Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar
-
摘要:
环氧树脂具有价格低、绝缘性好和附着力强等优点,研究表明,在环氧树脂中掺入纳米填料,涂覆在混凝土结构表面,能形成致密的防腐涂层,可显著提升混凝土结构的耐久性。但未经功能化处理的纳米填料与环氧树脂的相容性较差,所制备的涂层难以充分发挥对混凝土及其结构的防护作用。本文选用理化性质稳定、韧性强且具有绝缘性质的纳米六方氮化硼(hBN),通过将纳米hBN片层和纳米二氧化硅 (SiO2) 颗粒表面功能化处理,再经聚合制备出一种新型的纳米PDABN-fSiO2材料,再将其掺入环氧树脂,获得了纳米聚多巴胺六方氮化硼–二氧化硅(PDABN-fSiO2)/环氧树脂涂层,涂覆于水泥砂浆试件表面,以提高其抗碳化能力。纳米hBN片层与SiO2颗粒的表面功能化处理,解决了纳米填料与环氧树脂相容性较差的问题,纳米PDABN-fSiO2在环氧树脂中具有良好的分散性和“片层+颗粒”特殊结构,可有效填充涂层内部裂隙,增强涂层对水泥砂浆的防护性能,同无填料涂层相比,涂覆有纳米PDABN-fSiO2/环氧树脂涂层的水泥砂浆试件,在碳化7、14和28天时的碳化深度分别下降了68.7%、72.9%和64.8%,其涂层在48h的透气性降低了34.7%。 掺入不同纳米填料的环氧树脂涂层的各项试验结果 -
关键词:
- 纳米PDABN-fSiO2 /
- 环氧树脂涂层 /
- 微观表征 /
- 碳化 /
- 透气性
Abstract: In order to obtain nanomaterials with better dispersal, filling and barrier properties, which were used as fillers to enhance the protection of the epoxy coatings for cement mortar, the polydopamine (PDA), which was prepared by self-polymerization of dopamine hydrochloride (DA) and silane coupling agent (KH550), was utilized to modify nano hexagonal boron nitride (hBN) and nano silicon dioxide (SiO2), respectively, to obtain two nanomaterials PDABN and functionalised SiO2(fSiO2) by polymerization reactions. A new nanomaterial, polydopamine hexagonal boron nitride - functionalised silicon dioxide (PDABN-fSiO2), was synthesized, and it was mixed with epoxy to prepare a modified coating. The coating was covered on the surface of cement mortar to enhance its carbonation resistance. The microscopic characteristics of nano materials were observed by FT-IR, SEM-EDS and XPS. The modified effect of epoxy coating by nano PDABN-fSiO2 was analyzed by carbonation experiments and permeability tests. Results indicate that the prepared nano PDABN-fSiO2 has a layer-particle structure and better dispersion in coating, which can effectively slow down the penetration of CO2 in the coating. Compared with the blank coating, the carbonation depth of the cement mortar coated with nano PDABN-fSiO2/epoxy coating is decreased by 68.7%, 72.9% and 64.8% at 7, 14 and 28 days of carbonation, respectively, and the permeability of its coating is decreased by 34.7% at 48 hours. Thus, the epoxy coating with nano PDABN-fSiO2 can significantly improve the carbonation resistance of cement mortar and reduce its permeability.-
Key words:
- nano PDABN-fSiO2 /
- epoxy coating /
- microscopic test /
- carbonation /
- permeability
-
表 1 水泥的氧化物组成的质量分数(wt%)
Table 1. Oxide composition of cement (wt%)
Cement CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O Na2O TiO2 P.II 52.5 66.92 19.28 4.20 3.78 2.07 1.84 0.74 0.30 0.26 表 2 制备各种含有填料的环氧树脂涂层所需材料与用量
Table 2. Materials and quantities required for the preparation of various epoxy coatings with fillers
Sample Coating filler component Epoxy dosage/g Total amount of filler/g Epoxy Coating Blank 5 − Nano SiO2/Epoxy Coating Nano SiO2 5 0.05 Nano PDABN/Epoxy Coating Nano PDABN 5 0.05 Nano PDABN-SiO2/Epoxy Coating Nano PDABN-fSiO2 5 0.05 -
[1] 孙伟. 荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命[J]. 东南大学学报(自然科学版), 2006(S2):7-14.SUN Wei. Durability and service life of structure concrete under load and environment coupling effects[J]. Journal of Southeast University (Natural Science Edition),2006(S2):7-14(in Chinese). [2] 李士彬, 孙伟. 疲劳、碳化和氯盐作用下混凝土劣化的研究进展[J]. 硅酸盐学报, 2013, 41(11):1459-1464.LI Shibin, SUN Wei. Research progress on deterioration of concrete under fatigue, carbonation and chloride salts[J]. Journal of the Chinese Ceramic Society,2013,41(11):1459-1464(in Chinese). [3] 柏朱安. 有机成膜涂层混凝土抗碳化性能的时变退化[D]. 徐州: 中国矿业大学, 2017.BO Zhuan. Time-varying degradation of carbonation resistance of organic film-forming coated concrete[D]. Xuzhou: China University of Mining & Technology, 2017(in Chinese). [4] 马骏, 孙冬, 张明爽, 等. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8):4456-4462. doi: 10.16085/j.issn.1000-6613.2020-1790MA Jun, SUN Dong, ZHANG Mingshuang, et al. Preparation of graphene oxide modified epoxy resin coating and research on its anti-corrosive performance[J]. Chemical Industry and Engineering Progress,2021,40(8):4456-4462(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1790 [5] 汪雨微, 欧宝立, 鲁忆, 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12):3971-3985.WANG Yuwei, OU Baoli, LU Yi, et al. Preparation and properties of functionalized nano-TiO2/epoxy resin superhydrophobic anticorrosive composite coating[J]. Acta Materiae Compositae Sinica,2021,38(12):3971-3985(in Chinese). [6] Li G, Hu W J, Cui H Y, et al. Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO2 modified polymer coatings[J]. Construction and Building Materials,2019,201:623-630. doi: 10.1016/j.conbuildmat.2019.01.004 [7] 范春华. 氧化石墨烯改性环氧树脂涂层提升混凝土抗碳化性能的研究[D]. 徐州: 中国矿业大 学, 2021.FAN Chunhua. Research on graphene oxide modified epoxy resin coating to enhance the anti-carbonation performance of concrete [D]. Xuzhou: China University of Mining & Technology, 2021(in Chinese). [8] 郑昌佶, 王博, 杨佳明, 等. 纳米SiO2分散性对SiO2/LDPE纳米复合材料直流介电性能的影响[J]. 复合材料学报, 2022, 40:1-13.ZHENG Changji, WANG Bo, YANG Jjiaming, et al. Influence of nano-SiO2 dispersion on the direct current dielectric properties of SiO2/LDPE nanocomposite[J]. Acta Materiae Compositae Sinica,2022,40:1-13(in Chinese). [9] YU Z X, DI H H, MA Y, et al. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings[J]. Applied Surface Science,2015,351:986-996. doi: 10.1016/j.apsusc.2015.06.026 [10] 徐凡, 刘雨薇, 高梦幻, 等. 碳掺杂六方氮化硼通过增强静电相互作用高效去除水中的Cu2+[J]. 离子交换与吸附, 2021, 37(6):481-493.XU Fan, LIU Yuwei, GAO Menghuan, et al. Efficient removal of Cu2+ from water by carbon-doped hexagonal boron nitride through enhanced electrostatic interactions[J]. Ion Exchange and Adsorption,2021,37(6):481-493(in Chinese). [11] YANG Y C, SONG Z G, LU G Y, et al. Intrinsic toughening and stable crack propagation in hexagonal boron nitride[J]. Nature,2021,594:57-61. doi: 10.1038/s41586-021-03488-1 [12] 国家市场监督管理总局, 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671-2021[S]. 北京: 中国标准出版社, 2021.State Administration for Market Regulation, Standardization Administration of China. Test method of cement mortar strength (ISO method ): GB/T 17671-2021[S]. Beijing: China Quality and Standards Publishing & Media Co. , Ltd, 2021. (in Chinese) [13] SONG J, DAI Z D, LI J Y, et al. Polydopamine- decorated boron nitride as nano-reinforcing fillers for epoxy resin with enhanced thermomechanical and tribological properties[J]. Materials Research Express,2018,5(7):075029. doi: 10.1088/2053-1591/aab529 [14] WAN P Y, ZHAO N, QI F G, et al. Synthesis of PDA-BN@f-Al2O3 hybrid for nanocomposite epoxy coating with superior corrosion protective properties[J]. Progress in Organic Coatings,2020,146:105713. doi: 10.1016/j.porgcoat.2020.105713 [15] 中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236-2019[S]. 北京: 人民交通出版社, 2019.Ministry of Transport of the People's Republic of China. Testing specifications for concrete in water transport engineering: JTS/T 236-2019[S]. Beijing: China Communications Press, 2019. (in Chinese). [16] ZHENG Y, SUN D, FENG Q, et al. Nano-SiO2 Modified Basalt Fiber for Enhancing Mechanical Properties of Oil Well Cement[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,648:128900. doi: 10.1016/j.colsurfa.2022.128900 [17] MUHAMMAD M, HU S H, MA R N, et al. Enhancing the corrosion resistance of Q235 mild steel by incorporating poly (dopamine) modified h-BN nanosheets on zinc phosphate-silane coating[J]. Surface and Coatings Technology,2020,390:125682. doi: 10.1016/j.surfcoat.2020.125682 [18] JIN W Q, YUAN L, LIANG G Z, et al. Multifunctional cyclotriphosphazene/hexagonal boron nitride hybrids and their flame retarding bismaleimide resins with high thermal conductivity and thermal stability[J]. ACS applied materials & interfaces,2014,6(17):14931-14944. [19] MA G X, XU J X, HAN L, et al. Enhanced inhibition performance of NO2-intercalated MgAl-LDH modified with nano-SiO2 on steel corrosion in simulated concrete pore solution[J]. Corrosion Science,2022,204:110387. doi: 10.1016/j.corsci.2022.110387 [20] LIU Y, LIN Q, CHEN J Q, et al. PDMS-OH and Nano-SiO2 Modified KH570-TEOS Silica-sol Coating and Protective Effect on Concrete[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,648:129279. doi: 10.1016/j.colsurfa.2022.129279 [21] LIU H, HAN R, LIU H, et al. Development of hydrogen-free fully amorphous silicon oxycarbide coating by thermal organometallic chemical vapor deposition technique[J]. Journal of Non-Crystalline Solids,2022,575:121204. doi: 10.1016/j.jnoncrysol.2021.121204 [22] PRASAD V, SEKAR K, JOSEPH M A. Mechanical and water absorption properties of nano TiO2 coated flax fibre epoxy composites[J]. Construction and Building Materials,2021,284:122803. doi: 10.1016/j.conbuildmat.2021.122803 [23] WU A, ZHAO X, YANG C, et al. A comparative study on aggregation and sedimentation of natural goethite and artificial Fe3O4 nanoparticles in synthetic and natural waters based on extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory and molecular dynamics simulations[J]. Journal of Hazardous Materials,2022,435:128876. doi: 10.1016/j.jhazmat.2022.128876 [24] WAN X Y, Zhan Y Q, LONG Z H, et al. High-performance magnetic poly (arylene ether nitrile) nanocomposites: Co-modification of Fe3O4 via mussel inspired poly(dopamine) and amino functionalized silane KH550[J]. Applied Surface Science,2017,425:905-914. doi: 10.1016/j.apsusc.2017.07.136 [25] WANG D, LIU D, XU J H, et al. Highly thermoconductive yet ultraflexible polymer composites with superior mechanical properties and autonomous self-healing functionality via a binary filler strategy[J]. Materials Horizons,2022,9(2):640-652. doi: 10.1039/D1MH01746B [26] 张宏亮, 冯礼奎, 宋小宁, 等. 环己胺甲基脲气相缓蚀剂的缓蚀作用研究[J]. 表面技术, 2018, 47(10):45-50. doi: 10.16490/j.cnki.issn.1001-3660.2018.10.006ZHANG Hongliang, FENG Likui, SONG Xiaoning, et al. Study on the corrosion inhibition of cyclohexylamine methylurea vapor phase corrosion inhibitors[J]. Surface Technology,2018,47(10):45-50(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2018.10.006 [27] SONG B, SHI Y, LIU Q. An inorganic route to decorate graphene oxide with nanosilica and investigate its effect on anti-corrosion property of waterborne epoxy[J]. Polymers for Advanced Technologies,2020,31(2):309-318. doi: 10.1002/pat.4770 [28] LIU Y, LIN Q, CHEN J, et al. PDMS-OH and Nano-SiO2 Modified KH570-TEOS Silica-sol Coating and Protective Effect on Concrete[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,648:129279. doi: 10.1016/j.colsurfa.2022.129279 [29] 赵明月, 裴晓园, 王维, 等. 二维纳米填料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5):2049-2059.ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/ epoxycomposite coating in corrosion protection[J]. Acta Materiae Compositae Sinica,2022,39(5):2049-2059(in Chinese). [30] Yu M, Di H H, Yu Z X, et. al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science,2016,360:936-945. doi: 10.1016/j.apsusc.2015.11.088 [31] Wu Y M, Yu J J, Zhao W J, et al. Investigating the anti-corrosion behaviors of the waterborne epoxy composite coatings with barrier and inhibition roles on mild steel[J]. Progress in Organic Coatings,2019,133:8-18. doi: 10.1016/j.porgcoat.2019.04.028 [32] 周毛毛, 蒋阳, 谢于辉, 等. 纳米二氧化钛的制备, 改性及其在聚合物基复合材料中的应用研究进展[J]. 复合材料学报, 2022, 39(5):2089-2105.ZHOU Maomao, JIANG Yang, XIE Yuhui, et al. Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress[J]. Acta Materiae Compositae Sinica,2022,39(5):2089-2105(in Chinese). -

计量
- 文章访问数: 194
- HTML全文浏览量: 106
- 被引次数: 0