留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaAlCl4/ZSM-5@γ-Al2O3核壳复盐催化剂的制备及其歧化性能

徐文媛 黄鸿坤 沈蒙莎 程永兵 陈曦 杨绍明

徐文媛, 黄鸿坤, 沈蒙莎, 等. NaAlCl4/ZSM-5@γ-Al2O3核壳复盐催化剂的制备及其歧化性能[J]. 复合材料学报, 2022, 39(10): 1-9 doi: 10.13801/j.cnki.fhclxb.20211115.001
引用本文: 徐文媛, 黄鸿坤, 沈蒙莎, 等. NaAlCl4/ZSM-5@γ-Al2O3核壳复盐催化剂的制备及其歧化性能[J]. 复合材料学报, 2022, 39(10): 1-9 doi: 10.13801/j.cnki.fhclxb.20211115.001
Wenyuan XU, Hongkun HUANG, Mengsha SHEN, Yongbing CHENG, Xi CHEN, Shaoming YANG. Preparation and disproportionation properties of NaAlCl4/ZSM-5@γ-Al2O3 core-shell catalyst[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-9. doi: 10.13801/j.cnki.fhclxb.20211115.001
Citation: Wenyuan XU, Hongkun HUANG, Mengsha SHEN, Yongbing CHENG, Xi CHEN, Shaoming YANG. Preparation and disproportionation properties of NaAlCl4/ZSM-5@γ-Al2O3 core-shell catalyst[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-9. doi: 10.13801/j.cnki.fhclxb.20211115.001

NaAlCl4/ZSM-5@γ-Al2O3核壳复盐催化剂的制备及其歧化性能

doi: 10.13801/j.cnki.fhclxb.20211115.001
基金项目: 国家自然科学基金 (22162010;21872049)
详细信息
    通讯作者:

    徐文媛,博士,教授,博士生导师,研究方向为有机硅歧化  E-mail: xwyktz@163.com

  • 中图分类号: T-19

Preparation and disproportionation properties of NaAlCl4/ZSM-5@γ-Al2O3 core-shell catalyst

  • 摘要: 针对氯硅烷残留物的危害性和资源化利用,通过歧化反应将副产物制备成经济效益更高的二甲基二氯硅烷。由田菁胶为粘结剂,以γ-Al2O3为壳,对ZSM-5分子筛表面进行修饰,构筑ZSM-5@γ-Al2O3核壳载体;然后,通过高温浸渍负载法,将NaAlCl4负载在ZSM-5@γ-Al2O3核壳载体表面。综合研究了不同Si/Al摩尔比的ZSM-5分子筛、不同NaAlCl4负载比例和AlCl3溶液的浸渍时间对歧化制备二甲基二氯硅烷反应的影响。采用XRD、SEM、SEM-EDS、BET和FT-IR对样品进行表征分析,结果表明,当温度为200℃,硅铝摩尔比为50,复盐NaAlCl4比例为8wt%,AlCl3浸渍时间为3 h时,催化剂活性达到最佳,产率为71.81%。通过NaAlCl4复盐负载ZSM-5@γ-Al2O3核壳表面,改善单一催化成分性能不稳定性,提高催化效率,再分配氯硅烷副产品甲基三氯硅烷(M1) 和 三 甲 基 氯 硅 烷 (M3),得到商业价值较高的二甲基二氯硅烷 (M2) ,实现变废为宝。

     

  • 图  1  不同Si/Al摩尔比的ZSM-5@γ-Al2O3载体对二甲基二氯硅烷(M2)产率的影响(Na/Al摩尔比1,AlCl3的浸渍时间2 h,甲基三氯硅烷 (M1) 和 三 甲 基 氯 硅 烷 (M3)的比例为1vol%,催化剂的用量为0.6 g)

    Figure  1.  Effect of ZSM-5@γ-Al2O3 carriers with different Si/Al molar ratios on the yield of dimethyldichlorosilane (M2) (The molar ratio of Na/Al is 1, the impregnation time of AlCl3 solution is 3 h, the volume ratio of M1/M3 is 1vol%, and the amount of catalysts was 0.6 g)

    图  2  NaAlCl4/ZSM-5@γ-Al2O3催化剂负载不同质量比例的NaAlCl4复盐对M2产率的影响(Na/Al摩尔比1,AlCl3溶液的浸渍时间2 h,M1/M3的体积比为1vol%,催化剂的用量为0.6 g)

    Figure  2.  Effect of NaAlCl4/ZSM-5@γ-Al2O3 catalyst loaded with different mass ratios of NaAlCl4 double salt on M2 yield (The molar ratio of Na/Al is 1, the impregnation time of AlCl3 solution is 2 h, the volume ratio of M1/M3 is 1vol% and the amount of catalysts is 0.6 g)

    图  3  不同AlCl3溶液浸渍时间的NaAlCl4/ZSM-5@γ-Al2O3催化剂对M2产率的影响(Na/Al摩尔比1,复盐NaAlCl4负载比例8wt%,M1/M3的体积比为1vol%,催化剂的用量为0.6 g)

    Figure  3.  Effect of NaAlCl4/ZSM-5@γ-Al2O3 catalysts on the yield of M2 with different impregnation time of AlCl3 solution (The molar ratio of Na/Al is 1, the loading ratio of compound salt NaAlCl4 is 8wt%, the volume ratio of M1/M3 is 1vol%, and the amount of catalyst is 0.6 g)

    图  4  ZSM-5@γ-Al2O3载体及NaAlCl4/ZSM-5@γ-Al2O3催化剂负载不同比例NaAlCl4复盐的XRD图

    Figure  4.  XRD patterns of ZSM-5@γ-Al2O3 support and NaAlCl4/ZSM-5@γ -Al2O3 catalysts supported with different proportions of NaAlCl4 compound salts

    1—ZSM-5@γ-Al2O3; 2—4wt%NaAlCl4/ZSM-5@γ-Al2O3; 3—8wt%NaAlCl4/ZSM-5@γ-Al2O3; 4—12wt%NaAlCl4/ZSM-5@γ-Al2O3; 5—16wt%NaAlCl4/ZSM-5@γ-Al2O3

    图  5  (a) 8wt%NaAlCl4/ZSM-5@γ-Al2O3催化剂的孔径分布曲线图;(b) 8wt%NaAlCl4/ZSM-5@γ-Al2O3催化剂的脱吸附图

    Figure  5.  (a) Pore size distribution curve of the porous media of 8wt%NaAlCl4/ZSM-5@γ-Al2O3 catalyst; (b) Desorption diagram of 8wt%NaAlCl4/ZSM-5@γ-Al2O3 catalyst

    图  6  NaAlCl4/ZSM-5@γ-Al2O3催化剂的SEM-EDS能谱图:(a) ~ (d) 分别为负载4wt%、8wt%、12wt%和16wt%的催化剂元素分布及其含量图

    Figure  6.  SEM-EDS spectrums of NaAlCl4/ZSM-5@γ-Al2O3 catalysts: (a)-(d) Show element distribution and content catalysts supported with 4wt%, 8wt%, 12wt%, 16wt%, respectively

    图  7  各催化剂扫描电镜图:(a) ZSM-5;(b) ZSM-5@γ-Al2O3;((c) ~ (f)) 分别负载NaAlCl4复盐4wt%、8wt%、12wt%、16wt%的NaAlCl4/ZSM-5@γ-Al2O3催化剂

    Figure  7.  SEM images of catalysts: (a) ZSM-5; (b) ZSM-5@γ-Al2O3; ((c)-(f)) NaAlCl4/ZSM-5@γ-Al2O3 catalysts loaded with 4wt%, 8wt%, 12wt%, 16wt% of NaAlCl4 compound salt, respectively

    图  8  FT-IR: (a) ZSM-5;(b) ZSM-5@γ-Al2O3;(c) ~ (f)分别为负载NaAlCl4复盐为4wt%、8wt%、12wt%、16wt%的NaAlCl4/ZSM-5@γ-Al2O3催化剂

    Figure  8.  FT-IR: (a) ZSM-5; (b) ZSM-5@γ-Al2O3; (c) ~ (f): NaAlCl4/ZSM-5@γ-Al2O3 catalysts loaded with 4wt%, 8wt%, 12wt%, 16wt% of NaAlCl4 compound salt, respectively

  • [1] SETIADJI S, SUMIYANTO E, FITRILAWATI, et al. Synthesis of polydimethylsiloxane and its monomer from hydrolysis of dichlorodimethylsilane[J]. Key Engineering Materials,2020,860:234-238. doi: 10.4028/www.scientific.net/KEM.860.234
    [2] PALAPRAT G, GANACHAUD F. Synthesis of polydimethylsiloxane microemulsions by self-catalyzed hydrolysis/condensation of dichlorodimethylsilane[J]. Comptes Rendus Chimie,2003,6(11-12):1385-1392. doi: 10.1016/j.crci.2003.09.002
    [3] WANG Y F, LI Z, HUBER L, et al. Reducing the thermal hazard of hydrophobic silica aerogels by using dimethyldichlorosilane as modifier[J]. Journal of Sol-Gel Science and Technology,2020,93(1):111-122. doi: 10.1007/s10971-019-05170-5
    [4] 赵建波, 张宁. 有机硅高沸物裂解歧化制备二甲基二氯硅烷的研究进展[J]. 工业催化, 2003(11):37-41.

    ZHAO Jianbo, ZHANG Ning. Catalytic conversion of high-boiling components in silicone to dimethyldichloro-silane[J]. Industrial Catalysis,2003(11):37-41(in Chinese).
    [5] ZHANG P, DUAN J H, CHEN G H, et al. Effect of bed characters on the direct synthesis of dime-thyldichlorosilane in fluidized bed reactor[J]. Scientific Reports,2015,5:8827. doi: 10.1038/srep08827
    [6] JIANG Y Q, CHEN W G, LIU Y J, et al. Synthesis of tri-methylchlorosilane by [BMIM]Cl−nAlCl3 ionic liquids-catalyzed redistribution between methyltrichlorosilane and low-boiling products from the direct synthesis of methylchlorosilanes[J]. Industrial & Engineering Chemistry Research,2011,50(4):1893-1898. doi: 10.1021/ie1022207
    [7] LI J, NI Z B, JI Y J, et al. ZnO supported on Cu2O{1 0 0} enhances charge transfer in dimethyldichlorosilane synthesis[J]. Journal of Catalysis,2019,374:284-296. doi: 10.1016/j.jcat.2019.02.029
    [8] ZHANG Y, LI J, LIU H Z, et al. Recent advances in Rochow-Müller process research: Driving to molecular catalysis and to a more sustainable silicone industry[J]. ChemCatChem,2019,11(12):2757-2779. doi: 10.1002/cctc.201900385
    [9] PACHALY B, SCHINABECK A. Separation of methylchlorosilanes from high boiling residues of methylchlorosilane synthesis: US Patent, 5288892 A[P]. 1994-2-24.
    [10] WANG A L, JIANG Y Q, CHEN W G, et al. [BMIM]Cl-nAlCl3 ionic liquid-catalyzed redistribution reaction between methyltrichlorosilane and low-boiling residue to dimethyldichlorosilane[J]. Journal of Industrial and Engineering Chemistry,2012,18(1):237-242. doi: 10.1016/j.jiec.2011.11.023
    [11] KOSRI C, KIATPHUENGPORN S, BUTBUREE T, et al. Selective conversion of xylose to lactic acid over metal-based Lewis acid supported on γ-Al2O3 catalysts[J]. Catalysis Today,2021,367:205-212. doi: 10.1016/j.cattod.2020.04.061
    [12] BADMAEV S, SOBYANIN V. Production of hydrogen-rich gas by oxidative steam reforming of dimethoxymethane over CuO-CeO2/γ-Al2O3 catalyst[J]. Energies,2020,13(14):3684-3693. doi: 10.3390/en13143684
    [13] 颜曦明, 王宝宇, 柯明, 等. La/Hβ-Al2O3复合材料改善轻汽油醚化活性[J]. 复合材料学报, 2018, 35(12):3466-3473. doi: 10.13801/j.cnki.fhclxb.20180316.005

    YAN Ximing, WANG Baoyu, KE Ming, et al. La/Hβ-Al3O2composite materials improve light gasoline etherification activity[J]. Acta Material composite Sinica,2018,35(12):3466-3473(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180316.005
    [14] XU W Y, YANG M, LI X Y, et al. Study on the mechanism of methylchlorosilanes disproportionation catalyzed by AlCl3/(AlCl2)zz+-γ-Al2O3[J]. Russian Journal of Physical Chemistry A,2019,92(13):2634-2639.
    [15] XU W Y, LIU Y P, ZHOU J X, et al. Transforming Brønsted acid to lewis acid on ZSM-5 disproportionation catalyst before and after loading AlCl3[J]. Asian Journal of Chemistry,2015,27(3):1147-1152. doi: 10.14233/ajchem.2015.18493
    [16] XU W Y, LI X Y, YANG M, et al. Redistribution mechanism of chloromethylsilanes catalyzed by HZSM-5 with big and small apertures[J]. Chinese Journal of Structural Chemistry,2018,37(4):543-550. doi: 10.14102/j.cnki.0254-5861.2011-1808
    [17] XU W Y, YAN F, YANG S M, et al. Mechanism on the disproportionating synthesis of dichlorodimethylsilane by ZSM-5(5T)@γ-Al2O3 series core-shell catalysts[J]. Applied Organometallic Chemistry,2020,34(3):e5419. doi: 10.1002/aoc.5419
    [18] LU R E, XU M W, FU B, et al. Single capillary electrospinning of magnetic core-shell nanofibers[J]. ChemistrySelect,2016,1(7):1510-1514. doi: 10.1002/slct.201600321
    [19] JIANG S, DU Y, MARCELLO M, et al. Core-shell crystals of porous organic cages[J]. Angewandte Chemie International Edition,2018,57(35):11228-11232. doi: 10.1002/anie.201803244
    [20] ABDALLA A, ARUDRA P, AL-KHATTAF S S. Catalytic cracking of 1-butene to propylene using modified H-ZSM-5 catalyst: A comparative study of surface modification and core-shell synthesis[J]. Applied Catalysis A: General,2017,533:109-120. doi: 10.1016/j.apcata.2017.01.003
    [21] CHENG Y B, WANG Y, LI S Y, et al. Mechanism on redistribution synthesis of dichlorodimethylsilane by AlCl3/ZSM-5(3T)@γ-Al2O3 core-shell catalyst[J]. Journal of Molecular Modeling,2021,27(9):255-267. doi: 10.1007/s00894-021-04859-1
    [22] XU W Y, KUANG X, YAN F, et al. Active center changed: disproportionation mechanism for preparing dimethyldichlorosilane catalyzed by core(4T)-shell catalyst[J]. Chinese Journal of Structural Chemistry,2020,39(6):1146-1156. doi: 10.14102/j.cnki.0254-5861.2011-2538
    [23] 徐文媛, 王利伟, 万欢欢, 等. NaAlCl4/ZSM-5催化甲基三氯硅烷歧化反应性能[J]. 郑州大学学报, 2015, 36(5):25-29.

    XU Wenyuan, WANG Liwei, WAN Huanhuan, et al. Study on the NaAlCl4/ZSM-5 catalysts by redistributing methyl-trichlorosilane[J]. Journal of Zhengzhou University,2015,36(5):25-29(in Chinese).
    [24] MASALSKA A, GRZECHOWIAK J R, JAROSZEWSKA K. Effect of metal-support interactions in Ni/ZSM-5+Al2O3 catalysts on the transformation of n-paraffins[J]. Topics in Catalysis,2013,56(11):981-994. doi: 10.1007/s11244-013-0062-x
    [25] YU H C, LI F W, HE W, et al. Synthesis of micro-mesoporous ZSM-5 zeolite with microcrystalline cellulose as co-template and catalytic cracking of polyolefin plastics[J]. RSC Advances,2020,10(37):22126-22136. doi: 10.1039/D0RA03082A
    [26] LI H S, HE S C, MA K, et al. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: Effect of SiO2/Al2O3 ratio in H-ZSM-5[J]. Applied Catalysis A: General,2013,450:152-159. doi: 10.1016/j.apcata.2012.10.014
    [27] DAUDA I B, YUSUF M, GBADAMASI S, et al. Highly selective hierarchical ZnO/ZSM-5 catalysts for propane aromatization[J]. ACS Omega,2020,5(6):2725-2733. doi: 10.1021/acsomega.9b03343
  • 加载中
图(8)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  76
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 录用日期:  2021-11-06
  • 修回日期:  2021-11-04
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-10-15

目录

    /

    返回文章
    返回