留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷达-红外双波段兼容的碳纤维/铝粉/改性三元乙丙复合涂层

宁亮 董春蕾 王贤明 吴连锋 于美杰 王成国

宁亮, 董春蕾, 王贤明, 等. 雷达-红外双波段兼容的碳纤维/铝粉/改性三元乙丙复合涂层[J]. 复合材料学报, 2024, 41(11): 5851-5859.
引用本文: 宁亮, 董春蕾, 王贤明, 等. 雷达-红外双波段兼容的碳纤维/铝粉/改性三元乙丙复合涂层[J]. 复合材料学报, 2024, 41(11): 5851-5859.
Ning Liang, DONG Chunlei, WANG Xiangming, et al. Radar-IR dual band compatible carbon fiber/aluminum powder /modified EPDM composite coating[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5851-5859.
Citation: Ning Liang, DONG Chunlei, WANG Xiangming, et al. Radar-IR dual band compatible carbon fiber/aluminum powder /modified EPDM composite coating[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5851-5859.

雷达-红外双波段兼容的碳纤维/铝粉/改性三元乙丙复合涂层

基金项目: 山东省重点研发计划(重大科技创新工程)(2021ZLGX01, 2021CXGC010903);山东省自然科学基金 (ZR2022ME055)
详细信息
    通讯作者:

    王贤明,硕士,正高级工程师,硕士生导师,研究方向为特种涂料 E-mail: wxm133701@163.com

    王成国,博士,教授,博士生导师,研究方向为碳纤维复合材料 E-mail:wangchg@sdu.edu.cn

  • 中图分类号: TB332

Radar-IR dual band compatible carbon fiber/aluminum powder /modified EPDM composite coating

Funds: Key Research and Development Program of Shandong Province (No. 2021ZLGX01, 2021CXGC010903); Shandong Province Natural Science Foundation (No. ZR2022ME055)
  • 摘要: 多波段兼容的复合涂层材料在军民融合领域需求迫切,是目前的研究热点。涂料粘结剂是影响涂层力学性能、红外性能和介电性能的重要组分,然而大部分有机粘结剂红外发射率较高,添加低发射率填料后往往无法协调力学性能、红外隐身和雷达透波性能之间的矛盾。以丙烯酸(AA)、马来酸酐(MAH)为改性单体对三元乙丙粘结剂进行接枝改性,以改性前后的三元乙丙为粘结剂,以漂浮性铝粉和短切抗静电碳纤维为填料,制备了具有低红外发射率和低介电损耗特性的复合涂层。系统研究了改性单体种类、用量对粘结剂本身以及对添加填料的复合涂层性能的影响规律。研究结果表明,随着改性单体含量的增加,复合涂层的红外发射率略有提高,而雷达透波性能基本维持不变。粘结剂的接枝改性改善了填料和粘结剂之间的相容性、润湿性和界面结合,显著提高了复合涂层的力学性能,通过适当的接枝改性,复合涂层的拉伸强度(σb)和断裂伸长率(e)分别可提高32%和18%。分析了引入极性单体对复合涂层介电常数和损耗的影响,以及对填料与树脂相容性的影响。

     

  • 图  1  接枝改性前后EPDM的红外光谱

    Figure  1.  FTIR spectroscopy of EPDM before and after modification

    图  2  单体含量对改性清漆涂层力学性能的影响

    Figure  2.  Effect of monomer content on mechanical properties of modified varnish coatings

    图  3  复合涂层力学性能随改性单体用量的变化

    Figure  3.  Mechanical properties of the composite coating vary with the amount of the monomers

    图  4  复合涂层拉伸断口SEM形貌

    Figure  4.  SEM morphology of composite coating tensile fracture

    (a) Low magnification and (b) high magnification of composite coating without modification (a1)-(a4) composite coating modified by AA (b1)-(b4) composite coating modified by MAH

    图  5  清漆涂层红外发射率随厚度和底板的变化

    Figure  5.  Infrared emissivity of varnish coating with thickness and base plate type

    图  6  复合涂层红外发射率随改性单体的变化(底板均为环氧板)

    Figure  6.  Infrared emissivity of composite coating vary with the amount of the monomers(the base plates are all epoxy)

    图  7  清漆涂层的介电性能随改性单体用量的变化

    Figure  7.  Dielectric properties of the varnish coating vary with the amount of the monomers

    图  8  改性前后复合涂层的介电性能

    Figure  8.  Dielectric properties of the composite coating before and after modification

    表  1  样品编号和单体用量

    Table  1.   Samples and the dosage of monomers

    Samples Dosage of AA/g Dosage of MAH/g
    EPDM-g-AA1 0.5 0
    EPDM-g-AA2 1.0 0
    EPDM-g-AA3 1.5 0
    EPDM-g-AA4 2.0 0
    EPDM-g-MAH1 0 0.5
    EPDM-g-MAH2 0 1.0
    EPDM-g-MAH3 0 1.5
    EPDM-g-MAH4 0 2.0
    Notes: EPDM—Ethylene propylene diene; AA—modified by acrylic acid; MAH—modified by maleic anhydride.
    下载: 导出CSV
  • [1] 张明习, 轩立新. 高性能雷达罩设计与制造关键技术分析[J]. 航空科学技术, 2015, 26(08): 13-8.

    ZHANG Mingxi, XUAN Lixin. The key technologies in designing and fabricating high performance radome[J]. Aeronautical Science& Technology, 2015, 26 (08): 13-18(in Chinese).
    [2] 许群, 张明习. 雷达天线罩电性能测试技术 [M]. 北京: 航空工业出版社, 2021

    XU Qun, ZHANG Mingxi. Radome Electrical Performance Testing Techniques [M]. Beijing: Aviation Industry Press, 2021(in Chinese).
    [3] 门薇薇, 王志强, 轩立新. 隐身雷达罩技术研究进展综述[J]. 现代雷达, 2017, 39(10): 60-6.

    MEN Weiwei, WANG Zhiqiang, XUAN Lixin. Review of radome stealth technology[J]. Modern Radar, 2017, 39(10): 60-6 (in Chinese).
    [4] 孟季茹, 梁国正, 秦华宇, 等. 机载雷达罩涂层的研究概况[J]. 材料导报, 2000, (02): 51-2. doi: 10.3321/j.issn:1005-023X.2000.02.019

    MENG Jiru, LIANG Guozheng, QIN Huayu, et al. Research on coating system for radome[J]. Cailiao Daobao, 2000, (02): 51-2 (in Chinese). doi: 10.3321/j.issn:1005-023X.2000.02.019
    [5] 包宁, 林彬. 天线罩表面涂层的研究[J]. 弹箭与制导学报, 2004, (S9): 553-4+7.

    BAO Ning, LIN Bin, Investigation on surface coating of radome[J]. Danjian & Zhidao Xuebao. 2004, (S9): 553-4+7 (in Chinese).
    [6] 陈翔. 红外低发射率涂料制备及应用研究 [D]. 厦门大学, 2019.

    CHEN Xiang. Research on preparation and application of low infrared emissivity coatings [D]. Xiamen University, 2019 (in Chinese).
    [7] 齐伦. 耐高温红外低发射率涂层材料设计研究 [D]. 电子科技大学, 2022.

    QI Lun. Research on the design of high-temperature resistant coating materials with low infrared emissivity [D]. University of Electronic Science and Technology of China, 2022 (in Chinese).
    [8] ZHANG W G, MA ZW, LV D D, et al. An ultra-low infrared emissivity composite coating with outstanding mechanical properties and salt water resistance[J]. Infrared Physics & Technology, 2022, 126: 104351.
    [9] WANG Y Y, YU M J, GAO Y X, et al. Three-layer composite coatings with compatibility of low infrared emissivity and high wave transmittance[J]. Journal of Alloys and Compounds, 2023, 943: 169038. doi: 10.1016/j.jallcom.2023.169038
    [10] WANG Y J, ZHOU H P, GAO Y X, et al. Low-infrared-emissivity Al@SiO2/EPDM composite coating compatible with low dielectric loss and antistatic property[J]. Infrared Physics & Technology, 2022, 121: 104025.
    [11] 陈帅. 含平行排列片状金属粒子红外低发射率涂层发射率建模 [D]; 电子科技大学, 2015.

    CHEN Shuai. Modeling Emissivity of infrared low emissivity coating containing horizontally oriented metallic flake particles [D]. University of Electronic Science and Technology of China, 2015 (in Chinese).
    [12] 何贺贺. 基于吸波材料和超材料的雷达-红外兼容隐身技术研究 [D]. 合肥工业大学, 2022.

    HE Hehe. Research of radar-infrared compatible stealth technology based on absorbing material and metamaterial [D]. Hefei University of Technology, 2022 (in Chinese).
    [13] DUAN Y P, WANG M, CHEN W, et al. Layered metamaterials with Sierpinski triangular fractal metasurface: Compatible stealth for S-band radar and infrared[J]. Materials Today Physics, 2023, 38: 101210. doi: 10.1016/j.mtphys.2023.101210
    [14] ZHANG T, DUAN Y P, LIU J Y, et al. Asymmetric electric field distribution enhanced hierarchical metamaterials for radar-infrared compatible camouflage[J]. Journal of Materials Science & Technology, 2023, 146: 10-18.
    [15] YUAN L, WENG X, DENG L. Influence of binder viscosity on the control of infrared emissivity in low emissivity coating[J]. Infrared Physics & Technology, 2013, 56: 25-9.
    [16] WANG Y, ZHOU H, GAO Y, et al. Low-infra red-emissivity Al@SiO2/EPDM composite coating compatible with low dielectric loss and antistatic property[J]. Infrared Physics & Technology, 2022, 121.
    [17] SUN K, ZHANG D, YIN H, et al. Preparation of AZO/Cu/AZO films with low infrared emissivity, high conductivity and high transmittance by adjusting the AZO layer[J]. Applied Surface Science, 2022, 578.
    [18] LEONE G, ZANCHIN G, DI GIROLAMO R, et al. Semibatch Terpolymerization of Ethylene, Propylene, and 5-Ethylidene-2-norbornene: Heterogeneous High-Ethylene EPDM Thermoplastic Elastomers[J]. Macromolecules, 2020, 53(14): 5881-94. doi: 10.1021/acs.macromol.0c01123
    [19] 张伟钢, 陈昭, 薛连海. 酸蚀Al粉对Al-聚氨酯复合涂层光泽度与红外发射率的影响[J]. 复合材料学报, 2017, 34(10): 2182-2186.

    ZHANG W G, CHEN Z, XUE L H. Effects of acid-etched Al powders on glossiness and infrared emissivity of Al-polyurethane composite coatings[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2182-2186 (in Chinese).
    [20] 张伟钢, 薛连海, 刘羽熙, 等. 耐温型近红外低反射与8~14 μm低发射率兼容涂层的制备及性能表征[J]. 复合材料学报, 2017, 34(03): 508-514.

    ZHANG W G, XUE L H, LIU Y X, et al. Preparation and property characterization of heat resistant low near-infrared reflection and 8-14 µm low emissivity composite coatings[J]. Acta Materiae Compositae Sinica, 2017, 34(03): 508-514 (in Chinese).
    [21] 张伟钢, 徐国跃, 乔加亮, 等. Al-Sm2O3/聚氨酯复合涂层的近红外低反射与8~14 μm低发射率性能[J]. 复合材料学报, 2014, 31(02): 436-446.

    ZHANG W G, XU G Y. QIAO J L, et al. Low emissivity at 8 to 14 μm and low near-infrared reflective properties of Al-Sm2O3/polyurethane composite coatings.[J]. Acta Materiae Compositae Sinica, 2014, 31(02): 436-446 (in Chinese).
    [22] 谢国华, 张佐光. 红外与雷达隐身涂层激光后散射特性[J]. 复合材料学报, 2004, (05): 93-97.

    XIE G H, ZHANG Z G. Back reflection characteristics of laser on infrared camouflage coating and microwave absorbing coating[J]. Acta Materiae Compositae Sinica, 2004, (05): 93-97 (in Chinese).
    [23] 中国国家标准化管理委员会(标准制定单位). 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528-2009 [S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Determination of tensile stress-strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528-2009 [S]. Beijing: China Standards Press, 2009 (in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  92
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2023-12-23
  • 录用日期:  2023-12-25
  • 网络出版日期:  2024-01-24
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回