留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响

刘嘉源 张宏亮 左晓宝 邹欲晓

刘嘉源, 张宏亮, 左晓宝, 等. 纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 刘嘉源, 张宏亮, 左晓宝, 等. 纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响[J]. 复合材料学报, 2022, 40(0): 1-11
Jiayuan LIU, Hongliang ZHANG, Xiaobao ZUO, Yuxiao ZOU. Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar[J]. Acta Materiae Compositae Sinica.
Citation: Jiayuan LIU, Hongliang ZHANG, Xiaobao ZUO, Yuxiao ZOU. Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar[J]. Acta Materiae Compositae Sinica.

纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响

基金项目: 国家自然科学基金(52078252;51778297)
详细信息
    通讯作者:

    左晓宝, 博士, 教授, 研究方向为混凝土材料与结构 E-mail:xbzuo@sina.com

  • 中图分类号: TU593

Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar

Funds: National Natural Science Foundation of China(52078252; 51778297)
  • 摘要: 环氧树脂具有价格低、绝缘性好和附着力强等优点,研究表明,在环氧树脂中掺入纳米填料,涂覆在混凝土结构表面,能形成致密的防腐涂层,可显著提升混凝土结构的耐久性。但未经功能化处理的纳米填料与环氧树脂的相容性较差,所制备的涂层难以充分发挥对混凝土及其结构的防护作用。本文选用理化性质稳定、韧性强且具有绝缘性质的纳米六方氮化硼(hBN),通过将纳米hBN片层和纳米二氧化硅 (SiO2) 颗粒表面功能化处理,再经聚合制备出一种新型的纳米PDABN-fSiO2材料,再将其掺入环氧树脂,获得了纳米聚多巴胺六方氮化硼–二氧化硅(PDABN-fSiO2)/环氧树脂涂层,涂覆于水泥砂浆试件表面,以提高其抗碳化能力。纳米hBN片层与SiO2颗粒的表面功能化处理,解决了纳米填料与环氧树脂相容性较差的问题,纳米PDABN-fSiO2在环氧树脂中具有良好的分散性和“片层+颗粒”特殊结构,可有效填充涂层内部裂隙,增强涂层对水泥砂浆的防护性能,同无填料涂层相比,涂覆有纳米PDABN-fSiO2/环氧树脂涂层的水泥砂浆试件,在碳化7、14和28天时的碳化深度分别下降了68.7%、72.9%和64.8%,其涂层在48h的透气性降低了34.7%。掺入不同纳米填料的环氧树脂涂层的各项试验结果

     

  • 图  1  掺入纳米聚多巴胺六方氮化硼–二氧化硅(PDABN-fSiO2)的环氧树脂涂层制备流程

    Figure  1.  Preparation process of nano polydopamine hexagonal boron nitride - functionalised silicon dioxide (PDABN-fSiO2) epoxy coating

    图  2  环氧树脂中纳米填料的分散过程

    Figure  2.  Dispersion process of nano fillers in epoxy resins

    图  3  涂层透气性试验装置示意图

    Figure  3.  Experimental diagram of the gas permeability of coatings

    图  4  各种纳米材料的FT-IR光谱

    Figure  4.  FT-IR spectra of various nano materials

    图  5  各种纳米填料的SEM图像及纳米PDABN-fSiO2不同测试区域的EDS图谱

    Figure  5.  SEM images of various nano fillers and EDS spectra of nano PDABN-fSiO2 about different areas

    图  6  各种环氧树脂涂层断面处SEM图像及其Mapping分析结果

    Figure  6.  SEM images and mapping analysis results of cross sectional about various epoxy coatings

    图  7  纳米PDABN-fSiO2的XPS图谱与纳米PDABN-fSiO2的XPS高分辨图谱

    Figure  7.  XPS spectra of nano PDABN-fSiO2 and its high-resolution XPS spectra

    图  8  水泥砂浆表面涂覆掺入不同填料的环氧树脂涂层在7、14和28天时酚酞显色结果

    Figure  8.  Results of phenolphthalein color test on cement mortar coated with epoxy coatings with different fillers at 7, 14 and 28 days

    图  9  水泥砂浆表面涂覆掺入不同填料的环氧树脂涂层在7、14和28天时水泥砂浆试件碳化深度

    Figure  9.  Carbonization depth of cement mortar coated with epoxy coatings with different fillers at 7, 14 and 28 days

    图  10  干燥剂吸水量随时间变化曲线

    Figure  10.  Curve of water absorption of desiccant with time

    表  1  水泥的氧化物组成的质量分数(wt%)

    Table  1.   Oxide composition of cement (wt%)

    CementCaOSiO2Al2O3Fe2O3SO3MgOK2ONa2OTiO2
    P.II 52.566.9219.284.203.782.071.840.740.300.26
    下载: 导出CSV

    表  2  制备各种含有填料的环氧树脂涂层所需材料与用量

    Table  2.   Materials and quantities required for the preparation of various epoxy coatings with fillers

    SampleCoating filler componentEpoxy dosage/gTotal amount of filler/g
    Epoxy CoatingBlank5
    Nano SiO2/Epoxy CoatingNano SiO250.05
    Nano PDABN/Epoxy CoatingNano PDABN50.05
    Nano PDABN-SiO2/Epoxy CoatingNano PDABN-fSiO250.05
    下载: 导出CSV
  • [1] 孙伟. 荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命[J]. 东南大学学报(自然科学版), 2006(S2):7-14.

    SUN Wei. Durability and service life of structure concrete under load and environment coupling effects[J]. Journal of Southeast University (Natural Science Edition),2006(S2):7-14(in Chinese).
    [2] 李士彬, 孙伟. 疲劳、碳化和氯盐作用下混凝土劣化的研究进展[J]. 硅酸盐学报, 2013, 41(11):1459-1464.

    LI Shibin, SUN Wei. Research progress on deterioration of concrete under fatigue, carbonation and chloride salts[J]. Journal of the Chinese Ceramic Society,2013,41(11):1459-1464(in Chinese).
    [3] 柏朱安. 有机成膜涂层混凝土抗碳化性能的时变退化[D]. 徐州: 中国矿业大学, 2017.

    BO Zhuan. Time-varying degradation of carbonation resistance of organic film-forming coated concrete[D]. Xuzhou: China University of Mining & Technology, 2017(in Chinese).
    [4] 马骏, 孙冬, 张明爽, 等. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8):4456-4462. doi: 10.16085/j.issn.1000-6613.2020-1790

    MA Jun, SUN Dong, ZHANG Mingshuang, et al. Preparation of graphene oxide modified epoxy resin coating and research on its anti-corrosive performance[J]. Chemical Industry and Engineering Progress,2021,40(8):4456-4462(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1790
    [5] 汪雨微, 欧宝立, 鲁忆, 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12):3971-3985.

    WANG Yuwei, OU Baoli, LU Yi, et al. Preparation and properties of functionalized nano-TiO2/epoxy resin superhydrophobic anticorrosive composite coating[J]. Acta Materiae Compositae Sinica,2021,38(12):3971-3985(in Chinese).
    [6] Li G, Hu W J, Cui H Y, et al. Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO2 modified polymer coatings[J]. Construction and Building Materials,2019,201:623-630. doi: 10.1016/j.conbuildmat.2019.01.004
    [7] 范春华. 氧化石墨烯改性环氧树脂涂层提升混凝土抗碳化性能的研究[D]. 徐州: 中国矿业大 学, 2021.

    FAN Chunhua. Research on graphene oxide modified epoxy resin coating to enhance the anti-carbonation performance of concrete [D]. Xuzhou: China University of Mining & Technology, 2021(in Chinese).
    [8] 郑昌佶, 王博, 杨佳明, 等. 纳米SiO2分散性对SiO2/LDPE纳米复合材料直流介电性能的影响[J]. 复合材料学报, 2022, 40:1-13.

    ZHENG Changji, WANG Bo, YANG Jjiaming, et al. Influence of nano-SiO2 dispersion on the direct current dielectric properties of SiO2/LDPE nanocomposite[J]. Acta Materiae Compositae Sinica,2022,40:1-13(in Chinese).
    [9] YU Z X, DI H H, MA Y, et al. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings[J]. Applied Surface Science,2015,351:986-996. doi: 10.1016/j.apsusc.2015.06.026
    [10] 徐凡, 刘雨薇, 高梦幻, 等. 碳掺杂六方氮化硼通过增强静电相互作用高效去除水中的Cu2+[J]. 离子交换与吸附, 2021, 37(6):481-493.

    XU Fan, LIU Yuwei, GAO Menghuan, et al. Efficient removal of Cu2+ from water by carbon-doped hexagonal boron nitride through enhanced electrostatic interactions[J]. Ion Exchange and Adsorption,2021,37(6):481-493(in Chinese).
    [11] YANG Y C, SONG Z G, LU G Y, et al. Intrinsic toughening and stable crack propagation in hexagonal boron nitride[J]. Nature,2021,594:57-61. doi: 10.1038/s41586-021-03488-1
    [12] 国家市场监督管理总局, 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671-2021[S]. 北京: 中国标准出版社, 2021.

    State Administration for Market Regulation, Standardization Administration of China. Test method of cement mortar strength (ISO method ): GB/T 17671-2021[S]. Beijing: China Quality and Standards Publishing & Media Co. , Ltd, 2021. (in Chinese)
    [13] SONG J, DAI Z D, LI J Y, et al. Polydopamine- decorated boron nitride as nano-reinforcing fillers for epoxy resin with enhanced thermomechanical and tribological properties[J]. Materials Research Express,2018,5(7):075029. doi: 10.1088/2053-1591/aab529
    [14] WAN P Y, ZHAO N, QI F G, et al. Synthesis of PDA-BN@f-Al2O3 hybrid for nanocomposite epoxy coating with superior corrosion protective properties[J]. Progress in Organic Coatings,2020,146:105713. doi: 10.1016/j.porgcoat.2020.105713
    [15] 中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236-2019[S]. 北京: 人民交通出版社, 2019.

    Ministry of Transport of the People's Republic of China. Testing specifications for concrete in water transport engineering: JTS/T 236-2019[S]. Beijing: China Communications Press, 2019. (in Chinese).
    [16] ZHENG Y, SUN D, FENG Q, et al. Nano-SiO2 Modified Basalt Fiber for Enhancing Mechanical Properties of Oil Well Cement[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,648:128900. doi: 10.1016/j.colsurfa.2022.128900
    [17] MUHAMMAD M, HU S H, MA R N, et al. Enhancing the corrosion resistance of Q235 mild steel by incorporating poly (dopamine) modified h-BN nanosheets on zinc phosphate-silane coating[J]. Surface and Coatings Technology,2020,390:125682. doi: 10.1016/j.surfcoat.2020.125682
    [18] JIN W Q, YUAN L, LIANG G Z, et al. Multifunctional cyclotriphosphazene/hexagonal boron nitride hybrids and their flame retarding bismaleimide resins with high thermal conductivity and thermal stability[J]. ACS applied materials & interfaces,2014,6(17):14931-14944.
    [19] MA G X, XU J X, HAN L, et al. Enhanced inhibition performance of NO2-intercalated MgAl-LDH modified with nano-SiO2 on steel corrosion in simulated concrete pore solution[J]. Corrosion Science,2022,204:110387. doi: 10.1016/j.corsci.2022.110387
    [20] LIU Y, LIN Q, CHEN J Q, et al. PDMS-OH and Nano-SiO2 Modified KH570-TEOS Silica-sol Coating and Protective Effect on Concrete[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,648:129279. doi: 10.1016/j.colsurfa.2022.129279
    [21] LIU H, HAN R, LIU H, et al. Development of hydrogen-free fully amorphous silicon oxycarbide coating by thermal organometallic chemical vapor deposition technique[J]. Journal of Non-Crystalline Solids,2022,575:121204. doi: 10.1016/j.jnoncrysol.2021.121204
    [22] PRASAD V, SEKAR K, JOSEPH M A. Mechanical and water absorption properties of nano TiO2 coated flax fibre epoxy composites[J]. Construction and Building Materials,2021,284:122803. doi: 10.1016/j.conbuildmat.2021.122803
    [23] WU A, ZHAO X, YANG C, et al. A comparative study on aggregation and sedimentation of natural goethite and artificial Fe3O4 nanoparticles in synthetic and natural waters based on extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory and molecular dynamics simulations[J]. Journal of Hazardous Materials,2022,435:128876. doi: 10.1016/j.jhazmat.2022.128876
    [24] WAN X Y, Zhan Y Q, LONG Z H, et al. High-performance magnetic poly (arylene ether nitrile) nanocomposites: Co-modification of Fe3O4 via mussel inspired poly(dopamine) and amino functionalized silane KH550[J]. Applied Surface Science,2017,425:905-914. doi: 10.1016/j.apsusc.2017.07.136
    [25] WANG D, LIU D, XU J H, et al. Highly thermoconductive yet ultraflexible polymer composites with superior mechanical properties and autonomous self-healing functionality via a binary filler strategy[J]. Materials Horizons,2022,9(2):640-652. doi: 10.1039/D1MH01746B
    [26] 张宏亮, 冯礼奎, 宋小宁, 等. 环己胺甲基脲气相缓蚀剂的缓蚀作用研究[J]. 表面技术, 2018, 47(10):45-50. doi: 10.16490/j.cnki.issn.1001-3660.2018.10.006

    ZHANG Hongliang, FENG Likui, SONG Xiaoning, et al. Study on the corrosion inhibition of cyclohexylamine methylurea vapor phase corrosion inhibitors[J]. Surface Technology,2018,47(10):45-50(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2018.10.006
    [27] SONG B, SHI Y, LIU Q. An inorganic route to decorate graphene oxide with nanosilica and investigate its effect on anti-corrosion property of waterborne epoxy[J]. Polymers for Advanced Technologies,2020,31(2):309-318. doi: 10.1002/pat.4770
    [28] LIU Y, LIN Q, CHEN J, et al. PDMS-OH and Nano-SiO2 Modified KH570-TEOS Silica-sol Coating and Protective Effect on Concrete[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,648:129279. doi: 10.1016/j.colsurfa.2022.129279
    [29] 赵明月, 裴晓园, 王维, 等. 二维纳米填料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5):2049-2059.

    ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/ epoxycomposite coating in corrosion protection[J]. Acta Materiae Compositae Sinica,2022,39(5):2049-2059(in Chinese).
    [30] Yu M, Di H H, Yu Z X, et. al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science,2016,360:936-945. doi: 10.1016/j.apsusc.2015.11.088
    [31] Wu Y M, Yu J J, Zhao W J, et al. Investigating the anti-corrosion behaviors of the waterborne epoxy composite coatings with barrier and inhibition roles on mild steel[J]. Progress in Organic Coatings,2019,133:8-18. doi: 10.1016/j.porgcoat.2019.04.028
    [32] 周毛毛, 蒋阳, 谢于辉, 等. 纳米二氧化钛的制备, 改性及其在聚合物基复合材料中的应用研究进展[J]. 复合材料学报, 2022, 39(5):2089-2105.

    ZHOU Maomao, JIANG Yang, XIE Yuhui, et al. Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress[J]. Acta Materiae Compositae Sinica,2022,39(5):2089-2105(in Chinese).
  • 加载中
计量
  • 文章访问数:  196
  • HTML全文浏览量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 修回日期:  2022-11-13
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-19

目录

    /

    返回文章
    返回