Effect of resin-rich zone on fracture behavior of mode-I delamination of multi-directional laminates
-
摘要: 双悬臂梁(Double Cantilever Beam,DCB)试验是测定复合材料层合板I型层间断裂能最主要方法。针对DCB试样因铺贴聚四氟乙烯薄膜预制分层产生树脂富集区对I型断裂能计算不准确的问题,本文设计三种铺层角度(0//0,0//45,0//90)的DCB试验,采用扫描电镜表征DCB裂纹断面的微观形貌,量化树脂富集影响区域,研究三种工况树脂富集对载荷-位移曲线的非线性行为的影响规律。建立含树脂富集区和纤维桥接扩展区的DCB数值模型,开展量化分析解释和揭示树脂富集区对断裂能R曲线的影响规律。试验结果表明:三种铺层角度对应的树脂富集区的长度明显不同,0//0试样最长,0//90试样最短。树脂富集区和纤维桥接扩展区的耦合作用,导致载荷-位移曲线呈现不同的非线性行为。构建的数值分析模型可以准确预测与试验一致的载荷-位移曲线,验证了树脂富集区对I型分层初始断裂韧性的影响规律。Abstract: The Double Cantilever Beam (DCB) test is the most primary method for determining the interlaminar fracture energy of composite laminate mode-I. In order to address the issue of inaccurate calculation of the mode-I fracture energy due to the resin-rich zone generated by prefabricated delamination from laying polytetrafluoroethylene film for DCB specimens, DCB tests with three laying angles (0//0,0//45,0//90) were designed and scanning electron microscopy was used to characterize the microstructure of DCB crack surfaces. the influence mechanism of resin-rich zone was quantified, and the nonlinear behavior of load-displacement curves under three working conditions of resin enrichment was studied. A numerical model of the DCB containing resin-rich zone and fiber bridging propagation zone was established to conduct quantitative analysis, interpretation, and reveal the mechanisms of the resin-rich zone on the fracture energy R curve. Experimental results show that the lengths of resin-rich zone corresponding to the three laying angles are significantly different, with the 0//0 specimen being the longest and the 0//90 specimen being the shortest. The coupling effect between the resin-rich zone and fiber bridging propagation zone results in different nonlinear behaviors in the load-displacement curves. The constructed numerical analysis model can accurately predict load-displacement curves consistent with experiments, verifying the influence of resin-rich zone on the initial fracture toughness of mode-I layer.
-
表 1 复合材料层合板材料力学性能参数
Table 1. Mechanical property parameters of composite laminate materials
Module Value E11/GPa 117 E22/GPa 7.47 E33/GPa 7.47 G12/GPa 4.07 G13/GPa 4.07 G23/GPa 2.31 ν12 0.33 ν13 0.33 ν23 0.3 Notes: E−Elastic modulus; G−Shear modulus; ν−Poisson ratio; 1−Direction of fiber; 2−Direction of matrix; 3−Thickness direction of layer. 表 2 DCB试样的层间断裂韧性值
Table 2. Interlaminar fracture toughness of DCB specimens
Ply angles Specimen label ${G_{{\text{I - MC}}}}$ $ {G_{{\text{INI}}}} $ Ave. value/(J·m−2) CV/% /(J·m−2) /(J·m−2) ${G_{{\text{I - MC}}}}$ $ {G_{{\text{INI}}}} $ ${G_{{\text{I - MC}}}}$ $ {G_{{\text{INI}}}} $ 0//0 DCB-0-1
DCB-0-2
DCB-0-3343.4
326.6
352.1230.7
241.1
236.1340.7 235.9 3.80 2.21 0//45 DCB-45-1
DCB-45-2
DCB-45-3303.4
310.8
318.2247.6
242.1
251.5310.8 247.1 2.38 1.91 0//90 DCB-90-1
DCB-90-2
DCB-90-3246.6
261.3
301.1234.2
246.2
286.6270.7 255.7 10.43 10.74 Notes: ${G_{{\text{I - MC}}}}$-SERR for matrix cracking damage; $ {G_{{\text{INI}}}} $-SERR for initiation value; CV−Sample coefficient of variation. Resin-rich zone CZM SERR for matrix cracking damage $ {G_{{\text{{\rm I} - MC}}}} $ Interfacial strength $ {\sigma _0} = {\sigma _{\text{b}}} = 78.3 $MPa Initial interfacial stiffness $ {K_0} = {10^{15}} $N/m3[27] Damage initiation displacement $ \delta ' = {\sigma _0}/{K_0} = 7.83 \times {10^{ - 5}}{\text{mm}} $ Damage failure displacement $ {\delta _0} = 2{G_{{\text{{\rm I} - MC}}}}/{\sigma _0} $ MB-CZM Element E1 SERR for matrix cracking damage $ G{'_{{\text{{\rm I} - MC}}}} $=$ {G_{{\text{INI}}}} - {G_{{\text{I - FB}}}} - {G_{{\text{I - FD}}}} $ SERR for matrix/fiber interfacial
separation damage$ {G_{{\text{I - FD}}}} = {G_{{\text{INI}}}} - {G_{{\text{br}}}}(\delta ) - G{'_{{\text{{\rm I} - MC}}}} $ Initial interfacial stiffness $ {K_{{\text{E1}}}} $= 107 N/m3[26] Maximum interface strength $ \sigma _{\max }^c = 0.6{\sigma _{\text{b}}} = 47 $MPa[28] Element E2 Initial interfacial stiffness $ {K_{{\text{E2}}}} = \sigma _{{\text{br}}}^{\max }/{\delta _2} = 4.7 \times {10^{12}} $N/m3 Maximum fiber bridging interface strength $ \sigma _{{\text{br}}}^{\max } = ({G_a}/{\delta _a}) + ({G_b}/{\delta _b}) $ Maximum bridging opening
displacement$ \delta _{{\text{br}}}^{\max } $ Damage failure displacement $ {\delta _2} = 2{G_{{\text{IC}}}}/\sigma _{\max }^{\text{c}} $ Notes: $ {\sigma _{\text{b}}} $-Tensile strength of the matrix; $ {G_{{\text{I - FB}}}} $- SERR associated fiber bridging ahead of the crack tip;$ {G_{{\text{br}}}}(\delta ) $- Strain energy release rate $ {G_{{\text{br}}}}(\delta ) $ as a function of the initial crack tip opening displacement δ ;$ {G_{{\text{IC}}}} $-Interlayer strain energy release rate. 表 4 不同层间铺层角度下DCB试样的拟合参数
Table 4. Fitting parameters of DCB specimens at different interlaminar ply angles
Ply angles ${G_a}$/(J·m−2) ${G_b}$/(J·m−2) ${\delta _a}$/mm $ {\delta _b} $/mm $ \sigma _{{\text{br}}}^{\max } $/MPa 0//0 28.49 254.3 1.504 0.05178 4.93 0//45 348.5 340.5 1.8 0.1 3.59 0//90 134.3 466.9 1.6 0.1 4.75 Notes: ${G_a}$,${G_b}$,${\delta _a}$,$ {\delta _b} $ are the fitting constant coefficients. 表 5 MB-CZM中与分层起始相关的材料参数
Table 5. Material parameters associated with delamination initiation in the MB-CZM
Ply angles $ {\delta _0} $/mm $ G{'_{{\text{{\rm I} - MC}}}} $/(J·m−2) $ {G_{{\text{I - FD}}}} $/(J·m−2) $ {\delta _2} $/mm $ \delta _{{\text{br}}}^{\max } $/mm 0//0 0.00870 235 0.9 0.0100 5.9 0//45 0.00794 246.75 0.35 0.0105 5.3 0//90 0.00691 255.68 0.02 0.01088 3.4 -
[1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001DU S, GUAN Z. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001 [2] 王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力的影响[J]. 复合材料学报, 2020, 37(11): 2833-2843.WANG Yao, CAO Dongfeng, HU Haixiao, et al. Effect of single-bolt repair on compression capability of carbon/epoxy composite laminates containing impact damage[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2833-2843(in Chinese). [3] Sela N, Ishai O. Interlaminar fracture toughness and toughening of laminated composite materials: a review[J]. Composites, 1989, 20(5): 423-435. doi: 10.1016/0010-4361(89)90211-5 [4] D30 Committee. Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites[S]. ASTM International, [2024]. [5] Cao T, Zhao L, Wang Y, et al. An efficient semi-analytical method to study the mode I bridging-traction law of composite laminates[J]. Composite Structures, 2021, 271: 114060. doi: 10.1016/j.compstruct.2021.114060 [6] Bin Mohamed Rehan M S, Rousseau J, Fontaine S, et al. Experimental study of the influence of ply orientation on DCB mode-I delamination behavior by using multidirectional fully isotropic carbon/epoxy laminates[J]. Composite Structures, 2017, 161: 1-7. doi: 10.1016/j.compstruct.2016.11.036 [7] González Ramírez F M, Garpelli F P, De Cássia Mendonça Sales R, et al. Experimental characterization of Mode I fatigue delamination growth onset in composite joints: A comparative study[J]. Materials & Design, 2018, 160: 906-914. [8] Czabaj M W, Ratcliffe J G. Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite[J]. Composites Science and Technology, 2013, 89: 15-23. doi: 10.1016/j.compscitech.2013.09.008 [9] Liu C, Bai R, Lei Z, et al. Study on mode-I fracture toughness of composite laminates with curved plies applied by automated fiber placement[J]. Materials & Design, 2020, 195: 108963. [10] Khan R. Fiber bridging in composite laminates: A literature review[J]. Composite Structures, 2019, 229: 111418. doi: 10.1016/j.compstruct.2019.111418 [11] Shokrieh M M, Heidari-Rarani M, Ayatollahi M R. Delamination R-curve as a material property of unidirectional glass/epoxy composites[J]. Materials & Design, 2012, 34: 211-218. [12] Liu P F, Islam M M. A nonlinear cohesive model for mixed-mode delamination of composite laminates[J]. Composite Structures, 2013, 106: 47-56. doi: 10.1016/j.compstruct.2013.05.049 [13] Zhao M, Zhao Y, Wang A, et al. Investigation of the mode-I delamination behavior of Double-Double laminate carbon fiber reinforced composite[J]. Composites Science and Technology, 2024, 248: 110463. doi: 10.1016/j.compscitech.2024.110463 [14] Gong Y, Zhang B, Zhao L, et al. R-curve behaviour of the mixed-mode I/II delamination in carbon/epoxy laminates with unidirectional and multidirectional interfaces[J]. Composite Structures, 2019, 223: 110949. doi: 10.1016/j.compstruct.2019.110949 [15] Kaushik V, Ghosh A. Experimental and numerical characterization of Mode I fracture in unidirectional CFRP laminated composite using XIGA-CZM approach[J]. Engineering Fracture Mechanics, 2019, 211: 221-243. doi: 10.1016/j.engfracmech.2019.01.038 [16] Thorsson S I, Waas A M, Schaefer J, et al. Effects of elevated loading rates on mode I fracture of composite laminates using a modified wedge-insert fracture method[J]. Composites Science and Technology, 2018, 156: 39-47. doi: 10.1016/j.compscitech.2017.12.018 [17] Shokrieh M M, Salamat-talab M, Heidari-Rarani M. Dependency of bridging traction of DCB composite specimen on interface fiber angle[J]. Theoretical and Applied Fracture Mechanics, 2017, 90: 22-32. doi: 10.1016/j.tafmec.2017.02.009 [18] Stutz S, Cugnoni J, Botsis J. Studies of mode I delamination in monotonic and fatigue loading using FBG wavelength multiplexing and numerical analysis[J]. Composites Science and Technology, 2011, 71(4): 443-449. doi: 10.1016/j.compscitech.2010.12.016 [19] Canal L P, Alfano M, Botsis J. A multi-scale based cohesive zone model for the analysis of thickness scaling effect in fiber bridging[J]. Composites Science and Technology, 2017, 139: 90-98. doi: 10.1016/j.compscitech.2016.11.027 [20] Pappas G, Botsis J. Intralaminar fracture of unidirectional carbon/epoxy composite: experimental results and numerical analysis[J]. International Journal of Solids and Structures, 2016, 85-86: 114-124. doi: 10.1016/j.ijsolstr.2016.02.007 [21] Yao L, Sun Y, Guo L, et al. A validation of a modified Paris relation for fatigue delamination growth in unidirectional composite laminates[J]. Composites Part B: Engineering, 2018, 132: 97-106. doi: 10.1016/j.compositesb.2017.09.007 [22] Heidari-Rarani M, Shokrieh M M, Camanho P P. Finite element modeling of mode I delamination growth in laminated DCB specimens with R-curve effects[J]. Composites Part B: Engineering, 2013, 45(1): 897-903. doi: 10.1016/j.compositesb.2012.09.051 [23] Gong Y, Hou Y, Zhao L, et al. A modified mode I cohesive zone model for the delamination growth in DCB laminates with the effect of fiber bridging[J]. International Journal of Mechanical Sciences, 2020, 176: 105514. doi: 10.1016/j.ijmecsci.2020.105514 [24] Yin S, Gong Y, Li W, et al. A novel four-linear cohesive law for the delamination simulation in composite DCB laminates[J]. Composites Part B: Engineering, 2020, 180: 107526. doi: 10.1016/j.compositesb.2019.107526 [25] 张旭东, 段青枫, 曹东风, 等. 基于复合材料I型分层损伤机制的解耦内聚力方法[J]. 复合材料学报, 2024, 42(0): 1-14. doi: 10.13801/j.cnki.fhclxb.20240311.004ZHANG Xudong, DUAN Qingfeng, CAO Dongfeng, et al. Decoupling cohesion method based on mode I delamination damage mechanism of composite materials[J]. Acta Materiae Compositae Sinica. (in Chinese). doi: 10.13801/j.cnki.fhclxb.20240311.004 [26] Duan Q, Hu H, Cao D, et al. A New Mechanism Based Cohesive Zone Model for Mode I Delamination Coupled with Fiber Bridging of Composite Laminates[J]. Composite Structures, 2024: 117931. [27] Zhao L, Gong Y, Zhang J, et al. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements[J]. Composite Structures, 2014, 116: 509-522. doi: 10.1016/j.compstruct.2014.05.042 [28] Ye Q, Chen P. Prediction of the cohesive strength for numerically simulating composite delamination via CZM-based FEM[J]. Composites Part B: Engineering, 2011, 42(5): 1076-1083. doi: 10.1016/j.compositesb.2011.03.021
计量
- 文章访问数: 24
- HTML全文浏览量: 19
- 被引次数: 0