Electromagnetic absorption properties of Ni0.6Zn0.4Fe2O4/rGO composites and their modified coatings
-
摘要: 随着5G时代的到来,各类电子设备的广泛使用随之导致了严重的电磁污染问题,迫切需要开发高性能的电磁吸波材料来解决上述问题。本文采用简单的原位生长法在还原氧化石墨烯(rGO)片层上生长了镍锌铁氧体(Ni0.6Zn0.4Fe2O4)纳米粒子,通过控制rGO的掺量制备了一系列的Ni0.6Zn0.4Fe2O4/rGO (NZFO/rGO)吸波剂,NZFO/rGO-1:0.5在11.24 GHz时的最小反射损耗(RL)值为−60.72 dB,匹配厚度为2.98 mm。此外,制备的NZFO/rGO/环氧树脂吸波涂层在NZFO/rGO-1:0.5复合材料掺量为5 wt%时,涂覆在水泥基平板上的最小RL值为−42.2 dB,比纯环氧树脂涂层的最小RL值降低了90.95%;当掺量为3wt%时,有效吸收带宽(EAB)为8.88 GHz,RL值小于−5 dB时吸收带宽可达13.2 GHz。
-
关键词:
- Ni0.6Zn0.4Fe2O4 /
- 匹配厚度 /
- 反射损耗 /
- 环氧树脂 /
- 吸波涂层
Abstract: With the advent of the 5G era, the widespread use of various electronic devices has led to serious electromagnetic pollution problems. It is urgent to develop high-performance electromagnetic wave absorption materials to solve the above problems. In our work, nickel zinc ferrite (Ni0.6Zn0.4Fe2O4) nanoparticles were grown on reduced graphene oxide (rGO) sheets by a simple in situ growth method, and a series of Ni0.6Zn0.4Fe2O4/rGO (NZFO/rGO) absorbers were prepared by adjusting the dosage of rGO. The minimum reflection loss (RL) of NZFO/rGO-1:0.5 at 11.24 GHz is −60.72 dB with the matching thickness of 2.98 mm. In addition, when 5 wt% NZFO/rGO-1:0.5 composites were used to prepare the modified epoxy resin coating, the minimum RL value of the cement-based materials coated the coating is −42.2 dB, which is 90.95% lower than the minimum RL value of pure epoxy resin specimen; When the dosage is 3 wt%, the effective absorption bandwidth (EAB) value is 8.88 GHz, and the absorption bandwidth can reach 13.2 GHz when the RL value is less than −5 dB.-
Key words:
- Ni0.6Zn0.4Fe2O4 /
- matching thickness /
- reflection loss /
- epoxy resin /
- absorption coating
-
图 3 所有复合材料的(a)介电常数实部$ {\varepsilon }^{\prime } $,(b)磁导率实部${\mu }^{\prime } $, (c)介电常数虚部$ {\varepsilon }^{\prime\prime } $,(d)磁导率虚部$ {\mu }^{\prime \prime } $, (e)介电损耗正切$ \text{tan}{\delta }_{\mathrm{\varepsilon }} $,(f)磁损耗正切$ \text{tan}{\delta }_{\mathrm{\mu }} $
Figure 3. (a) the real part of complex permittivity $ {\varepsilon }^{\prime }$, (b) the real part of complex permeability ${\mu }^{\prime } $, (c) the imaginary part of complex permittivity $ {\varepsilon }^{\prime\prime }$, (d) the imaginary part of complex permeability $ {\mu }^{\prime\prime }$, (e) the dielectric loss tangent $ \text{tan}{\delta }_{\mathrm{\varepsilon }} $, (f) the magnetic loss tangent $ \text{tan}{\delta }_{\mathrm{\mu }} $ of all composites
图 6 (a) NZFO/rGO-1:0.5复合材料不同厚度与RL值的频率依赖关系以及对应的阻抗匹配,所有NZFO/rGO复合材料的(b)衰减常数和(c)涡流系数
Figure 6. (a) The frequency dependence of RL values for the NZFO/rGO-1:0.5 composite with different thicknesses and the corresponding impedance matching; (b) the attenuation constant and (c) the eddy current loss of all NZFO/ /rGO composites
表 1 普通硅酸盐水泥(P.O.42.5 R)的化学成分 (wt%)
Table 1. Chemical composition of ordinary Portland cement (P.O.42.5 R) (wt%)
CaO SiO2 Al2O3 Fe3O4 MgO SO3 K2O P2O5 Na2O other 55.34 19.91 6.92 5.91 5.19 3.21 1.61 1.04 0.12 0.75 -
[1] GAO Y, PAN L N, WU Q, et al. Honeycomb-like SnS2/graphene oxide composites for enhanced microwave absorption[J]. Journal of Alloys and Compounds, 2022, 915: 165405. doi: 10.1016/j.jallcom.2022.165405 [2] WANG Z, ZHAO H R, DAI D, et al. Ultralight, tunable monolithic SiC aerogel for electromagnetic absorption with broad absorption band[J]. Ceramics International, 2022, 48(18): 26416-26424. doi: 10.1016/j.ceramint.2022.05.332 [3] 谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248.XIE W H, GENG H R, LIU Y, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248(in Chinese). [4] YANG E Q, QI X S, CAI H B, et al. Composition optimization of Co3-xFexO4/reduced graphene oxide nanohybrids as excellent electromagnetic wave absorption abilities[J]. Materials Science Engineering B, 2018, 238-239: 7-17. doi: 10.1016/j.mseb.2018.12.009 [5] ZHAO X, HUANG Y, LIU X, et al. Core-shell CoFe2O4@C nanoparticles coupled with rGO for strong wideband microwave absorption[J]. Journal of Colloid Interface Science, 2022, 607: 192-202. doi: 10.1016/j.jcis.2021.08.203 [6] 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7): 3303-3316.HU Z L, WU H H, YANG Z H, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3303-3316(in Chinese). [7] DING J, CHENG L G, ZHAO W X. Self-assembly magnetic FeCo nanostructures on oxide graphene for enhanced microwave absorption[J]. Journal of Electron Materials, 2022, 51(6): 2856-2866. doi: 10.1007/s11664-022-09552-4 [8] HOU M M, DU Z J, LIU Y, et al. Reduced graphene oxide loaded with magnetic nanoparticles for tunable low frequency microwave absorption[J]. Journal of Alloys and Compounds, 2022, 913: 165137. doi: 10.1016/j.jallcom.2022.165137 [9] HU F F, NAN H, WANG M Q, et al. Construction of core-shell BaFe12O19@MnO2 composite for effectively enhancing microwave absorption performance[J]. Ceramics International, 2021, 47(12): 16579-16587. doi: 10.1016/j.ceramint.2021.02.229 [10] GUO W M, ZHU H T, REN Q F, et al. MnFe2O4/ZnO/diatomite composites with electromagnetic wave absorption and antibacterial bifunctions[J]. Solid State Sciences, 2023, 138. [11] SALEEM A, ZHANG Y J, GONG H Y, et al. Electromagnetic wave absorption performance of Ni doped Cu-ferrite nanocrystals[J]. Materials Research Express, 2020, 7(1): 016117. doi: 10.1088/2053-1591/ab6c1a [12] LIU C C, LIU S N, FENG X F, et al. Phthalocyanine-mediated interfacial self-assembly of magnetic graphene nanocomposites toward low-frequency electromagnetic wave absorption[J]. Chemical Engineering Journal, 2023, 452: 139483. doi: 10.1016/j.cej.2022.139483 [13] FU X Y, ZHENG Q, LI L, et al. Vertically implanting MoSe2 nanosheets on the RGO sheets towards excellent multi-band microwave absorption[J]. Carbon, 2022, 197: 324-333. doi: 10.1016/j.carbon.2022.06.037 [14] MA L L, DOU Z F, LI D G, et al. Facile synthesis of nitrogen-doped porous Ni@C nanocomposites with excellent synergistically enhanced microwave absorption and thermal conductive performances[J]. Carbon, 2023, 201: 587-598. doi: 10.1016/j.carbon.2022.09.055 [15] 中国国家标准化管理委员会(标准制定单位): 雷达吸波材料反射率测试方法, GJB2038A-2011[S]. 北京: 总装备部军标出版发行部, 2011.Standardization Administration of the People's Republic of China: The measurement methods for reflectivity of radar absorbing material: GJB2038A-2011[S]. Beijing: General Armament Department Military Standards Press, 2011. [16] GUO S Y, GUAN H L, LI Y, et al. Dual-loss Ti3C2Tx MXene/Ni0.6Zn0.4Fe2O4 heterogeneous nanocomposites for highly efficient electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2021, 887: 161298. doi: 10.1016/j.jallcom.2021.161298 [17] YANG N, LUO Z X, WU G, et al. Superhydrophobic hierarchical hollow carbon microspheres for microwave-absorbing and self-cleaning two-in-one applications[J]. Chemical Engineering Journal, 2023, 454: 140132. doi: 10.1016/j.cej.2022.140132 [18] MENG X, HE L, LIU Y Q, et al. Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption[J]. Carbon, 2022, 194: 207-219. doi: 10.1016/j.carbon.2022.03.075 [19] YANG K, CUI Y, WAN L, et al. Preparation of Three-Dimensional Mo2C/NC@MXene and Its Efficient Electromagnetic Absorption Properties[J]. Acs Applied Materials & Interfaces, 2022, 14(5): 7109-7120. [20] LI S S, MO W J, LIU Y, et al. Constructing 3D Tent-Like frameworks in melamine hybrid foam for superior microwave absorption and thermal insulation[J]. Chemical Engineering Journal, 2023, 454: 140133. doi: 10.1016/j.cej.2022.140133 [21] YANG Z Q, DUAN L Q, CHANG G, et al. Molten salt guided synthesis of carbon Microfiber/FeS dielectric/magnetic composite for microwave absorption application[J]. Carbon, 2023, 202: 225-234. doi: 10.1016/j.carbon.2022.10.091 [22] 黄才华, 黄陈, 吴海华, 等. 熔融沉积成型Fe3O4-MWCNTs/PLA微波吸收材料性能[J]. 复合材料学报, 2024, 41(4): 1954-1967.HUANG C H, HUANG C, WU H H, et al. Properties of microwave absorbers formed by fused deposition modeling with Fe3O4-MWCNTs/PLA composite wire[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1954-1967(in Chinese). [23] YANG D, TAO J R, YANG Y, et al. Robust microwave absorption in silver-cobalt hollow microspheres with heterointerfaces and electric-magnetic synergism: Towards achieving lightweight and absorption-type microwave shielding composites[J]. Journal of Materials Science & Technology, 2023, 138: 245-255. [24] CHANG M, LI Q Y, JIA Z R, et al. Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: Component optimization and structure modulation[J]. Journal of Materials Science & Technology, 2023, 148: 150-170. [25] CAI Y F, CHENG Y, WANG Z H, et al. Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption[J]. Chemical Engineering Journal, 2023, 457: 141102. doi: 10.1016/j.cej.2022.141102 [26] LI X, WANG G H, LI Q, et al. Dual optimized Ti3C2Tx MXene@ZnIn2S4 heterostructure based on interface and vacancy engineering for improving electromagnetic absorption[J]. Chemical Engineering Journal, 2023, 453: 139488. doi: 10.1016/j.cej.2022.139488 [27] XIANG Z, HUANG C, SONG Y M, et al. Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption[J]. Carbon, 2020, 167: 364-377. doi: 10.1016/j.carbon.2020.06.015 [28] HOU T, JIA Z, HE S, et al. Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption[J]. Journal of Colloid and Interface Science, 2021, 583: 321-330. doi: 10.1016/j.jcis.2020.09.054
计量
- 文章访问数: 63
- HTML全文浏览量: 62
- 被引次数: 0