春华. 氧化石墨烯改性环氧树脂涂层提升混凝土抗碳化性能的研究[D]. 徐州: 中国矿业大 学, 2021.

    FAN Chunhua. Research on graphene oxide modified epoxy resin coating to enhance the anti-carbonation performance of concrete[D]. Xuzhou: China University of Mining and Technology, 2021(in Chinese).
    [8] 郑昌佶, 王博, 杨佳明, 等. 纳米SiO2分散性对SiO2/LDPE纳米复合材料直流介电性能的影响[J]. 复合材料学报, 2023, 40(3):1417-1429.

    ZHENG Changji, WANG Bo, YANG Jiaming, et al. Influence of nano-SiO2 dispersion on the direct current dielectric properties of SiO2/LDPE nanocomposite[J]. Acta Materiae Compositae Sinica,2023,40(3):1417-1429(in Chinese).
    [9] YU Z X, DI H H, MA Y, et al. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings[J]. Applied Surface Science,2015,351:986-996. doi: 10.1016/j.apsusc.2015.06.026
    [10] 徐凡, 刘雨薇, 高梦幻, 等. 碳掺杂六方氮化硼通过增强静电相互作用高效去除水中的Cu2+[J]. 离子交换与吸附, 2021, 37(6):481-493.

    XU Fan, LIU Yuwei, GAO Menghuan, et al. Carbon doped h-boron nitride for effective removal of Cu2+ from water via enhanced electrostatic interaction[J]. Ion Exchange and Adsorption,2021,37(6):481-493(in Chinese).
    [11] YANG Y C, SONG Z G, LU G Y, et al. Intrinsic toughening and stable crack propagation in hexagonal boron nitride[J]. Nature,2021,594(7861):57-61. doi: 10.1038/s41586-021-03488-1
    [12] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [13] SONG J, DAI Z D, LI J Y, et al. Polydopamine-decorated boron nitride as nano-reinforcing fillers for epoxy resin with enhanced thermomechanical and tribological properties[J]. Materials Research Express,2018,5(7):075029. doi: 10.1088/2053-1591/aab529
    [14] WAN P Y, ZHAO N, QI F G, et al. Synthesis of PDA-BN@f-Al2O3 hybrid for nanocomposite epoxy coating with superior corrosion protective properties[J]. Progress in Organic Coatings,2020,146:105713. doi: 10.1016/j.porgcoat.2020.105713
    [15] 中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236—2019[S]. 北京: 人民交通出版社, 2019.

    Ministry of Transport of the People's Republic of China. Testing specifications for concrete in water transport engineering: JTS/T 236—2019[S]. Beijing: China Communications Press, 2019(in Chinese).
    [16] GUO Z Q, SUN L, HOU H, et al. Construction of novel maple leaf-like MnO2-SiO2@PDA composites for highly efficient removal of Cu(II), Cd(II) and Ni(II) from aqueous solution[J]. Separation and Purification Technology,2022,291:120943. doi: 10.1016/j.seppur.2022.120943
    [17] MUHAMMAD M, HU S H, MA R N, et al. Enhancing the corrosion resistance of Q235 mild steel by incorporating poly(dopamine) modified h-BN nanosheets on zinc phosphate-silane coating[J]. Surface and Coatings Technology,2020,390:125682. doi: 10.1016/j.surfcoat.2020.125682
    [18] JIN W Q, YUAN L, LIANG G Z, et al. Multifunctional cyclotriphosphazene/hexagonal boron nitride hybrids and their flame retarding bismaleimide resins with high thermal conductivity and thermal stability[J]. ACS Applied Materials & Interfaces,2014,6(17):14931-14944.
    [19] MA G X, XU J X, HAN L, et al. Enhanced inhibition performance of NO2-intercalated MgAl-LDH modified with nano-SiO2 on steel corrosion in simulated concrete pore solution[J]. Corrosion Science,2022,204:110387. doi: 10.1016/j.corsci.2022.110387
    [20] WEI N, JIANG Y Y, YING Y, et al. Facile construction of a polydopamine-based hydrophobic surface for protection of metals against corrosion[J]. RSC Advances,2017,7(19):11528-11536. doi: 10.1039/c7ra00267j
    [21] LIU H S, TARIQ N U H, HAN R F, et al. Development of hydrogen-free fully amorphous silicon oxycarbide coating by thermal organometallic chemical vapor deposition technique[J]. Journal of Non-Crystalline Solids,2022,575:121204. doi: 10.1016/j.jnoncrysol.2021.121204
    [22] PRASAD V, SEKAR K, JOSEPH M A. Mechanical and water absorption properties of nano TiO2 coated flax fibre epoxy composites[J]. Construction and Building Materials,2021,284:122803. doi: 10.1016/j.conbuildmat.2021.122803
    [23] XI Z Y, XU Y Y, ZHU L P, et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine)[J]. Journal of Membrane Science,2009,327:244-253. doi: 10.1016/j.memsci.2008.11.037
    [24] WAN X Y, ZHAN Y Q, LONG Z H, et al. High-performance magnetic poly(arylene ether nitrile) nanocomposites: Co-modification of Fe3O4 via mussel inspired poly(dopamine) and amino functionalized silane KH550[J]. Applied Surface Science,2017,425:905-914. doi: 10.1016/j.apsusc.2017.07.136
    [25] WANG D, LIU D, XU J H, et al. Highly thermoconductive yet ultraflexible polymer composites with superior mechanical properties and autonomous self-healing functionality via a binary filler strategy[J]. Materials Horizons,2022,9(2):640-652. doi: 10.1039/D1MH01746B
    [26] 张宏亮, 冯礼奎, 宋小宁, 等. 环己胺甲基脲气相缓蚀剂的缓蚀作用研究[J]. 表面技术, 2018, 47(10):45-50. doi: 10.16490/j.cnki.issn.1001-3660.2018.10.006

    ZHANG Hongliang, FENG Likui, SONG Xiaoning, et al. Corrosion inhibition of cyclohexyl-aminomethyl-urea as volatile corrosion inhibitor[J]. Surface Technology,2018,47(10):45-50(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2018.10.006
    [27] SONG B J, SHI Y C, LIU Q D. An inorganic route to decorate graphene oxide with nanosilica and investigate its effect on anti-corrosion property of waterborne epoxy[J]. Polymers for Advanced Technologies,2020,31(2):309-318. doi: 10.1002/pat.4770
    [28] LIU Y, LIN Q, CHEN J Q, et al. PDMS-OH and nano-SiO2 modified KH570-TEOS silica-sol coating and protective effect on concrete[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,648:129279. doi: 10.1016/j.colsurfa.2022.129279
    [29] 赵明月, 裴晓园, 王维, 等. 二维纳米填料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5):2049-2059.

    ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica,2022,39(5):2049-2059(in Chinese).
    [30] MA Y, DI H H, YU Z X, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science,2016,360:936-945. doi: 10.1016/j.apsusc.2015.11.088
    [31] WU Y M, YU J J, ZHAO W J, et al. Investigating the anti-corrosion behaviors of the waterborne epoxy composite coatings with barrier and inhibition roles on mild steel[J]. Progress in Organic Coatings,2019,133:8-18. doi: 10.1016/j.porgcoat.2019.04.028
    [32] 随林林, 刘芳, 陈晓蕊, 等. 纳米SiO2-氧化石墨烯/环氧涂层的制备及其防腐蚀性能[J]. 复合材料学报, 2018, 35(7):1716-1724.

    SUI Linlin, LIU Fang, CHEN Xiaorui, et al. Preparation and corrosion resistance of nano SiO2-graphene oxide/epoxy composite coating[J]. Acta Materiae Compositae Sinica,2018,35(7):1716-1724(in Chinese).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  308
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 修回日期:  2022-11-13
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-14
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回