留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni0.6Zn0.4Fe2O4/rGO复合材料及其改性涂层的电磁吸波性能

谢艳娇 马晓 包云凤 宫新菊 官海龙 郭思瑶

谢艳娇, 马晓, 包云凤, 等. Ni0.6Zn0.4Fe2O4/rGO复合材料及其改性涂层的电磁吸波性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 谢艳娇, 马晓, 包云凤, 等. Ni0.6Zn0.4Fe2O4/rGO复合材料及其改性涂层的电磁吸波性能[J]. 复合材料学报, 2024, 42(0): 1-12.
XIE Yanjiao, MA Xiao, BAO Yunfeng, et al. Electromagnetic absorption properties of Ni0.6Zn0.4Fe2O4/rGO composites and their modified coatings[J]. Acta Materiae Compositae Sinica.
Citation: XIE Yanjiao, MA Xiao, BAO Yunfeng, et al. Electromagnetic absorption properties of Ni0.6Zn0.4Fe2O4/rGO composites and their modified coatings[J]. Acta Materiae Compositae Sinica.

Ni0.6Zn0.4Fe2O4/rGO复合材料及其改性涂层的电磁吸波性能

基金项目: 国家自然科学基金(51978354)
详细信息
    通讯作者:

    郭思瑶,博士,教授,博士生导师,研究方向为新型纳米材料在土木工程的多元化应用 E-mail: guosy@qut.edu.cn

  • 中图分类号: TU599;TB333

Electromagnetic absorption properties of Ni0.6Zn0.4Fe2O4/rGO composites and their modified coatings

Funds: National Natural Science Foundation of China (No. 51978354)
  • 摘要: 随着5G时代的到来,各类电子设备的广泛使用随之导致了严重的电磁污染问题,迫切需要开发高性能的电磁吸波材料来解决上述问题。本文采用简单的原位生长法在还原氧化石墨烯(rGO)片层上生长了镍锌铁氧体(Ni0.6Zn0.4Fe2O4)纳米粒子,通过控制rGO的掺量制备了一系列的Ni0.6Zn0.4Fe2O4/rGO (NZFO/rGO)吸波剂,NZFO/rGO-1:0.5在11.24 GHz时的最小反射损耗(RL)值为−60.72 dB,匹配厚度为2.98 mm。此外,制备的NZFO/rGO/环氧树脂吸波涂层在NZFO/rGO-1:0.5复合材料掺量为5 wt%时,涂覆在水泥基平板上的最小RL值为−42.2 dB,比纯环氧树脂涂层的最小RL值降低了90.95%;当掺量为3wt%时,有效吸收带宽(EAB)为8.88 GHz,RL值小于−5 dB时吸收带宽可达13.2 GHz。

     

  • 图  1  镍锌铁氧体(Ni0.6Zn0.4Fe2O4)和Ni0.6Zn0.4Fe2O4/还原氧化石墨烯(NZFO/rGO)复合材料的XRD图谱

    Figure  1.  XRD patterns of nickel zinc ferrite (Ni0.6Zn0.4Fe2O4) and Ni0.6Zn0.4Fe2O4/reduced graphene oxide (NZFO/rGO) composites

    图  2  (a、e) NZFO,(b、f) NZFO/rGO-1:0.2,(c、g) NZFO/rGO-1:0.5和(d、h) NZFO/rGO-1:1复合材料的SEM图片

    Figure  2.  SEM images of (a, e) NZFO, (b, f) NZFO/rGO-1:0.2, (c, g) NZFO/rGO-1:0.5, and (d, h) NZFO/rGO-1:1 composites

    图  3  所有复合材料的(a)介电常数实部$ {\varepsilon }^{\prime } $,(b)磁导率实部${\mu }^{\prime } $, (c)介电常数虚部$ {\varepsilon }^{\prime\prime } $,(d)磁导率虚部$ {\mu }^{\prime \prime } $, (e)介电损耗正切$ \text{tan}{\delta }_{\mathrm{\varepsilon }} $,(f)磁损耗正切$ \text{tan}{\delta }_{\mathrm{\mu }} $

    Figure  3.  (a) the real part of complex permittivity $ {\varepsilon }^{\prime }$, (b) the real part of complex permeability ${\mu }^{\prime } $, (c) the imaginary part of complex permittivity $ {\varepsilon }^{\prime\prime }$, (d) the imaginary part of complex permeability $ {\mu }^{\prime\prime }$, (e) the dielectric loss tangent $ \text{tan}{\delta }_{\mathrm{\varepsilon }} $, (f) the magnetic loss tangent $ \text{tan}{\delta }_{\mathrm{\mu }} $ of all composites

    图  4  (a) NZFO, (b) NZFO/rGO-1:0.2, (c) NZFO/rGO-1:0.5和(d) NZFO/rGO-1:1复合材料的RL值和三维RL图

    Figure  4.  The RL values and 3 D RL plots of (a) NZFO, (b) NZFO/rGO-1:0.2, (c) NZFO/rGO-1:0.5, and (d) NZFO/rGO-1:1 composites

    图  5  (a) NZFO, (b) NZFO/rGO-1:0.2, (c) NZFO/rGO-1:0.5和(d) NZFO/rGO-1:1复合材料的Cole-Cole曲线

    Figure  5.  The Cole-Cole curves of (a) NZFO, (b) NZFO/rGO-1:0.2, (c) NZFO/rGO-1:0.5, and (d) NZFO/rGO-1:1 composites

    图  6  (a) NZFO/rGO-1:0.5复合材料不同厚度与RL值的频率依赖关系以及对应的阻抗匹配,所有NZFO/rGO复合材料的(b)衰减常数和(c)涡流系数

    Figure  6.  (a) The frequency dependence of RL values for the NZFO/rGO-1:0.5 composite with different thicknesses and the corresponding impedance matching; (b) the attenuation constant and (c) the eddy current loss of all NZFO/ /rGO composites

    图  7  NZFO/rGO复合材料可能的电磁波吸收机制

    Figure  7.  The possible EMA mechanisms for NZFO/rGO composites

    图  8  不同改性环氧树脂涂层的水泥基板的(a)反射率和(b)有效吸收带宽

    Figure  8.  The (a) reflectivity and (b) EAB of the cement-based with different modified epoxy resin coatings

    表  1  普通硅酸盐水泥(P.O.42.5 R)的化学成分 (wt%)

    Table  1.   Chemical composition of ordinary Portland cement (P.O.42.5 R) (wt%)

    CaOSiO2Al2O3Fe3O4MgOSO3K2OP2O5Na2Oother
    55.3419.916.925.915.193.211.611.040.120.75
    下载: 导出CSV
  • [1] GAO Y, PAN L N, WU Q, et al. Honeycomb-like SnS2/graphene oxide composites for enhanced microwave absorption[J]. Journal of Alloys and Compounds, 2022, 915: 165405. doi: 10.1016/j.jallcom.2022.165405
    [2] WANG Z, ZHAO H R, DAI D, et al. Ultralight, tunable monolithic SiC aerogel for electromagnetic absorption with broad absorption band[J]. Ceramics International, 2022, 48(18): 26416-26424. doi: 10.1016/j.ceramint.2022.05.332
    [3] 谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248.

    XIE W H, GENG H R, LIU Y, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248(in Chinese).
    [4] YANG E Q, QI X S, CAI H B, et al. Composition optimization of Co3-xFexO4/reduced graphene oxide nanohybrids as excellent electromagnetic wave absorption abilities[J]. Materials Science Engineering B, 2018, 238-239: 7-17. doi: 10.1016/j.mseb.2018.12.009
    [5] ZHAO X, HUANG Y, LIU X, et al. Core-shell CoFe2O4@C nanoparticles coupled with rGO for strong wideband microwave absorption[J]. Journal of Colloid Interface Science, 2022, 607: 192-202. doi: 10.1016/j.jcis.2021.08.203
    [6] 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7): 3303-3316.

    HU Z L, WU H H, YANG Z H, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3303-3316(in Chinese).
    [7] DING J, CHENG L G, ZHAO W X. Self-assembly magnetic FeCo nanostructures on oxide graphene for enhanced microwave absorption[J]. Journal of Electron Materials, 2022, 51(6): 2856-2866. doi: 10.1007/s11664-022-09552-4
    [8] HOU M M, DU Z J, LIU Y, et al. Reduced graphene oxide loaded with magnetic nanoparticles for tunable low frequency microwave absorption[J]. Journal of Alloys and Compounds, 2022, 913: 165137. doi: 10.1016/j.jallcom.2022.165137
    [9] HU F F, NAN H, WANG M Q, et al. Construction of core-shell BaFe12O19@MnO2 composite for effectively enhancing microwave absorption performance[J]. Ceramics International, 2021, 47(12): 16579-16587. doi: 10.1016/j.ceramint.2021.02.229
    [10] GUO W M, ZHU H T, REN Q F, et al. MnFe2O4/ZnO/diatomite composites with electromagnetic wave absorption and antibacterial bifunctions[J]. Solid State Sciences, 2023, 138.
    [11] SALEEM A, ZHANG Y J, GONG H Y, et al. Electromagnetic wave absorption performance of Ni doped Cu-ferrite nanocrystals[J]. Materials Research Express, 2020, 7(1): 016117. doi: 10.1088/2053-1591/ab6c1a
    [12] LIU C C, LIU S N, FENG X F, et al. Phthalocyanine-mediated interfacial self-assembly of magnetic graphene nanocomposites toward low-frequency electromagnetic wave absorption[J]. Chemical Engineering Journal, 2023, 452: 139483. doi: 10.1016/j.cej.2022.139483
    [13] FU X Y, ZHENG Q, LI L, et al. Vertically implanting MoSe2 nanosheets on the RGO sheets towards excellent multi-band microwave absorption[J]. Carbon, 2022, 197: 324-333. doi: 10.1016/j.carbon.2022.06.037
    [14] MA L L, DOU Z F, LI D G, et al. Facile synthesis of nitrogen-doped porous Ni@C nanocomposites with excellent synergistically enhanced microwave absorption and thermal conductive performances[J]. Carbon, 2023, 201: 587-598. doi: 10.1016/j.carbon.2022.09.055
    [15] 中国国家标准化管理委员会(标准制定单位): 雷达吸波材料反射率测试方法, GJB2038A-2011[S]. 北京: 总装备部军标出版发行部, 2011.

    Standardization Administration of the People's Republic of China: The measurement methods for reflectivity of radar absorbing material: GJB2038A-2011[S]. Beijing: General Armament Department Military Standards Press, 2011.
    [16] GUO S Y, GUAN H L, LI Y, et al. Dual-loss Ti3C2Tx MXene/Ni0.6Zn0.4Fe2O4 heterogeneous nanocomposites for highly efficient electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2021, 887: 161298. doi: 10.1016/j.jallcom.2021.161298
    [17] YANG N, LUO Z X, WU G, et al. Superhydrophobic hierarchical hollow carbon microspheres for microwave-absorbing and self-cleaning two-in-one applications[J]. Chemical Engineering Journal, 2023, 454: 140132. doi: 10.1016/j.cej.2022.140132
    [18] MENG X, HE L, LIU Y Q, et al. Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption[J]. Carbon, 2022, 194: 207-219. doi: 10.1016/j.carbon.2022.03.075
    [19] YANG K, CUI Y, WAN L, et al. Preparation of Three-Dimensional Mo2C/NC@MXene and Its Efficient Electromagnetic Absorption Properties[J]. Acs Applied Materials & Interfaces, 2022, 14(5): 7109-7120.
    [20] LI S S, MO W J, LIU Y, et al. Constructing 3D Tent-Like frameworks in melamine hybrid foam for superior microwave absorption and thermal insulation[J]. Chemical Engineering Journal, 2023, 454: 140133. doi: 10.1016/j.cej.2022.140133
    [21] YANG Z Q, DUAN L Q, CHANG G, et al. Molten salt guided synthesis of carbon Microfiber/FeS dielectric/magnetic composite for microwave absorption application[J]. Carbon, 2023, 202: 225-234. doi: 10.1016/j.carbon.2022.10.091
    [22] 黄才华, 黄陈, 吴海华, 等. 熔融沉积成型Fe3O4-MWCNTs/PLA微波吸收材料性能[J]. 复合材料学报, 2024, 41(4): 1954-1967.

    HUANG C H, HUANG C, WU H H, et al. Properties of microwave absorbers formed by fused deposition modeling with Fe3O4-MWCNTs/PLA composite wire[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1954-1967(in Chinese).
    [23] YANG D, TAO J R, YANG Y, et al. Robust microwave absorption in silver-cobalt hollow microspheres with heterointerfaces and electric-magnetic synergism: Towards achieving lightweight and absorption-type microwave shielding composites[J]. Journal of Materials Science & Technology, 2023, 138: 245-255.
    [24] CHANG M, LI Q Y, JIA Z R, et al. Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: Component optimization and structure modulation[J]. Journal of Materials Science & Technology, 2023, 148: 150-170.
    [25] CAI Y F, CHENG Y, WANG Z H, et al. Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption[J]. Chemical Engineering Journal, 2023, 457: 141102. doi: 10.1016/j.cej.2022.141102
    [26] LI X, WANG G H, LI Q, et al. Dual optimized Ti3C2Tx MXene@ZnIn2S4 heterostructure based on interface and vacancy engineering for improving electromagnetic absorption[J]. Chemical Engineering Journal, 2023, 453: 139488. doi: 10.1016/j.cej.2022.139488
    [27] XIANG Z, HUANG C, SONG Y M, et al. Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption[J]. Carbon, 2020, 167: 364-377. doi: 10.1016/j.carbon.2020.06.015
    [28] HOU T, JIA Z, HE S, et al. Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption[J]. Journal of Colloid and Interface Science, 2021, 583: 321-330. doi: 10.1016/j.jcis.2020.09.054
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-05-13
  • 录用日期:  2024-05-24
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回