留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强不锈钢绞线网增强ECC加固RC短柱轴心受压试验

王新玲 李赟璞 李苗浩夫 范家俊

王新玲, 李赟璞, 李苗浩夫, 等. 高强不锈钢绞线网增强ECC加固RC短柱轴心受压试验[J]. 复合材料学报, 2022, 39(5): 2308-2317. doi: 10.13801/j.cnki.fhclxb.20210804.001
引用本文: 王新玲, 李赟璞, 李苗浩夫, 等. 高强不锈钢绞线网增强ECC加固RC短柱轴心受压试验[J]. 复合材料学报, 2022, 39(5): 2308-2317. doi: 10.13801/j.cnki.fhclxb.20210804.001
WANG Xinling, LI Yunpu, LIMIAO Haofu, et al. Compressive behavior of RC short columns strengthened with high-strength stainless steel wire strand mesh and ECC[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2308-2317. doi: 10.13801/j.cnki.fhclxb.20210804.001
Citation: WANG Xinling, LI Yunpu, LIMIAO Haofu, et al. Compressive behavior of RC short columns strengthened with high-strength stainless steel wire strand mesh and ECC[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2308-2317. doi: 10.13801/j.cnki.fhclxb.20210804.001

高强不锈钢绞线网增强ECC加固RC短柱轴心受压试验

doi: 10.13801/j.cnki.fhclxb.20210804.001
基金项目: 国家自然科学基金(51879243);国家重点研发计划项目(2017YFC1501204);国家自然科学基金河南联合项目(U1804137);河南省高等学校青年骨干教师培养计划(2020GGJS003)
详细信息
    通讯作者:

    范家俊,博士,讲师,研究方向为新型复合材料性能及结构加固 Email:jiajun.fan@zzu.edu.cn

  • 中图分类号: TU528.58

Compressive behavior of RC short columns strengthened with high-strength stainless steel wire strand mesh and ECC

  • 摘要: 在新型复合材料“高强不锈钢绞线网增强工程水泥基复合材料(ECC) (简称HSME)”的力学性能和约束素混凝土受压性能研究基础上,将钢筋混凝土(RC)短柱配筋率和混凝土强度以及加固层的ECC强度和横向钢绞线配筋率作为参数,试验研究高强不锈钢绞线网增强ECC加固RC短柱轴心受压性能。结果表明,和未加固RC短柱相比,HSME加固RC短柱不仅承载力大幅度提升,而且破坏时裂而不碎、具有明显的延性破坏特征,开裂荷载、峰值荷载及峰值位移显著提高;荷载达峰值荷载80%左右和峰值荷载时,试件表面最大裂缝宽度仅为0.09 mm和0.25 mm,表现出优良的多缝开裂和裂缝控制能力。HSME加固RC短柱荷载-位移曲线属于偏态的单峰曲线,包含弹性、裂缝发展、最大荷载和承载力下降四个阶段。随着ECC抗压强度和横向不锈钢绞线配筋率增大,HSME加固柱开裂荷载和峰值荷载均明显增大;增大RC柱配筋率和混凝土强度可提高加固柱峰值荷载和延性。

     

  • 图  1  RC柱几何尺寸及配筋(单位: mm)

    Figure  1.  Geometry and reinforcement of RC column (Unit: mm)

    $\phi $—Diameter

    图  2  加固柱(单位: mm)

    Figure  2.  Strengthened column (Unit: mm)

    图  3  加载装置

    Figure  3.  Test setup

    图  4  RC柱试件破坏模式

    Figure  4.  Failure pattern of RC column specimen

    图  5  HSME加固RC柱裂缝及破坏形态

    Figure  5.  Cracks and failure modes of HSME reinforced RC column

    图  6  典型RC柱试件荷载-位移曲线

    Figure  6.  Load-displacement curve of typical RC column specimen

    图  7  典型HSME加固RC柱试件荷载-ECC应变曲线

    Figure  7.  Load-ECC strain curve of typical HSME reinforced RC column specimen

    图  8  典型RC柱试件荷载-受压钢筋应变曲线

    Figure  8.  Load-compression reinforcement strain curves of typical RC column specimen

    图  9  HSME加固RC试件荷载-ECC强度曲线

    Figure  9.  Load-ECC strength curve of HSME reinforced RC specimen

    图  10  HSME加固RC试件荷载-横向不锈钢绞线配筋率曲线

    Figure  10.  Load-transverse high-strength stainless steel strands reinforcement ratio curve of HSME reinforced RC specimen

    图  11  HSME加固RC试件荷载-RC柱受压纵筋配筋率曲线

    Figure  11.  Load-RC column compression longitudinal reinforcement ratio curve of HSME reinforced RC specimen

    图  12  HSME加固RC试件荷载-核心混凝土强度曲线

    Figure  12.  Load-core concrete strength curve of HSME reinforced RC specimen

    表  1  高强不锈钢绞线网增强工程水泥基复合材料(ECC)(简称HSME)加固钢筋混凝土(RC)柱试件参数

    Table  1.   Test parameters of “high strength stainless steel wire mesh reinforced engineered cementitious composite (ECC) (referred to as HSME)” reinforced concrete (RC) column

    Group numberConcrete strength gradeρ/%Water-binder ratio of ECCρw/%
    HSME-RCA1 C60 1.13 0.25 (Thickener) 0.18
    HSME-RCA2 C75 1.13 0.25 0.18
    HSME-RCA3 C60 1.13 0.28 0.18
    HSME-RCA4 C75 1.13 0.25 0.30
    HSME-RCA5 C70 1.13 0.25 0.13
    HSME-RCB1 C75 1.54 0.25 0.18
    HSME-RCB2 C60 1.54 0.25 0.18
    HSME-RCB3 C70 1.54 0.25 0.18
    HSME-RCB4 C70 2.01 0.25 0.18
    DB-RC1 C60 1.54
    DB-RC2 C70 2.01
    Notes: ρ—Reinforcement ratio of longitudinal rebars; ρw—Reinforcement ratio of lateral steel stranded wires; HSME-RCA—ECC strength and the reinforcement ratio of transverse high-strength stainless steel strands; HSME-RCB—Longitudinal reinforcement ratio; DB-RC—Unreinforced comparative test specimens.
    下载: 导出CSV

    表  2  ECC抗压和抗拉试验结果

    Table  2.   Test results of ECC compressive and tensile

    Group numberfm, cu/MPafm, t/MPaε
    HSME-RCA126.54.340.0287
    HSME-RCA234.33.870.0226
    HSME-RCA325.23.730.0290
    HSME-RCA434.73.840.0273
    HSME-RCA534.34.040.0265
    HSME-RCB135.03.820.0290
    HSME-RCB235.63.760.0287
    HSME-RCB334.44.020.0328
    HSME-RCB435.23.490.0228
    Notes: fm, cu—Compressive strength of ECC; fm, t—Tensile strength of ECC; ε—Ultimate tensile strain of ECC.
    下载: 导出CSV

    表  3  钢筋和混凝土强度试验结果

    Table  3.   Test results of reinforcement and concrete strength

    d/mmfy/MPaConcrete strength gradefcu/MPaEc/(104 MPa)
    12 446 C60 55.3 3.60
    14 443 C70 70.2 3.70
    16 484 C75 76.3 3.75
    Notes: d—Diameter of the steel bar; fy—Yield strength of steel bars; fcu—Average values of cube compressive strength; Ec—Elastic modulus.
    下载: 导出CSV

    表  4  HSME加固RC柱试验结果

    Table  4.   Test results of HSME reinforced RC column

    Group numberρ/%ρw/%fcu/MPafm,cu/MPaPm/kNε0Pcr/kNPl/kNεlPcr/PmPl/Pm
    HSME-RCA1 1.13 0.18 55.3 26.5 2059 0.0037 550 1517 0.0067 0.27 0.74
    HSME-RCA2 1.13 0.18 76.3 37.3 2459 0.0037 650 1 984 0.0056 0.26 0.81
    HSME-RCA3 1.13 0.18 55.3 25.2 1 884 0.0038 500 1506 0.0057 0.27 0.80
    HSME-RCA4 1.13 0.30 76.3 34.7 2696 0.0034 670 1 968 0.0065 0.26 0.73
    HSME-RCA5 1.13 0.13 70.2 34.3 2399 0.0036 600 1739 0.0054 0.25 0.72
    HSME-RCB1 1.54 0.18 76.3 35.0 2640 0.0040 650 1 980 0.0055 0.25 0.75
    HSME-RCB2 1.54 0.18 55.3 35.6 2289 0.0040 600 1763 0.0073 0.26 0.77
    HSME-RCB3 1.54 0.18 70.2 31.4 2221 0.0046 600 1621 0.0064 0.27 0.73
    HSME-RCB4 2.01 0.18 70.2 35.2 2363 0.0052 600 1 914 0.0074 0.25 0.81
    DB-RC1 1.54 55.3 1626 0.0024 300 0.24
    DB-RC2 2.01 70.2 1 801 0.0018 400 0.22
    Notes: ρw—Reinforcement ratio of lateral steel stranded wires; Pm—Peak load of the specimen; ε0—Peak strain of the strain gauge on the surface of the specimen; Pcr—Cracking load of specimens; Pl—Breaking load of the first strand of the test piece; εl—Strain corresponding to the breaking load of the first strand (Ultimate compressive strain).
    下载: 导出CSV
  • [1] LI V C. High performance fiber reinforced cementitious composites as durable material for concrete structure repair international[J]. International Journal for Restoration,2004,10(2):163-180.
    [2] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60. doi: 10.3321/j.issn:1000-131X.2008.06.008

    XU Shilang, LI Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal,2008,41(6):45-60(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.06.008
    [3] 刘伟康. ECC受压和受拉性能及本构模型研究[D]. 郑州: 郑州大学, 2018.

    LIU Weikang. Study on the compression and tensile pro-perties and the constitutive model of ECC[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [4] LEPECH M, LI V C. Durability and long term performance of engineered cementitious composites[C]. Bagneux: RILEM Publications SARL, 2005: 23-26.
    [5] LI V C, LEPECH M. Crack resistant concrete material for transportation construction[R]. Michigan: University of Michigan, 2004.
    [6] 俞家欢, 牛宏, 包龙生, 等. 界面裂纹扩展与分叉对ECC-混凝土叠层修补体系的影响[J]. 中国公路学报, 2013, 26(1):44-50. doi: 10.3969/j.issn.1001-7372.2013.01.007

    YU Jiahuan, NIU Hong, BAO Longsheng, et al. Effect of propogating and kinking of interfacial crack on ECC-concrete overlay repair system[J]. China Journal of Highway and Transport,2013,26(1):44-50(in Chinese). doi: 10.3969/j.issn.1001-7372.2013.01.007
    [7] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study on compressive performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Composite Sinica,2019,36(8):1957-1967(in Chinese).
    [8] 朱忠锋, 王文炜. FRP编织网/ECC复合加固钢筋混凝土圆柱力学性能的试验研究[J]. 东南大学学报(自然科学版), 2016, 46(5):1082-1087. doi: 10.3969/j.issn.1001-0505.2016.05.031

    ZHU Zhongfeng, WANG Wenwei. Experimental study on mechanical behaviour of circular reinforced concrete columns strengthened with FRP textile and ECC[J]. Jour-nal of Southeast University(Natural Science Edition),2016,46(5):1082-1087(in Chinese). doi: 10.3969/j.issn.1001-0505.2016.05.031
    [9] 董旭, 丁明波, 刘正楠, 等. 新型钢筋网格加固铁路重力式桥墩拟静力试验研究[J]. 铁道科学与工程学报, 2020, 17(4):908-914.

    DONG Xu, DING Mingbo, LIU Zhengnan, et al. Quasi-sta-tic test study on railway gravity pier strengthened with steel mesh[J]. Journal of Railway Science and Engineering,2020,17(4):908-914(in Chinese).
    [10] 卜良桃, 李易越, 袁超, 等. PVA-ECC加固RC方柱轴压性能试验研究[J]. 建筑结构, 2012, 42(7):97-102.

    BU Liangtao, LI Yiyue, YUAN Chao, et ai. Experimental study on bearing capacity of PVA-ECC reinforced concrete square columns subjected to axial load[J]. Building Structure,2012,42(7):97-102(in Chinese).
    [11] 王巍. 超高韧性水泥基复合材料热膨胀性能及导热性能的研究[D]. 大连: 大连理工大学, 2009.

    WANG Wei. Study on thermal expansion and thermal conductivity of ultra high toughness cementitious composites[D]. Dalian: Dalian University of Technology, 2009(in Chinese).
    [12] 陈志华, 刘占省. 拉索线膨胀系数试验研究[J]. 建筑材料学报, 2010, 13(5):626-631.

    CHEN Zhihua, LIU Zhansheng. Experimental research of linear thermal expansion coefficient of cables[J]. Journal of Building Materials,2010,13(5):626-631(in Chinese).
    [13] 姚秋来, 张立峰, 程绍革, 等. 高强钢绞线网-聚合物砂浆加固大偏心受压RC柱的研究[J]. 建筑结构, 2007, 37(S1):285-289.

    YAO Qiulai, ZHANG Lifeng, CHENG Shaoge, et al. Investi-gation of RC columns strengthened with high-strength steel wire mesh and polymer mortar under large eccentric loading[J]. Building Science,2007,37(S1):285-289(in Chinese).
    [14] 朱俊涛, 张凯, 王新玲, 等. 高强不锈钢绞线网与ECC黏结-滑移关系模型[J]. 土木工程学报, 2020, 53(4):83-92.

    ZHU Juntao, ZHANG Kai, WANG Xinling, et al. Bond-slip relational model between high-strength stainless steel wire mesh and ECC[J]. China Civil Engineering Journal,2020,53(4):83-92(in Chinese).
    [15] 王新玲, 赵要康, 周擎威, 等. 高强不锈钢绞线与ECC黏结滑移性能研究[J]. 华中科技大学学报(自然科学版), 2020, 48(12):108-113.

    WANG Xinling, ZHAO Yaokang, ZHOU Qingwei, et al. Study on bond-slip property of high strength stainless steel strand and ECC[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2020,48(12):108-113(in Chinese).
    [16] 朱俊涛, 赵亚楼, 李燚, 等. 高强不锈钢绞线网与工程水泥基复合材料黏结锚固性能试验[J]. 复合材料学报, 2020, 37(7):1731-1742.

    ZHU Juntao, ZHAO Yalou, LI Yi, et al. Experiment on bonding and anchoring performance between high-strength stainless steel wire mesh and engineered cementitious composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1731-1742(in Chinese).
    [17] 王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系 [J]. 复合材料学报, 2020, 37(12): 3221-3229.

    WANG Xinling, YANG Guanghua, QIAN Wenwen, et al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3221-3229(in Chinese).
    [18] 王新玲, 罗鹏程, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料薄板受弯承载力研究 [J]. 建筑结构学报, 2022, 43(1): 164-172.

    WANG Xinling, LUO Pengcheng, QIAN Wenwen, et al. Study on flexural bearing capacity of high strength stainless steel wire strand mesh reinforced ECC [J]. Journal of Building Structures, 2022, 43(1): 164-172(in Chinese).
    [19] 王新玲, 陈永杰, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验[J]. 复合材料学报, 2021, 38(4):1292-1301.

    WANG Xinling, CHEN Yongjie, QIAN Wenwen, et al. Experi-ment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh[J]. Acta Materiae Compositae Sinica,2021,38(4):1292-1301(in Chinese).
    [20] 王新玲, 卫垚鑫, 范建伟, 等. 新型复合材料“高强钢绞线网/ECC约束素混凝土”受压性能试验研究[J]. 复合材料学报, 2021, 38(11): 3904-3911.

    WANG Xinling, WEI Yaoxin, FAN Jianwei, et al. Experi-mental study on compressive performance of new compo-site material “concrete confined with high-strength steel stranded wire meshes/ECC”[J]. Acta Materiae Compo-sitae Sinica, 2021, 38(11): 3904-3911(in Chinese).
    [21] 高鹏, 黄镜渟, 周安, 等. 玄武岩纤维布和碳纤维布加固高强混凝土柱轴压性能试验研究[J]. 工业建筑, 2019, 49(9):139-144, 160.

    GAO Peng, HUANG Jingting, ZHOU An, et al. Experimental research on axial compression of high-strength concrete column strengthened with BFRP and CFRP[J]. Industrial Construction,2019,49(9):139-144, 160(in Chinese).
    [22] 王苏岩, 韩克双, 曲秀华. CFRP加固高强混凝土柱改善延性的试验研究[J]. 世界地震工程, 2005, 21(3):7-10. doi: 10.3969/j.issn.1007-6069.2005.03.002

    WANG Suyan, HAN Keshuang, QU Xiuhua. Experimental research on ductility behavior of high-strength reinforced concrete columus strengthened with carbon fiber sheet[J]. World Information on Earthquake Engineering,2005,21(3):7-10(in Chinese). doi: 10.3969/j.issn.1007-6069.2005.03.002
    [23] 中华人民共和国住房和城乡建设部. 钢绞线网片聚合物砂浆加固技术规程: JGJ 337—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for strengthening of building structures with steel stranded wire mesh and polymer mortar: JGJ 337—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [24] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  982
  • HTML全文浏览量:  531
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-07-11
  • 录用日期:  2021-07-23
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回