留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2-NH2-GA-AAS/CS席夫碱复合涂层的制备和吸湿性能

刘玲莉 韩云龙 钱付平 陆彪

刘玲莉, 韩云龙, 钱付平, 等. SiO2-NH2-GA-AAS/CS席夫碱复合涂层的制备和吸湿性能[J]. 复合材料学报, 2023, 40(6): 3366-3374. doi: 10.13801/j.cnki.fhclxb.20220909.003
引用本文: 刘玲莉, 韩云龙, 钱付平, 等. SiO2-NH2-GA-AAS/CS席夫碱复合涂层的制备和吸湿性能[J]. 复合材料学报, 2023, 40(6): 3366-3374. doi: 10.13801/j.cnki.fhclxb.20220909.003
LIU Lingli, HAN Yunlong, QIAN Fuping, et al. Preparation and hygroscopic properties of SiO2-NH2-GA-AAS/CS Schiff base composite coating[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3366-3374. doi: 10.13801/j.cnki.fhclxb.20220909.003
Citation: LIU Lingli, HAN Yunlong, QIAN Fuping, et al. Preparation and hygroscopic properties of SiO2-NH2-GA-AAS/CS Schiff base composite coating[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3366-3374. doi: 10.13801/j.cnki.fhclxb.20220909.003

SiO2-NH2-GA-AAS/CS席夫碱复合涂层的制备和吸湿性能

doi: 10.13801/j.cnki.fhclxb.20220909.003
详细信息
    通讯作者:

    韩云龙,博士,副教授,硕士生导师,研究方向为空调系统节能与自控技术 E-mail: hanlongy@163.com

  • 中图分类号: TB332

Preparation and hygroscopic properties of SiO2-NH2-GA-AAS/CS Schiff base composite coating

  • 摘要: 为得到轻便的高吸湿材料,制备席夫碱(Schiff)复合涂层对基体材料亲水改性以提高吸湿性能。利用戊二醛(GA)作为中间体共价连接氨基化纳米二氧化硅(SiO2)和亲水物质2-[(2-氨基乙基)氨基]乙磺酸钠(AAS)制得席夫碱复合材料(SiO2-NH2-GA-AAS),将其分散在壳聚糖(CS)溶液中制得SiO2-NH2-GA-AAS / CS复合涂层。以高分子材料聚对苯二甲酸乙二酯醇(PET)作为基材,采用浸渍的方法将复合涂层涂覆在其表面进行改性。采用FTIR、场发射扫描电子显微镜配备能谱仪(FESEM-EDS)和接触角测量仪对涂覆复合涂层后的PET基材的微观形貌、元素分布及表面润湿性进行表征分析,并对吸附过程进行伪一级、伪二级动力学模型拟合。结果表明:当SiO2-NH2/AAS质量比为1∶2,SiO2-NH2-GA-AAS用量为10wt%时,改性后的PET基材吸湿性能最佳。FESEM-EDS显示改性后的PET基材表面较均匀地附着复合涂层且含有Schiff复合材料的特征元素,同时接触角从原始的135°变为0°,达到了超亲水效果。在25℃、97%相对湿度(RH)环境下,最优复合涂层改性后的PET基材在经过45 h吸湿后达到平衡,吸湿率高达36.94%,吸湿性能得到了极大的提高,整个吸附过程符合伪二级动力学模型。

     

  • 图  1  SiO2-NH2-GA-AAS/壳聚糖(CS)复合涂层制备过程示意图

    Figure  1.  Schematic diagram of preparation process of SiO2-NH2-GA-AAS/chitosan (CS) composite coating

    图  2  SiO2-NH2-GA-AAS复合材料的合成机制图

    Figure  2.  Synthesis mechanism diagram of SiO2-NH2-GA-AAS composite material

    APTES—Silane coupling agent 3-aminopropyl triethoxy silane

    图  3  SiO2-NH2-GA-AAS的FTIR图谱

    Figure  3.  FTIR spertca of SiO2-NH2-GA-AAS

    图  4  改性后PET基材表面主要元素的EDS图谱

    Figure  4.  EDS spectra of the main elements on the modified PET substrate surface

    图  5  不同SiO2-NH2/AAS质量比对改性后PET基材吸湿性能的影响

    Figure  5.  Impact of different mass ratio of SiO2-NH2/AAS on hygroscopic properties of modified PET substrate

    图  6  不同SiO2-NH2-GA-AAS含量对改性后PET基材吸湿性能的影响

    Figure  6.  Impact of different content of SiO2-NH2-GA-AAS on hygroscopic properties of modified PET substrate

    图  7  SiO2-NH2-GA-AAS添加量为1wt% (a)、4wt% (b)、7wt% (c)、10wt% (d) 和13wt% (e) 时SiO2-NH2-GA-AAS/CS涂层表面状态

    Figure  7.  Surface state of the SiO2-NH2-GA-AAS/CS coating when the content of SiO2-NH2-GA-AAS is 1wt% (a), 4wt% (b), 7wt% (c), 10wt% (d) and 13wt% (e)

    图  8  未经处理的聚对苯二甲酸乙二酯醇(PET)、PET-CS、最优SiO2-NH2-GA-AAS/CS复合涂层改性后的PET基材吸湿性能随时间的变化

    Figure  8.  Hygroscopicity of untreated polyethylene terephthalate (PET), PET-CS and PET-SiO2-NH2-GA-AAS/CS changes with time

    图  9  25℃、97%相对湿度(RH)下吸附过程的伪一级动力学拟合 (a) 和伪二级动力学拟合 (b)

    Figure  9.  Pseudo-first-order kinetic fitting (a) and Pseudo-second-order kinetic fitting (b) of adsorption process at 25℃ and 97% relative humidity (RH)

    图  10  未经处理的PET (a)、涂覆1wt% (b)、4wt% (c)、7wt% (d)、10wt% (e) 和13wt% (f) SiO2-NH2-GA-AAS/CS复合涂层PET基材表面SEM图像

    Figure  10.  SEM images of untreated PET (a), PET substrate surface coated with 1wt% (b), 4wt% (c), 7wt% (d), 10wt% (e) and 13wt% (f) SiO2-NH2-GA-AAS/CS composite coating

    图  11  未经处理的PET表面水接触角图 (a)、水滴滴在SiO2-NH2-GA-AAS/CS涂层表面0 s时 (b) 和1 s时 (c) 的水接触角图

    Figure  11.  Contact angle of the untreated PET surface (a) and of the water droplet at 0 s (b) and 1 s (c) on the SiO2-NH2-GA-AAS/CS coating surface

    图  12  改性后PET基材在不同磨损循环下的质量变化率和接触角变化图

    Figure  12.  Mass change rate and contact angle change diagram of modified PET substrate under different abrasion cycles

    图  13  改性PET基材在不同pH下的质量变化率和接触角变化图

    Figure  13.  Mass change rate and contact angle change diagram of modified PET substrate under different pH

    表  1  不同SiO2-NH2/2-[(2-氨基乙基)氨基]乙磺酸钠(AAS)质量比下的SiO2-NH2-戊二醛(GA)-AAS复合材料配方

    Table  1.   SiO2-NH2-glutaraldehyde (GA)-2-[(2-aminoethyl)amino] ethanesulfonate sodium (AAS) composite material formulations under different mass ratio of SiO2-NH2/AAS

    Sample
    number
    Mass ratio of SiO2-NH2/AASSiO2-NH2/gAAS/gGA/g
    SiO2-NH2-GA-AAS0.1254∶10.50.1250.0657
    SiO2-NH2-GA-AAS0.252∶10.50.250.1315
    SiO2-NH2-GA-AAS0.51∶10.50.50.2631
    SiO2-NH2-GA-AAS1.01∶20.510.5263
    SiO2-NH2-GA-AAS2.01∶40.521.0527
    下载: 导出CSV

    表  2  改性后PET基材表面元素含量

    Table  2.   Surface element content of modified PET

    ElementCOSiSNa
    Mass fraction/wt%46.1145.527.041.170.16
    下载: 导出CSV
  • [1] JIN S X, YU Q F, LI M, et al. Quantitative evaluation of carbon materials for humidity buffering in a novel dehumidification shutter system powered by solar energy[J]. Building and Environment,2021,194:107714. doi: 10.1016/j.buildenv.2021.107714
    [2] CONSEIL-GUDLA H, JELLESEN M S, AMBAT R. Humidity control in electronic devices: water sorption properties of desiccants and related humidity build-up in enclosures[J]. IEEE Transactionson Components, Packaging and Manufacturing Technology,2021,11(2):324-332. doi: 10.1109/TCPMT.2020.3045495
    [3] LI K, LUO W, TSAI B, et al. Performance analysis of two-stage solid desiccant densely coated heat exchangers[J]. Sustainability,2020,12(18):7357. doi: 10.3390/su12187357
    [4] 孟维丹, 赵景丽, 王娇娜, 等. PAA/PVA复合纳米纤维膜的制备与吸湿性能研究[J]. 北京服装学院学报(自然科学版), 2022, 42(1):8-14.

    MENG W D, ZHAO J L, WANG Q N, et al. Proparation and properties of PAA/PVA composite nanofiber dryer[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition),2022,42(1):8-14(in Chinese).
    [5] FANG Y, SUN W, LIU H, et al. Construction of eco-friendly flame retardant and dripping-resistant coating on polyester fabrics[J]. Surface Engineering,2021,37(8):1067-1073. doi: 10.1080/02670844.2021.1911458
    [6] DONG W, QIAN F P, LI Q, et al. Fabrication of superhydrophobic PET filter material with fluorinated SiO2 nanoparticles via simple sol-gel process[J]. Journal of Sol-Gel Science and Technology,2021,98(1):224-237. doi: 10.1007/s10971-021-05483-4
    [7] PARK S J, KO T, YOON J, et al. Highly adhesive and high fatigue resistant copper/PET flexible electronic substrates[J]. Applied Surface Science,2018,427:1-9.
    [8] 丁蕊蕊, 潘均安, 阳范文, 等. PET薄膜的亲水改性研究[J]. 表面技术, 2023, 52(4): 374-380.

    DING R R, PAN J A, YANG F W, et al. Study on hydrophilic modification of PET film[J]. Surface Technology, 2023, 52(4): 374-380(in Chinese).
    [9] 陈彬霞, 周泽航, 卢灿辉. 等离子体辐照亲水改性再生聚酯纤维及其结构演变[J]. 高分子材料科学与工程, 2022, 38(1):43-49.

    CHEN B X, ZHOU Z H, LU C H. Hydrophilic modification and structure evolution of atmospheric plasma treated recycled ester fiber[J]. Polymer Materials Science & Engi-neering,2022,38(1):43-49(in Chinese).
    [10] ZHANG W, LI J, TANG R, et al. Hydrophilic and antibacterial surface functionalization of polyamide fabric by coating with polylysine biomolecule[J]. Progress in Organic Coatings,2020,142:105571. doi: 10.1016/j.porgcoat.2020.105571
    [11] XU Q, JI X, TIAN J, et al. Inner surface hydrophilic modification of PVDF membrane with tea polyphenols/silica composite coating[J]. Polymers,2021,13(23):4186. doi: 10.3390/polym13234186
    [12] SHOKOUHIAN M, SOLOUKI S. p-Phenylenediamine grafted multi-walled carbon nanotubes as a hydrophilic modifier in thin-film nanocomposite membrane[J]. Polymer Bulletin,2020,77(7):3485-3498. doi: 10.1007/s00289-019-02899-5
    [13] PICCININI F, LEVI M, TURRI S. Photoactive sol-gel hybrid coatings from modified fluorocarbon polymers and amorphous titania[J]. Progress in Organic Coatings,2013,76(9):1265-1272. doi: 10.1016/j.porgcoat.2013.03.026
    [14] MANDAL A, SARKAR A, ADHIKA-RY A, et al. Structure and synthesis of copper based Schiff base and reduced Schiff base complexes: A combined experimental and theoretical investigation of biomimetic catalytic activity[J]. Dalton Transactions,2020,49(43):15461-15472. doi: 10.1039/D0DT02784G
    [15] KARGAR H, MOGHADAM M, SHARIATI L, et al. Synthesis, crystal structure, spectral characterization, theoretical studies, and investigation of catalytic activity in selective oxidation of sulfides by oxoperoxotungsten (VI) Schiff base complex[J]. Journal of Molecular Structure,2022,1257:132608. doi: 10.1016/j.molstruc.2022.132608
    [16] DEMIR R, KAYA I. Humidity properties of Schiff base polymers[J]. Open Chemistry,2018,16(1):937-943. doi: 10.1515/chem-2018-0106
    [17] REN L, YANG Z, HUANG L, et al. Macroscopic poly Schiff base-coated bacteria cellulose with high adsorption performance[J]. Polymers,2020,12(3):714. doi: 10.3390/polym12030714
    [18] SANG Y, CAO Y, WANG L, et al. Nrich porous organic polymers based on Schiff base reaction for CO2 capture and mercury (II) adsorption[J]. Journal of Colloid and Interface Science,2021,587:121-130. doi: 10.1016/j.jcis.2020.12.002
    [19] WANG X, HUANG W, FU L, et al. Preparation of superhydrophilic/underwater superoleophobic membranes for separateing oil-in-water emulsion: Mechanism, progress and perspective[J]. Journal of Coatings Technology and Research,2021,18(2):285-310. doi: 10.1007/s11998-020-00428-y
    [20] 董文杰, 阚泽. 聚氨基酸修饰的纳米二氧化硅的制备及在尼龙改性中的应用[J]. 高分子材料科学与工程, 2018, 34(10): 110-115.

    DONG W J, KAN Z. Preparation of poly(amino acid) modified nanosilicaand its application in nylon modification[J]. Polymer Materials Science and Engineering, 2018, 34(10): 110-115(in Chinese).
    [21] 贾新利, 罗健辉, 王平美, 等. 具有双亲特性的水相哑铃型SiO2纳米粒子的制备[J]. 无机化学学报, 2021, 37(4):653-660.

    JIA X L, LUO J H, WANG P M, et al. Synthesis of dumbbell-like SiO2 nano particles with amphiphilic propertyes inaqueous phase[J]. Chinese Journal of Inorganic Chemistry,2021,37(4):653-660(in Chinese).
    [22] KABIR A, DUNLOP M J, ACHARYA B, et al. Water recycling efficacies of extremely hygroscopic, antifouling hydrogels[J]. RSC Advances,2018,8(66):38100-38107. doi: 10.1039/C8RA07915C
    [23] 杨淼, 郭亚萍, 李静, 等. 磺酸基修饰氧化石墨烯/聚偏氟乙烯复合膜的抗污性能研究[J/OL]. 膜科学与技术: 1-10[2023-04-03]. https://kns.cnki.net/kcms/detail/ 62.1049.tb.20220520.1407.002.html.

    YANG M, GUO Y P, LI J, et al. Antifouling property of sulfonic acid group modified graphene oxide/polyvinylidene fluoride composite membrane[J/OL]. Membrane Science and Technology: 1-10[2023-04-03]. https://kns.cnki.net/kcms/detail/ 62.1049.tb.20220520.1407.002.html(in Chinese).
    [24] 梁涛. 有机及有机/无机杂化超亲水涂层的制备、性能及应用[D]. 广州: 华南理工大学, 2017.

    LIANG T. Fabrication, properties and application of orga-nic and organic-inorganic hybrid superhydrophilic coating[D]. Guangzhou: South China University of Technology, 2017(in Chinese).
    [25] 王为政, 袁坚, 李昌钦, 等. 喷涂法制备耐磨超疏水玻璃[J]. 硅酸盐学报, 2022, 50(4):929-936. doi: 10.14062/j.issn.0454-5648.20211005

    WANG W Z, YUAN J, LI C Q, et al. Wear resistance of superhydrophobic glass by spraying method[J]. Journal of the Chinese Ceramic Society,2022,50(4):929-936(in Chinese). doi: 10.14062/j.issn.0454-5648.20211005
    [26] 李晴, 钱付平, 薛沚怡, 等. 改性SiO2凝胶涂层滤料制备与性能[J]. 复合材料学报, 2021, 38(8):2489-2496.

    LI Q, QIAN F P, XUE Z Y, et al. Study on preparation and performance of modified SiO2 gel coating filter material[J]. Acta Materiae Compositae Sinica,2021,38(8):2489-2496(in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  733
  • HTML全文浏览量:  407
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 修回日期:  2022-09-01
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回